Skip to main content

Thermodynamics of Irreversible Processes with Internal Variables

  • Chapter
  • First Online:
Continuum Thermodynamics and Constitutive Theory
  • 665 Accesses

Abstract

Introducing internal variables as additional independent quantities in the continuum element, a much richer constitutive behavior can be described than with classical thermodynamics of irreversible processes. The first example is liquid crystals, where the phase transition is obtained as a special case of the evolution equation for the internal variable and flow birefringence can be explained. The second example is colloid suspensions, where the theory predicts a rich non-Newtonian flow behavior. A solid material with after effects and suspensions of flexible fibers are treated as well. Finally, mechanical model systems with damping are modeled as thermodynamic systems with internal variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These unusual substances were mentioned for the first time in a letter from the botanist F. Reinitzer to the physicist O. Lehmann in 1888. This letter is published in [26]. O. Lehmann was the first one to investigate the physical properties of liquid crystals, especially the morphology of textures under the polarizing microscope.

References

  1. J. Verhas, Thermodynamics and Rheology. Society for the Unity of Science and Technology, Budapest, Budapest, 2017. Edition almost completely equivalent to the print edition jointly published by Akadémiai Kiadó, Budapest (ISBN 963-05-7389-X) and Kluwer Academic Publishers, Dordrecht (ISBN 0-7923-4251-8) (1997)

    Google Scholar 

  2. G.A. Maugin, W. Muschik, Thermodynamics with internal variables, part I. General concepts. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    ADS  MATH  Google Scholar 

  3. G.A. Maugin, W. Muschik, Thermodynamics with internal variables, part II. Applications. J. Non-Equilib. Thermodyn. 19, 250–289 (1994)

    ADS  MATH  Google Scholar 

  4. W. Muschik, Internal variables in non-equilibrium thermodynamics. J. Non-Equilib. Thermodyn. 15, 127–137 (1990)

    Article  ADS  Google Scholar 

  5. G.A. Maugin, R. Drouot, Internal variables and the thermodynamics of macromolecule solutions. Int. J. Eng. Sci. 21, 705–724 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Ciancio, E. Turrisi, G.A. Kluitenberg, On the propagation of linear longitudinal acoustic waves in isotropic media with shear and volume viscosity and a tensorial internal variable. I. General formalism. Physica 125A, 640–652 (1984)

    Article  ADS  Google Scholar 

  7. V. Ciancio, J. Verhás, On heat conduction in media with isotropic microstructure. Atti. Academia Peloritania dei Pericolanti (Messina) 68, 41–53 (1990)

    MathSciNet  MATH  Google Scholar 

  8. V. Ciancio, J. Verhás, A thermodynamic theory for radiating heat transfer. J. Non-Equilib. Thermodyn. 17, 33–43 (1990)

    ADS  Google Scholar 

  9. V. Ciancio, J. Verhás, On thermal wawes and radiating heat transfer. Acta Phys. Hung. 69, 69 (1990)

    Google Scholar 

  10. G.A. Kluitenberg, On the thermodynamics of viscosity and plasticity. Physica 29, 633–652 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. G.A. Kluitenberg, On heat dissipation due to irreversible mechanical phenomena in continuous media. Physica 35, 177–192 (1967)

    Article  ADS  MATH  Google Scholar 

  12. G.A. Kluitenberg, E. Turrisi, V. Ciancio, On the propagation of linear transverse acoustic waves in isotropic media with mechanical relaxation phenomena due to viscosity and a tensorial internal variable. I. General formalism. Physica 110A, 361–372 (1982)

    Article  ADS  Google Scholar 

  13. L. Restuccia, G.A. Kluitenberg, Hidden vectorial variables as splitting operators for the polarization vector in the thermodynamic theory of dielectric relaxation. J. Non-Equilib. Thermodyn. 15, 335–346 (1990)

    Article  ADS  MATH  Google Scholar 

  14. E. Turrisi, V. Ciancio, G.A. Kluitenberg, On the propagation of linear transverse acoustic waves in isotropic media with mechanical relaxation phenomena due to viscosity and a tensorial internal variable. II. Some cases of special interest (Poynting-Thomson, Jeffrey, Maxwell, Kelvin-Voigt, Hooke and Newton media). Physica 116A, 594–603 (1982)

    Google Scholar 

  15. J. Verhás, A thermodynamic approach to viscoelasticity and plasticity. Acta Mech. 53, 125–139 (1984)

    Article  MATH  Google Scholar 

  16. J. