Skip to main content

Nanotechnology Applications to Improve Solubility of Bioactive Constituents of Foods for Health-Promoting Purposes

  • Chapter
  • First Online:
Nano-food Engineering

Part of the book series: Food Engineering Series ((FSES))

Abstract

Foods-derived multifunctional compounds, such as carotenoids, vitamins, phytosterols, polyunsaturated lipids, curcuminoids, flavonoids and polyphenols, in addition to the basic nutritional value, own extra health benefits and are considered “pharmaceutical-grade nutrients” better known as “nutraceuticals”. Similarly, phytochemicals from plants, characterized by analogous chemical structures, can be considered “pharmaceutical-grade molecules”. They could provide both diseases preventive actions and remarkable therapeutic benefits but, the efforts for identifying their mode of action and for applying them into food industry with health-promoting purposes, are often unsuccessful. Solubility is essential for a good absorption in the gastrointestinal tract and to achieve the systemic concentration necessary for an effective therapeutic activity, but the majority of these compounds are water-insoluble. Consequently, when ingested, they encounter many difficulties in crossing the diverse barriers to reach the bloodstream and to distribute to cells and tissues. Their absorption at gastric or intestinal level is troubled and in addition, they suffer from early degradation or fast metabolism, so rarely they manage to reach the site of action in therapeutically effective concentration and their clinical applications result strongly limited. Toxic excipients and harmful solubilizing agents were and are extensively used for solubilizing and delivering non-soluble bioactive chemicals (BACs) despite the resulting unpleasant side effects complained of by patients. During last decades, several new techniques, often resorting to nanotechnology, aiming at enhancing BACs solubility, at solving their pharmacokinetics drawbacks, at avoiding their early inactivation or fast metabolism, have been developed. On this background, the following chapter provides an overview concerning nanotechnology contribute and its technological advancements in “manufacturing” nutraceuticals and phytochemicals in more bioavailable nanoparticles. In addition, it is reviewed the involvement of nanoscience in developing and enhancing food-grade solid nanosized materials to be used as BACs “containers” and “vehicles” either for their safe and effective oral administration, in the frame of medical treatments, or for achieving smart food ingredients to improve the quality and shelf life of nourishments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrezak A, Bourassa P, Mandeville JS, Sedaghat-Herati R, Tajmir-Riahi HA (2012) Dendrimers bind antioxidant polyphenols and cisplatin drug. PLoS One 7(3):e33102. https://doi.org/10.1371/journal.pone.0033102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abd-Rabou AA, Ahmed HH (2017) CS PEG decorated PLGA nano-prototype for delivery of bioactive compounds: af novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci 62:357–367. https://doi.org/10.1016/j.advms.2017.01.003

    Article  PubMed  Google Scholar 

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15

    CAS  Google Scholar 

  • Ahire V, Mishra KP (2017) Ellagic acid as a potential anti-cancer drug. Int J Radiol Radiat Ther 3:00063. https://doi.org/10.15406/ijrrt.2017.03.00063

    Article  Google Scholar 

  • Al Shaal L, Müller RH, Shegokar R (2010) Smart crystal combination technology - scale up from lab to pilot scale and long term stability. Pharmazie 65:877–884

    PubMed  Google Scholar 

  • Alfei S, Castellaro S, Taptue GB (2017a) Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection. Org Commun 10:144–177

    CAS  Google Scholar 

  • Alfei S, Castellaro S (2017b) Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol Res 25(12):1172–1186. https://doi.org/10.1007/s13233-017-5160

    Article  CAS  Google Scholar 

  • Alfei S, Taptue GB, Catena S, Bisio A (2018a) Synthesis of water-soluble, polyester-based dendrimer prodrugs for exploiting therapeutic properties of two triterpenoid acids. Chinese J Polym Sci 36(9):999–1010. https://doi.org/10.1007/s10118-018-2124-9

    Article  CAS  Google Scholar 

  • Alfei S, Catena S (2018b) Synthesis and characterization of versatile amphiphilic dendrimers peripherally decorated with positive charged amino acids. Polym Int 67:1572–1584. https://doi.org/10.1002/pi.5680

    Article  CAS  Google Scholar 

  • Alfei S, Catena S (2018c) Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. Polym Adv Technol 29:2735–2749. https://doi.org/10.1002/pat.4396

    Article  CAS  Google Scholar 

  • Alfei S, Turrini F, Catena S, Zunin P, Parodi B, Zuccari G, Pittaluga A, Boggia R (2019a) Pectin microdispersion vs non-polyamidoamine dendrimer nanodispersions: Two biocompatible approaches to increase ellagic acid water solubility and allow its more ways therapeutic administration. New J Chem 43:2438–2448

    CAS  Google Scholar 

  • Alfei S, Oliveri P, Malegori C (2019b) Assessment of the efficiency of a nanospherical gallic acid dendrimer for long-term preservation of essential oils: An integrated chemometric-assisted FTIR study. ChemistrySelect 4:8891–8901 

    Google Scholar 

  • Alfei S, Signorello MG, Schito A, Catena S, Turrini F (2019c) Reshaped as polyester-based nanoparticles, gallic acid inhibits platelet aggregation, reactive oxygen species production and multi-resistant Gram-positive bacteria with an efficiency never obtained. Nanoscale Adv 1(10):4148–4157

    Google Scholar 

  • Alfei S, Marengo B, Domenicotti C (2020a) Development of a fast, low cost, conservative and ecological method for quantifying gallic acid in polymeric formulations by FTIR spectroscopy in solution. Chemistryselect 5:4381–4388

    Google Scholar 

  • Alfei S, Catena S, Turrini F (2020b) Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from "oxidative stress". Drug Deliv Transl Res 10:259–270 

    Google Scholar 

  • Alfei S, Marengo B, Zuccari G, Turrini F, Domenicotti C (2020c) A biodegradable dendrimer used as improving “excipient” for gallic acid administration and tested on human neuroblastoma cells, showed intriguing results. Pharmaveutics: under review.

    Google Scholar 

  • Alving CR (1991) Liposomes as carriers of antigens and adjuvants. J Immunol Methods 140:1–13

    CAS  PubMed  Google Scholar 

  • Amar I, Aserin A, Garti N (2003) Solubilization patterns of lutein and lutein esters in food grade nonionic microemulsions. J Agricult Food Chem 51:4775–4781

    CAS  Google Scholar 

  • Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62:59–82

    CAS  PubMed  Google Scholar 

  • Amin FU, Shah SA, Badshah H, Khan M, Kim MO (2017) Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against a 1–42-induced oxidative stress. J Nanobiotechnol 15:12–27

    Google Scholar 

  • Angelova A, Angelov B, Drechsler M, Lesieur S (2013) Neurotrophin delivery using nanotechnology. Drug Discov Today 18:1263–1271

    CAS  PubMed  Google Scholar 

  • Aqil F, Munagala R, Jeyabalan J, Vadhanam MV (2013) Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 334:133–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23(7):1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001

    Article  CAS  Google Scholar 

  • Avachat AM, Patel VG (2015) Self nanoemulsifying drug delivery system of stabilized ellagic acid-phospholipid complex with improved dissolution and permeability. Saudi Pharm J 23:276–289. https://doi.org/10.1016/j.jsps.2014.11.001

    Article  PubMed  Google Scholar 

  • Baccarin T, Lemos-Senna E (2014) Pomegranate seed oil nanoemulsions encapsulating pomegranate peel polyphenol-rich ethyl acetate fraction: development and antioxidant assessment. J Nanopharmaceutics Drug Delivery 2(4):333–343. https://doi.org/10.1166/jnd.2014.1068

    Article  Google Scholar 

  • Balasubramaniam A, Kumar VA, Pillai KS (2002) Formulation and in vivo evaluation of niosome-encapsulated daunorubicin hydrochloride. Drug Dev Ind Pharm 28:1181–1193

    CAS  PubMed  Google Scholar 

  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassam N, Laure C, Jean-François B, Celine G, Yann R, Zephirin M (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46(10):3771–3792. https://doi.org/10.1021/ma400197c

    Article  CAS  Google Scholar 

  • Ben Saad LA, Kim KH, Quah CC, Kim WR, Shahimi M (2017) Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med 17:47–56. https://doi.org/10.1186/s12906-017-1555-0

    Article  CAS  Google Scholar 

  • Bengoechea C, Jones OG, Guerrero A, McClements DJ (2011) Formation and characterization of lactoferrin/pectin electrostatic complexes: impact of composition, pH and thermal treatment. Food Hydrocoll 25:1227–1232

    CAS  Google Scholar 

  • Berton-Carabin CC, Coupland JN, Elias RJ (2013) Effect of the lipophilicity of model ingredients on their location and reactivity in emulsions and solid lipid nanoparticles. Colloids Surf A Physicochem Eng Asp 431:9–17

    CAS  Google Scholar 

  • Bhandari BR (2007) Spray drying and powder properties. In: Hui YH, Clary C, Farid MM, Fasina OO, Noomhorm A, Welti-Chanes J (eds) Food drying science and technology. DEStech Publications Inc, USA, pp 215–248

    Google Scholar 

  • Bisby RH, Mead C, Morgan CG (2000) Wavelength-programmed solute release from photosensitive liposomes. Biochem Biophys Res Commun 276:169–173

    CAS  PubMed  Google Scholar 

  • Bisio A, De Mieri M, Milella L, Schito AM, Parricchi A, Alfei S, Vignola L, Hamburger M, De Tommasi N (2016) Biological activity of constituents of Salvia chamaedryoides. Planta Med 81(S 01):S1–S381. https://doi.org/10.1055/s-0036-1596322

    Article  Google Scholar 

  • Bisio A, De Mieri M, Milella L, Schito AM, Parricchi A, Russo D, Alfei S, Lapillo M, Tuccinardi T, Hamburger M, De Tommasi N (2017) Antibacterial and hypoglycemic diterpenoids from Salvia chamaedryoides. J Nat Prod 80(2):503–514

    CAS  PubMed  Google Scholar 

  • Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477

    CAS  PubMed  Google Scholar 

  • Bongoni R, Steenbekkers B, Verkerk R, van Boekel M, Dekker M (2013) Studying consumer behaviour related to the quality of food: a case on vegetable preparation affecting sensory and health attributes. Trends Food Sci Technol 33(2):139–145. https://doi.org/10.1016/j.tifs.2013.08.004

    Article  CAS  Google Scholar 

  • Bongoni R, Verkerk R, Steenbekkers B, Dekker M, Stieger M (2015) Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance. Plant Foods for Hum Nutr 69(3):228–234. https://doi.org/10.1007/s11130-014-0420-2

    Article  CAS  Google Scholar 

  • Boulle F, Kenis G, Cazorla M, Hamon M, Steinbusch HW, Lanfumey L, van del Hove DL (2012) TrkB inhibition as a therapeutic target for CNS-related disorders. Prog Neurobiol 98:197–206

    CAS  PubMed  Google Scholar 

  • Bulani VD, Kothavade PS, Kundaikar HS, Gawali NB, Chowdhury AA, Degani MS, Juvekar AR (2016) Inclusion complex of ellagic acid with β-cyclodextrin: characterization and in vitro anti-inflammatory evaluation. J Mol Struct 1105:308–315. https://doi.org/10.1016/j.molstruc.2015.08.054

    Article  CAS  Google Scholar 

  • Cabrera C, Artacho R, Gimenez RJ (2006) Beneficial effects of green tea – a review. Am Coll Nutr 25:79–99

    CAS  Google Scholar 

  • Campardelli R, Reverchon E (2015) A-Tocopherol nanosuspensions produced using a supercritical assisted process. J Food Eng 149:131–136

    CAS  Google Scholar 

  • Campbell PI (1983) Toxicity of some charged lipids used in liposome preparations. Cytobios 37:21–26

    CAS  PubMed  Google Scholar 

  • Carosio R, Zuccari G, Orienti I, Mangraviti S, Montaldo PG (2007) Sodium Ascorbate induces apoptosis in neuroblastoma cell lines by interfering with iron uptake. Molecular Cancer 6(1):55

    Google Scholar 

  • Cerqueira MA, Pinheiro AC, Silva HD, Ramos PE, Azevedo MA, Flores-López ML, Rivera MC, Bourbon AI, Ramos OL, Vicente AA (2014) Design of bio-nanosystems for oral delivery of functional compounds. Food Eng Rev 6:1–19

    CAS  Google Scholar 

  • Chaize B, Colletier JP, Winterhalter M, Fournier D (2004) Encapsulation of enzymes in liposomes: high encapsulation efficiency and control of substrate permeability. Artif Cell Blood 32:67–75

    CAS  Google Scholar 

  • Chakraborty S, Shukla D, Mishra B, Singh S (2009) Lipid- an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 73:1–15

    CAS  PubMed  Google Scholar 

  • Chan SY, Choo WS, Young DJ, Loh XJ (2017) Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr Polym 161:118–139

    CAS  PubMed  Google Scholar 

  • Chang SK, Alasalvar C, Shahidi F (2016) Review of dried fruits: phytochemicals, antioxidant efficacies, and health benefits. J Funct Foods 21:113–132

    CAS  Google Scholar 

  • Chau CF, Wuand SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    CAS  Google Scholar 

  • Chen YC, Lo CL, Lin YF, Hsiue GH (2013) Rapamycin encapsulated in dual responsive micelles for cancer therapy. Biomaterials 34:1115–1127

    CAS  PubMed  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    CAS  PubMed  Google Scholar 

  • Chime SA, Kenechukwu FC, Attama AA (2014) Nanoemulsions—advances in formulation, characterization and applications in drug delivery. In: Sezer AD (ed) Application of nanotechnology in drug delivery. IntechOpen, London, pp 77–111

    Google Scholar 

  • Chiou D, Langrish TAG (2007) Development and characterization of novel nutraceuticals with spray drying technology. J Food Eng 82:84–91

    Google Scholar 

  • Cho YS, Kim SK, Ahn CB, Je JY (2011) Preparation, characterization, and antioxidant properties of gallic acid-graftedchitosans. Carbohydr Polym 83:1617–1622

    CAS  Google Scholar 

  • Chow PY, Gue SZ, Leow SK, Goh LB (2015) Solid self-microemulsifying system (S-SMECS) for enhanced bioavailability and pigmentation of highly lipophilic bioactive carotenoid. Powder Technol 274:199–204

    CAS  Google Scholar 

  • Cirillo G, Kraemer K, Fuessel S, Puoci F, Curcio M, Spizzirri UG, Altimari I, Iemma F (2010) Biological activity of a gallic acid-gelatin conjugate. Biomacromolecules 11:3309–3315

    CAS  PubMed  Google Scholar 

  • Crescente M, Jessen G, Momi S, Höltje H-D, Gresele P, Cerletti C, de Gaetano G (2009) Interactions of gallic acid, resveratrol, quercetin and aspirin at the platelet cyclooxygenase-1 level: functional and modelling studies. Thromb Haemos 102:336–346

    CAS  Google Scholar 

  • De Lima PN, da Silva DD, Costa VG, Falcão DQ, de Lima Araujo KG (2016) Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chem 208:124–131. https://doi.org/10.1016/j.foodchem.2016.03.122

    Article  CAS  Google Scholar 

  • De Paz E, Martín A, Estrella A, Rodríguez-Rojo S, Matias AA, Duarte CM, Cocero MJ (2012) Formulation of b-carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant. Food Hydrocoll 26:17–27

    Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Google Scholar 

  • Deladino L, Anbinder PS, Navarro AS, Martino MN (2008) Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohyd Polym 71:126–134

    CAS  Google Scholar 

  • Deligiannakis Y, Sotiriou GA, Pratsinis SE (2012) Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with Gallic acid. ACS Appl Mater Interfaces 4:6609–6617

    CAS  PubMed  Google Scholar 

  • Díaz-Gómez R, Toledo-Araya H, López-Solís R, Obreque-Slier E (2014) Combined effect of gallic acid and catechin against Escherichia coli. LWT Food Sci Technol 59:896–900

    Google Scholar 

  • Domínguez-Perles R, Abellán A, León D, Ferreres F, Guy A, Oger C, Galano JM, Durand T, Gil-Izquierdo A (2018) Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Res Int 107:619–628

    PubMed  Google Scholar 

  • Donsi F, Senatore B, Huang QR, Ferrari G (2010) Development of novel pea protein-based Nanoemulsions for delivery of Nutraceuticals. J Agric Food Chem 58(19):10653–10660. https://doi.org/10.1021/jf101804g

    Article  CAS  PubMed  Google Scholar 

  • Donsi F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Lwt-Food Sci Technol 44:1908–1914

    CAS  Google Scholar 

  • Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207

    CAS  PubMed  Google Scholar 

  • Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng 80:805–812

    CAS  Google Scholar 

  • Espín JC, Larrosa M, García-Conesa MT, Tomás-Barberán F (2013) Biological significance of Urolithins, the gut microbial Ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med 2013:270418. https://doi.org/10.1155/2013/270418

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647. https://doi.org/10.1007/s11947-012-0944-0

    Article  CAS  Google Scholar 

  • Fang Z, Bhandari B (2010) Encapsulation of polyphenols - a review. Trends Food Sci Tech 21:510–523

    CAS  Google Scholar 

  • Feriyanto D, Idris MI, Sebayang D (2014) Effect of Cr to Fe on the solid solubility, lattice parameter and strain of Fe80Cr20 alloy powder. Appl Mech Mater 660:280–284

    CAS  Google Scholar 

  • Firdaus F, Zafeer MF, Ehraz MW, Hossain AMM, Afzal M (2018) Ellagic acid mitigates arsenic-trioxide-induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. J Biochem Mol Toxicol 32:e22024

    Google Scholar 

  • Flanagan J, Singh H (2006) Microemulsions: a potential delivery system for bioactives in food. Critical Rev Food Sci Nutr 46:221–237

    CAS  Google Scholar 

  • Fojan P, Schwach-Abdellaoui K, Tommeraas K, Gurevich L, Petersen SB (2006) Polysaccharide based nanoparticles and nanoporous matrices. Nano Sci Technol Inst 2:79–82

    CAS  Google Scholar 

  • Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64:1005–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J (2011) Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm 404:231–237

    CAS  PubMed  Google Scholar 

  • Ghosh I, Bose S, Vippagunta R, Harmon F (2011) Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm 409(1):260–268

    CAS  PubMed  Google Scholar 

  • Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159:312–323

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan L, Ramana LN, Sethuraman S, Krishnan UM (2014) Ellagic acid encapsulated chitosan nanoparticles as anti-hemorrhagic agent. Carbohyd Polym 111:215–221. https://doi.org/10.1016/j.carbpol.2014.03.093

    Article  CAS  Google Scholar 

  • Gregoriadis G (1990) Immunological adjuvants: a role for liposomes. Immunol Today 11:89–97

    CAS  PubMed  Google Scholar 

  • Gude RP, Jadhav MG, Rao SG, Jagtap AG (2002) Effects of niosomal cisplatin and combination of the same with theophylline and with activated macrophages in murine B16F10 melanoma model. Cancer Biother Radiopharm 17:183–192

    CAS  PubMed  Google Scholar 

  • Guo BL, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500

    CAS  Google Scholar 

  • Guo F, Aryana S, Han Y, Jiao Y (2018) A review of the synthesis and applications of polymer–nanoclay composites. App Sci 8(9):1696. https://doi.org/10.3390/app8091696

    Article  CAS  Google Scholar 

  • Ha TV, Kim S, Choi Y, Kwak HS, Lee SJ, Wen J, Oey I, Ko S (2015) Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopeneenriched tomato extract. Food Chem 178:115–121

    CAS  PubMed  Google Scholar 

  • Hadaruga NG, Hadaruga DI, Paunescu V, Tatu C, Ordodi VL, Bandur G, Lupea AX (2006) Thermal stability of the linoleic acid/α- and β-cyclodextrin complexes. Food Chem 99(3):500–508

    CAS  Google Scholar 

  • Hajipour H, Hamishehkar H, Rahmati-yamchi M, Shanehbandi D, Ahmad SNS, Hasani A (2018) Enhanced anti-cancer capability of ellagic acid using Solid Lipid Nanoparticles (SLNs). Int J Cancer Manag 11:e9402

    Google Scholar 

  • Hamri SZ, Zeghichi M, Chibane M, Kallithraka S, Benhalima A (2011) What is so special about the mediterranean diet in the maghreb? the role of economics in eating choices and chronic diseases outcomes. Annals Nutr Metab 58:191–216

    Google Scholar 

  • Harde H, Das M, Jain S (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv 8:1407–1424. https://doi.org/10.1517/17425247.2011.604311

    Article  CAS  PubMed  Google Scholar 

  • Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviramet M (1997) Reduced progression of atherosclerosis in Apolipoprotein E–deficient mice following consumption of red wine, or its polyphenols Quercetin or Catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17:2744–2752

    CAS  PubMed  Google Scholar 

  • He X, Deng H, Hwang H (2019) The current application of nanotechnology in foodand agriculture. J Food Drug Anal 27:1–21

    PubMed  Google Scholar 

  • Heber D (2008) Multitargeted therapy of cancer by ellagitannins. Cancer Lett 269:262–268

    CAS  PubMed  Google Scholar 

  • Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8:172–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hseu YC, Chou CW, Kumar SKJ, Fu KT, Wang HM, Hsu LS, Kuo YH, Wu CR, Chen SC, Yang HL (2012) Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem Toxicol 50:1245–1255. https://doi.org/10.1016/j.fct.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  • Hsieh YS, Yang SF, Sethi G, Hu DN (2015) Natural bioactives in cancer treatment and prevention. Biomed Res Int 2015:182835. https://doi.org/10.1155/2015/182835

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu B, Ting Y, Yang X, Tang W, Zeng X, Huang Q (2012) Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem Commun 48:2421–2423

    CAS  Google Scholar 

  • Hu C, Zhao G, Xia Q, Sun R (2015) Development and characterization of a selfdouble- emulsifying drug delivery system containing both epigallocatechin-3- gallate and a-lipoic acid. J Mat Sci 50(20):6567–6577

    CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imm BY, Kim CH, Imm JY (2014) Effects of partial substitution of lean meat with pork backfat or canola oil on sensory properties of Korean traditional meat patties (Tteokgalbi). Korean J Food Sci An 34(4):496–499

    Google Scholar 

  • Ishikawa M, Hashimoto Y (2011) Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J Med Chem 54(6):1539–1554

    CAS  PubMed  Google Scholar 

  • Jadhav PB, Pandey PS (2013) Phase solubility analysis: a technique of purity determination. World Res J Pharm Res 1:5–11

    Google Scholar 

  • Jain S, Singh P, Mishra V, Vyas SP (2005) Mannosylated niosomes as adjuvantcarrier system for oral genetic immunization against hepatitis B. Immunol Lett 101:41–49

    CAS  PubMed  Google Scholar 

  • Jeong JY, Park MN, Cho ES, Jang HJ, Park SK, Lee HJ (2015) Epigallocatechin-3-gallate-induced free-radical production upon adipogenic differentiation in bovine bone-marrow mesenchymal stem cells. Cell Tissue Res 362:87–96

    CAS  PubMed  Google Scholar 

  • Jiménez-Aguilar DM Ortega-Regules AE Lozada-Ramírez JD Pérez-Pérez MCI Vernon-Cartere EJ Welti-Chanesa (2011) Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. J Food Compos Anal 24:889–894

    Google Scholar 

  • Joye IJ, Nelis VA, McClements DJ (2015) Gliadin-based nanoparticles: stabilization by post-productionpolysaccharide coating. Food Hydrocoll 43:236–242

    CAS  Google Scholar 

  • Jung J, Perrut MJ (2001) Particle design using supercritical fluids: literature and patent survey. Supercrit Fluids 20:179–219

    CAS  Google Scholar 

  • Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D (2012) Physicochemical properties and skin permeation of span 60/tween 60 niosomes of ellagic acid. Int J Pharm 423:303–311

    CAS  PubMed  Google Scholar 

  • Kale BB, Aloorkar NH, Deshmukh SM, Sulake SP, Humbe PV, Mane PP (2014) Recent advancements in particle engineering techniques for pharmaceutical applications. Indo Am J Pharm Res 4:2027–2049

    Google Scholar 

  • Kaminskas LM, Boyd BJ, Porter CJH (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomed 6:1063–1084

    CAS  Google Scholar 

  • Karadag A, Ozcelik B, Huang Q (2014) Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem 62:1852–1859

    CAS  PubMed  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    CAS  PubMed  Google Scholar 

  • Kaul G, Amiji M (2004) Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target 12:585–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62:3–16

    CAS  PubMed  Google Scholar 

  • Keck CM, Kobierski S, Mauludin R, Muller RH (2008) Second generation of drug nanocrystals for delivery of poorly soluble drugs: SmartCrystals technology. Dosis 24(2):124–128

    Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

  • Kim K, Bae ON, Lim KM, Noh JY, Kang S, Chung KY, Chung JH (2012) Novel antiplatelet activity of Protocatechuic acid through the inhibition of high shear stress-induced platelet aggregation. J Pharm Exp Ther 343:704–711

    CAS  Google Scholar 

  • Kim IH, Lee H, Kim JE, Song KB, Lee YS, Chung DS, Min SC (2013) Plum coatings of lemongrass oil-incorporating carnauba wax-based Nanoemulsion. J Food Sci 78(10):E1551–E1559

    CAS  PubMed  Google Scholar 

  • Kloover JS, den Bakker MA, Gelderblom H, van Meerbeeck JP (2004) Fatal outcome of a hypersensitivity reaction to paclitaxel: a critical review of premedication regimens. Br J Cancer 90:304–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobierski S, Keck CM (2008) Nanocrystal production by BM-HPH combination technology. Controlled Release Society, Abstract, Germany Chapter, Annual Meeting, 45 March:40

    Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotechnol Biol Med 1:193–212

    CAS  Google Scholar 

  • Kosaraju SL, D’ath L, Lawrence A (2006) Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohyd Polym 64:163–167

    CAS  Google Scholar 

  • Koshy P, Pacharane S, Chaudhry A, Jadhav K, Kadam V (2010) Drug particle engineering of poorly water soluble drugs. Der Pharm Lett 2:65–76

    CAS  Google Scholar 

  • Koutelidakis AE, Argyri K, Sevastou Z, Lamprinaki D, Panagopoulou E, Paximada E, Sali A, Papalazarou V, Mallouchos A, Evageliou V, Kostourou V, Mantala I, Kapsokefalou M (2012) Bioactivity of epigallocatechin gallate nanoemulsions evaluated in mice model. J Med Food 20:923–931

    Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88

    Google Scholar 

  • Krog N (1977) Functions of emulsifiers in food systems. J Am Oil Chem Soc 54(3):124–131

    CAS  Google Scholar 

  • Kumar VD, Verma PRP, Singh SK (2015) Development and evaluation of biodegradable polymeric nanoparticle for the effective delivery of quercetin using quality by design approach. LWT – Food Sci Technol 61:330–338

    Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18

    CAS  PubMed  Google Scholar 

  • Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. EXCLI J 13:265–286

    PubMed  PubMed Central  Google Scholar 

  • Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116

    CAS  Google Scholar 

  • Lakshmi P, Kumar GA (2010) Nanosuspension technology: a review. Int J Pharm Pharm Sci 2(Suppl 4):35–40

    Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663

    CAS  PubMed  Google Scholar 

  • Larrosa M, Garcia-Conesa MT, Espín JC, Tomás-Barberán FA (2010) Ellagitannins, ellagic acid and vascular health. Mol Asp Med 31:513–539

    CAS  Google Scholar 

  • Lee HS (2006) Antiplatelet property of Curcuma longa L. rhizome-derived ar-turmerone. Bioresour Technol 97:1372–1376

    CAS  PubMed  Google Scholar 

  • Lee HJ, Jayasena DD, Kim SH, Kim HJ, Heo KN, Song JE, Jo C (2015) Comparison of bioactive compounds and quality traits of breat meat from Korean native ducks and commercial ducks. Korean J Food Sci An 35(1):114–120

    Google Scholar 

  • Lee DR, Ho MJ, Choi YW, Kang MJ (2017) A Polyvinylpyrrolidone-based Supersaturable self-emulsifying drug delivery system for enhanced dissolution of cyclosporine a. Polymers (Basel) 9(4):124. https://doi.org/10.3390/polym9040124

    Article  CAS  Google Scholar 

  • Lemarchand C, Gref R, Couvreur P (2004) Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 58:327–341

    CAS  PubMed  Google Scholar 

  • Li L, Li W, Jung SW, Lee YW, Kim YH (2011) Protective effects of decursin and decursinol angelate against amyloid-protein-induced oxidative stress in the PC12 cell line: the role of Nrf2 and antioxidant enzymes. Biosci Biotechnol Biochem 75:434–442

    CAS  PubMed  Google Scholar 

  • Li Y, Zheng J, Xiao H, McClements DJ (2012) Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocoll 27:517–528

    CAS  PubMed  Google Scholar 

  • Lim J, Jeong S, Lee J, Park S, Lee J, Lee S (2017) Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods. J Sci Food Agric 97(11):3727–3732

    CAS  PubMed  Google Scholar 

  • Linde GA, Laverde A Jr, Vaz de Faria E, Colauto NB, Faria de Moraes F, Zanin GM (2009) Taste modification of amino acids and protein hydrolysate bya-cyclodextrin. Food Res Int 42:814–818

    CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12):3479S–3485S

    CAS  PubMed  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    CAS  PubMed  Google Scholar 

  • Liu Y, Li K, Liu B, Feng SS (2010) A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 31:9145–9155

    CAS  PubMed  Google Scholar 

  • Liu T, Müller RH, Möschwitzer JP (2012) Process optimization of a novel particle size reduction technology H 42. Tag der Pharmazie 2012, FU Berlin, Berlin, abstract P33, booklet: 25

    Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641

    CAS  PubMed  Google Scholar 

  • Lu BY, Li MQ, Yin R (2016) Phytochemical content, health benefits, and toxicology of common edible flowers: a review (2000–2015). Crit Rev Food Sci Nutr 56:S130–S148

    CAS  PubMed  Google Scholar 

  • Lucas-Abellán C, Fortea I, Gabaldón JA, Núñez-Delicado E (2008) Encapsulation of quercetin and myricetin in cyclodextrins at acidic pH. J Agric Food Chem 56(1):255–259

    PubMed  Google Scholar 

  • Madrigal-Carballoa S, Limb S, Rodrigueza G, Vilac AO, Kruegerb CG, Gunasekaranb S, Reed JD (2010) Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. J Funct Foods 2(2):99–106. https://doi.org/10.1016/j.jff.2010.01.002

    Article  CAS  Google Scholar 

  • Mady FM, Ibrahim SRM (2018) Cyclodextrin-based nanosponge for improvement of solubility and oral bioavailability of Ellagic acid. Pakistan J Pharm Sci 31:2069–2076

    CAS  Google Scholar 

  • Mady FM, Shaker MA (2017) Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int J Nanomedicine 12:7405–7417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mady MM, Ghannam MM, Khalil WA, Repp R, Markus M, Rascher W, Muller R, Fahr A (2004) Efficient gene delivery with serum into human cancer cells using targeted anionic liposomes. J Drug Target 12:11–18

    CAS  PubMed  Google Scholar 

  • Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76(6):R126–R133. https://doi.org/10.1111/j.1750-3841.2011.02170.x

    Article  CAS  PubMed  Google Scholar 

  • Majerik V, Horvath G, Charbit G, Badens E, Szokonya L, Bosc N, Teillaud E (2004) Novel particle engineering techniques in drug delivery: review of co-formulations using supercritical fluids and liquefied gas. Hungarian J Ind Chem Veszprm 32:41–56

    Google Scholar 

  • Malhotra M, Jain NK (1994) Niosomes as drug carriers. Indian Drugs 31:81–86

    CAS  Google Scholar 

  • Marques HMA (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flav Fragr J 25(5):313–326. https://doi.org/10.1002/ffj.2019

    Article  CAS  Google Scholar 

  • Martínez-Ballesta MC, Gil-Izquierdo A, García-Viguera C, Domínguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “smart-foods” for health. Foods 7(5):E72. https://doi.org/10.3390/foods7050072

    Article  CAS  PubMed  Google Scholar 

  • Mashaghi S, Jadidi T, Koenderink G, Mashaghi A (2013) Lipid nanotechnology. Int J Mol Sci 14:4242–4282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    CAS  PubMed  Google Scholar 

  • Matteucci ML, Thrall DE (2000) The role of liposomes in drug delivery and diagnostic imaging: a review. Vet Radiol Ultrasound 41:100–107

    CAS  PubMed  Google Scholar 

  • Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL (2009) Toxicity of therapeutic nanoparticles. Nanomed 4:219–241

    CAS  Google Scholar 

  • Mcclements DJ (2007) Critical review of techniques and methodologies for characterization of emulsion stability. Critical Rev Food Sci Nutr 47(7):611–649. https://doi.org/10.1080/10408390701289292

    Article  CAS  Google Scholar 

  • McClements DJ, Li Y (2010) Review of in vitro digestion models for rapid screening of emulsion-based systems. Food Funct 1:32–59

    CAS  PubMed  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18(2):113–120

    CAS  PubMed  Google Scholar 

  • Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138:214–223

    CAS  PubMed  Google Scholar 

  • Miladi K, Ibraheem D, Iqbal M, Sfar S, Fessi H, Elaissari A, Avicenne R (2014) Particles from preformed polymers as carriers for drug delivery. EXCLI J 13:28–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MS, Weitschies W, Brodkorb A (2014) A standardised static in vitro digestion method suitable for food—an international consensus. Food Funct 5:1113–1124

    CAS  PubMed  Google Scholar 

  • Mo J, Panichayupakaranant P, Kaewnopparat N, Songkro S, Reanmongkol W (2014) Topical anti-inflammatory potential of standardized pomegranate rind extract and ellagic acid in contact dermatitis. Phytother Res 28:629–632

    CAS  PubMed  Google Scholar 

  • Mo J, Kaewnopparat N, Songkro S, Panichayupakaranant P, Reanmongkol W (2015) Physicochemical properties, in vitro release and skin permeation studies of a topical formulation of standardized pomegranate rind extract. Pakistan J Pharm Sci 28:29–36

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    CAS  PubMed  Google Scholar 

  • Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emir J Food Agric 25:10–19

    Google Scholar 

  • Morales JO, Watts AB, McConville JT (2016) Mechanical particle-size reduction techniques. In: Williams RO III, Watts AB, Miller DA (eds) Formulating poorly water soluble drugs. Springer, New York, pp 133–170. isbn:978-1-4614-1144-4

    Google Scholar 

  • Morgan CG, Yianni YP, Sandhu SS, Mitchell AC (1995) Liposome fusion and lipid exchange on ultraviolet irradiation of liposomes containing a photochromic phospholipid. Photochem Photobiol 62:24–29

    CAS  PubMed  Google Scholar 

  • Möschwitzer J (2006) Method for producing ultrafine submicronic suspensions, WO/002006094808A3

    Google Scholar 

  • Möschwitzer J, Lemke A (2006) Method for carefully producing ultrafine particle suspensions and ultrafine particles and use thereof. WO/2006/108637

    Google Scholar 

  • Moschwitzer J, Muller RH (2006) New method for the effective production of ultrafine drug nanocrystals. J Nanosci Nanotechnol 6:3145–3153

    PubMed  Google Scholar 

  • Mosharraf M, Nyström C (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122(1–2):35–47

    CAS  Google Scholar 

  • Müller RH, Möschwitzer J (2009) Method and device for producing very fine particles and coating such particles. US Patent 0297565:A1

    Google Scholar 

  • Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure preparation and application. Adv Pharm Bull 5:305–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    CAS  Google Scholar 

  • Nejad KH, Dianat M, Sarkaki A, Naseri MK, Badavi M, Farbood Y (2015) Ellagic acid improves electrocardiogram waves and blood pressure against global cerebral ischemia rat experimental models. Electron Physician 7:1153–1162

    PubMed  PubMed Central  Google Scholar 

  • Nejad KH, Gharib-Naseri MK, Sarkaki A, Dianat M, Badavi M, Farbood Y (2017) Effects of ellagic acid pretreatment on renal functions disturbances induced by global cerebral ischemic-reperfusion in rat. Iranian J Basic Med Sci 20:75–82

    Google Scholar 

  • Nerome H, Machmudah S, Diono W, Fukuzato R, Higashiura T, Youn I-S, Lee Y-W, Goto M (2013) Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercrit Fluids 83:97–103

    CAS  Google Scholar 

  • Niemeyer T, Patel M, Geiger E (2006) A further examination of soy-based polyols in polyurethane systems. Alliance for the Polyurethane Industry Technical Conference, Salt Lake City, UT

    Google Scholar 

  • Nitta S, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O (2014) Nanoemulsionbased delivery systems to improve functionality of lipophilic components. Front Nutr 1:24. https://doi.org/10.3389/fnut.2014.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojea-Jiménez I, Tort O, Lorenzo J, Puntes VF (2012) Engineered nonviral nanocarriers for intracellular gene delivery applications. Biomed Mater 7:1–6

    Google Scholar 

  • Palermo M, Pellegrini N, Fogliano V (2014) The effect of cooking on the phytochemical content of vegetables. J Sci Food Agric 94(6):1057–1070. https://doi.org/10.1002/jsfa.6478

    Article  CAS  PubMed  Google Scholar 

  • Pan K, Zhong QX, Baek SJ (2013) Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J Agric Food Chem 61:6036–6043

    CAS  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Ox Med Cell Long 2:270–278

    Google Scholar 

  • Panyam J, Labhasetwar V (2004) Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm 1:77–84

    CAS  PubMed  Google Scholar 

  • Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K, Sonje A (2012) Solid lipid based nanocarriers: an overview. Acta Pharma 62:433–472

    CAS  Google Scholar 

  • Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2:81–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil JS, Kadam DV, Marapur SC, Kamalapur MV (2010) Inclusion complex system; a novel technique to improve the solubility and bioavailability of poorly soluble drugs: a review. Int J Pharm Sci Rev Res 2(2):29–34

    CAS  Google Scholar 

  • Petroni A, Blasevich M, Salami M, Papini N, Montedorol GF, Galli C (1995) Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thrombosis Res 78(2):151–160

    CAS  Google Scholar 

  • Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinal R (2004) Effect of molecular symmetry on melting temperature and solubility. Org Biomol Chem 2:2692–2699

    CAS  PubMed  Google Scholar 

  • Pinciroli M, Domínguez-Perles R, Abellán A, Guy A, Durand T, Oger C, Galano JM, Ferreres F, Gil-Izquierdo A (2017) Comparative study of the Phytoprostane and Phytofuran content of indica and japonica Rice (Oryza sativa L.) flours. J Agric Food Chem 65:8938–8947

    CAS  PubMed  Google Scholar 

  • Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135. https://doi.org/10.1016/j.carbpol.2013.08.078

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29(3):278–287

    CAS  PubMed  Google Scholar 

  • Pu S-B, Ma Z-J, Wang Q (2019) Anti-Staphylococcus aureus evaluation of gallic acid by isothermal microcalorimetry and principle component analysis. J Therm Anal Calorim 136(3):1425–1432. https://doi.org/10.1007/s10973-018-7726-5

    Article  CAS  Google Scholar 

  • Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25:1000–1008

    CAS  Google Scholar 

  • Qian C, Decker EA, Xiao H, McClements DJ (2012) Nanoemulsion delivery systems: influence of carrier oil on b-carotene bioaccessibility. Food Chem 135:1440–1447

    CAS  PubMed  Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796

    CAS  PubMed  Google Scholar 

  • Rajput SD, Mahulikar PP, Gite VV (2014) Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings. Prog Org Coat 77(1):38–46

    CAS  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharm Res 55(3):207–216. https://doi.org/10.1016/j.phrs.2007.01.012

    Article  CAS  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    CAS  Google Scholar 

  • Rattanata N, Klaynongsruang S, Leelayuwat C, Limpaiboon T, Lulitanond A, Boonsiri P, Chio-Srichan S, Soontaranon S, Rugmai S, Daduang J (2016) Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens. Int J Nanomedicine 11:3347–3356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravve A (2013) Free-radical chain-growth polymerization. In: Principles of polymer chemistry (2nd ed.). New York, Springer, pp 41102. Print ISBN 978-1-4613-6898-4. Online ISBN 978–1–4615-4227-8

    Google Scholar 

  • Raza K, Kumar P, Ratan S, Malik R, Arora S (2014) Polymorphism: the phenomenon affecting the performance of drugs. SOJ Pharm Pharm Sci 1:1–10

    Google Scholar 

  • Recharla N, Riaz M, Ko S (2017) Novel technologies to enhance solubility of food-derived bioactive compounds: a review. J Funct Foods 39:63–73. https://doi.org/10.1016/j.jff.2017.10.001

    Article  CAS  Google Scholar 

  • Renaud SC, Gueguen R, Schenker J, D’Houtaud A (1998) Alcohol and mortality in middle-aged men from eastern France. Epidemiology 9(2):184–188

    CAS  PubMed  Google Scholar 

  • Rocha DS, Casagrande L, Model JFA, dos Santos JT, Hoefel AL, Kucharski LC (2018) Effect of yerba mate (Ilex paraguariensis) extract on the metabolism of diabetic rats. Biomed Pharmacother 105:370–376. https://doi.org/10.1016/j.biopha.2018.05.132

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Yang Y, Yang F, Wan K, Fan D, Wang D (2018) Novel oral administrated ellagic acid nanoparticles for enhancing oral bioavailability and anti-inflammatory efficacy. J Drug Deliv Sci Technol 46:215–222. https://doi.org/10.1016/j.jddst.2018.05.021

    Article  CAS  Google Scholar 

  • Salatin S, Jelvehgarim M (2017) Natural polysaccharide based nanoparticles for drug/gene delivery. Pharm Sci 23:84–94

    Google Scholar 

  • Salazar J, Müller RH, Möschwitzer JP (2014) Combinative particle size reduction technologies for the production of drug nanocrystals. J Pharm 2014:265754. https://doi.org/10.1155/2014/265754

    Article  CAS  Google Scholar 

  • Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: Importance and enhancement techniques. ISRN Pharm 2012:195727. https://doi.org/10.5402/2012/195727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

    CAS  PubMed  Google Scholar 

  • Sha XY, Guo J, Chen YZ, Fang XL (2012) Effect of phospholipid composition on pharmacokinetics and biodistribution of epirubicin liposomes. J Liposome Res 22:80–88

    CAS  PubMed  Google Scholar 

  • Shadrack DM, Swai HS, Munissi JJE, Mubofu EB, Nyandoro SS (2018) Polyamidoamine Dendrimers for enhanced solubility of small molecules and other desirable properties for site specific delivery: insights from experimental and computational studies. Molecules 23(6):1419. https://doi.org/10.3390/molecules23061419

    Article  CAS  PubMed Central  Google Scholar 

  • Shahiwala A, Misra A (2002) Studies in topical application of niosomally entrapped nimesulide. J Pharm Pharm Sci 5:220–225

    CAS  PubMed  Google Scholar 

  • Shanmugam S, Baskaran R, Balakrishnan P, Thapa P, Yong CS, Yoo BK (2011) Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharm Biopharm 79(2):250–257

    CAS  PubMed  Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: Progress and limitations. Int J Pharm 154:123–140

    CAS  Google Scholar 

  • Shutava TG, Balkundi SS, Vangala P, Steffan JJ, Bigelow RL, Cardelli JA, O’Neal DP, Lvov YM (2009) Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3(7):1877–1885. https://doi.org/10.1021/nn900451a

    Article  CAS  PubMed  Google Scholar 

  • Simion V, Stan D, Constantinescu CA, Deleanu M, Dragan E, Tucureanu MM, Gan AM, Butoi E, Constantin AM, Maduteanu I, Simionescu M, Calin M (2016) Conjugation of curcumin-loaded lipid nanoemulsions with cell-penetrating peptides increases their cellular uptake and enhances the anti-inflammatory effects in endothelial cells. J Pharm Pharmacol 68(2):195–207

    CAS  PubMed  Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Bandopadhyay S, Kapil R, Singh R, Katare OP (2009) Selfemulsifying drug delivery systems (SEDDS): Fformulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst 26:427–451

    CAS  PubMed  Google Scholar 

  • Singh B, Beg S, Khurana RK, Sandhu PS, Kaur R (2014) Recent advances in self-emulsifying drug delivery systems (SEDDS). Crit Rev Ther Drug Carrier Syst 31(2):121–185

    CAS  PubMed  Google Scholar 

  • Sinha B, Müller RH, and Möschwitzer J (2012) Precipitation followed by high pressure homogenization as a combinative approach to prepare drug nanocrystals. Tag der Pharmazie FU Berlin, Berlin, abstract V2, booklet page 6, 2012

    Google Scholar 

  • Sivakumar M, Tang SY, Tan KW (2014) Cavitation technology – a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochem 21(6):2069–2083

    CAS  Google Scholar 

  • Son YR, Choi EH, Kim GT, Park TS, Shim SM (2016) Bioefficacy of graviola leaf extracts in scavenging free radicals and upregulating antioxidant genes. Food Funct 7:861–871

    CAS  PubMed  Google Scholar 

  • Sorrentino E, Succi M, Tipaldi L, Pannella G, Maiuro L, Sturchio M, Coppola R, Tremonte P (2018) Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int J Food Microbiol 266:183–189

    CAS  PubMed  Google Scholar 

  • Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N (2002) Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem 50:6917–6922

    CAS  PubMed  Google Scholar 

  • Stegemann S, Leveiller F, Franchi D, De Jong H, Lindén H (2007) When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31:249–261

    CAS  PubMed  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarhini M, Greige-Gerges H, Elaissari A (2017) Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm 522:172–197

    CAS  PubMed  Google Scholar 

  • Teleki A, Hitzfeld A, Eggersdorfer M (2013) 100 years of vitamins: the science of formulation is the key to functionality. KONA Powder Part J 30:144–163

    CAS  Google Scholar 

  • Teng Y, Morrison ME, Munk P, Webber SE, Prochazka K (1998) Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules 31:3578–3587

    CAS  Google Scholar 

  • Thatipamula R, Palem C, Gannu R, Mudragada S, Yamsani M (2011) Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru 19:23–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thoppil RJ, Bishayee A (2011) Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol 3(9):228–249. https://doi.org/10.4254/wjh.v3.i9.228

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting Y, Jiang Y, Ho CT, Huang Q (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128

    CAS  Google Scholar 

  • Tran TH, Guo Y, Song D, Bruno RS, Lu X (2014) Quercetin-containing selfnanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 103:840–852

    CAS  PubMed  Google Scholar 

  • Turrini F, Zunin P, Catena S, Villa C, Alfei S, Boggia R (2019a) Traditional or hydro-diffusion and gravity microwave coupled with ultrasound as green technologies for the valorization of pomegranate external peels. Food Bioprod Process 117:30–37 

    Google Scholar 

  • Turrini F, Boggia R, Pittaluga AM, Grilli M, Zunin P (2019b) Microdispersions of ellagic acid and pomegranate extracts as new potential nutraceutical ingredients. SIF monothematic conference: The pharmacological bases of nutraceuticals. Naples, 29–30 March 2019 (poster communication). P 47: p 99 in: Programma ed Abstract

    Google Scholar 

  • Turrini F, Boggia R, Donno D, Parodi B, Beccaro G, Baldassari S, Signorello MG, Catena S, Alfei S, Zunin P (2020) From pomegranate marcs to a potential bioactive ingredient: a recycling proposal for pomegranate-squeezed marcs. Eur Food Res Technol 246: 273–285

    Google Scholar 

  • Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 176:139–172

    CAS  Google Scholar 

  • Vanrooijen N, Vannieuwmegen R (1980) Liposomes in immunology—multilamllar phosphatidylcholine liposomes as a simple, biodegradable and harmless adjuvant without any immunogenic activity of its own. Immunol Commun 9:243–256

    CAS  Google Scholar 

  • Varadinova MG, Docheva-Drenska DI, Boyadjieva NI (2009) Effects of anthocyanins on learning and memory of ovariectomized rats. Menopause 16:345–349

    PubMed  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058

    CAS  PubMed  Google Scholar 

  • Vega-Villa KR, Takemoto JK, Yáñez JA, Remsberg CM, Forrest ML, Davies NM (2008) Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 60:929–938

    CAS  PubMed  Google Scholar 

  • Vemula VR, Lagishetty V, Lingala S (2010) Solubility enhancement techniques. Int J Pharm Sci Rev Res 5:41–51

    CAS  Google Scholar 

  • Vico TA, Arce VB, Fangio MF, Gende LB, Bertran CA, Mártire DO, Churio MS (2016) Two choices for the functionalization of silica nanoparticles with gallic acid: Characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae. J Nanopart Res 18:348

    Google Scholar 

  • Vidhyalakshmi R, Bhakyaraj R, Subhasree R (2009) Encapsulation “the future of probiotics”—a review. Adv Biol Res 3:96–103

    CAS  Google Scholar 

  • Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q (2008) Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 108:419–424

    CAS  PubMed  Google Scholar 

  • Wang S, Su R, Nie S, Sun M, Zhang J, Wu D, Moustaid-Moussa N (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25(4):363–376

    CAS  PubMed  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:42242–42250. https://doi.org/10.1021/es204168d

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    CAS  Google Scholar 

  • Xia Y, Zhang Z, Kessler MR, Brehm-Stecher B, Larock RC (2012) Antibacterial soybean-oil-based cationic polyurethane coatings prepared from different amino polyols. ChemSusChem 5:2221–2227

    CAS  PubMed  Google Scholar 

  • Xiao J, Nian S, Huang QR (2015) Assembly of kafirin/carboxymethyl chitosan nanoparticles to enhance the cellular uptake of curcumin. Food Hydrocoll 51:166–175

    CAS  Google Scholar 

  • Xiao J, Cao Y, Huang Q (2017) Edible Nanoencapsulation vehicles for Oral delivery of phytochemicals: a perspective paper. J Agric Food Chem 65:6727–6735

    CAS  PubMed  Google Scholar 

  • Yoo JH, Shanmugam S, Thapa P, Lee ES, Balakrishnan P, Baskaran R, Yoon SK, Choi HG, Yong CS, Yoo BK, Han K (2010) Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch Pharm Res 33:417–426

    CAS  PubMed  Google Scholar 

  • You JO, Peng CA (2005) Calcium-Alginate nanoparticles formed by reverse microemulsion as gene carriers. Macromol Symp 219:147–153

    Google Scholar 

  • Yousuf B, Gul K, Wani AA, Singh P (2016) Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Critical Rev Food Sci Nutr 56(13):2223–2230

    CAS  Google Scholar 

  • Yu H, Park JY, Kwon CW, Hong SC, Park KM, Chang PS (2018) An overview of nanotechnology in food science: preparative methods, practical applications, and safety. J Chem 2018:5427978. https://doi.org/10.1155/2018/5427978

    Article  CAS  Google Scholar 

  • Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of Sterically stabilized (stealth) liposomes in a human tumor Xenograft. Cancer Res 54(13):3352–3356

    CAS  PubMed  Google Scholar 

  • Yuan Y, Gao Y, Mao L, Zhao J (2008) Optimisation of conditions for the preparation of b-carotene nanoemulsions using response surface methodology. Food Chem 107(3):1300–1306

    CAS  Google Scholar 

  • Zamora A, Guamis B (2015) Opportunities for ultra-high-pressure homogenisation (UHPH) for the food industry. Food Eng Rev 7(2):130–142

    CAS  Google Scholar 

  • Zhang X, Xia Q, Gu N (2006) Preparation of all-trans retinoic acid Nanosuspensions using a modified precipitation method. Drug Dev Ind Pharm 32(7):857–863

    CAS  PubMed  Google Scholar 

  • Zhang L, Mou D, Du Y (2007) Procyanidins: extraction and micro-encapsulation. J Agric Food Chem 87:2192–2197

    CAS  Google Scholar 

  • Zhou F, Neutra MR (2002) Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci Rep 22:355–369

    CAS  Google Scholar 

  • Zhu SF, Zheng J, Liu F, Qiu CY, Lin WF, Tang CH (2017) The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze–thaw stability of the resultant Pickering emulsions. Food Funct 8:2974–2981

    CAS  PubMed  Google Scholar 

  • Zia Q, Farzuddin M, Ansari MA, Alam M, Ali A, Ahmad A, Owais M (2010) Novel drug delivery systems for antifungal compounds. In: Ahmad I, Owais M, Shahid M, Aqil F (eds) Combating fungal infections. Springer, Berlin/Heidelberg, pp 485–528

    Google Scholar 

  • Zou LQ, Zheng BJ, Zhang RJ, Zhang ZP, Liu W, Liu CM, Xiao H, McClements DJ (2016) Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: Comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Adv 6:3126–3136

    CAS  Google Scholar 

  • Zuccari G, Carosio R, Fini A, Montaldo PG, Orienti I (2005) Modified polyvinylalcohol for encapsulation of all-trans-retinoic acid in polymeric micelles. J Control Rel 103(2):369–380

    Google Scholar 

  • Zuccari G, Bergamante G, Carosio R, Gotti R, Montaldo PG, Orienti I (2009) Micellar complexes of all-trans retinoic acid with polyvinylalcohol-nicotinoyl esters as new parenteral formulations in neuroblastoma. Drug Delivery 16(4):189–195

    Google Scholar 

  • Zuccari G, Baldassari S, Ailuno G, Turrini F, Alfei S, Caviglioli G (2020) Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. Appl Sci 10(10):3353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Alfei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alfei, S. (2020). Nanotechnology Applications to Improve Solubility of Bioactive Constituents of Foods for Health-Promoting Purposes. In: Hebbar, U., Ranjan, S., Dasgupta, N., Kumar Mishra, R. (eds) Nano-food Engineering. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-44552-2_8

Download citation

Publish with us

Policies and ethics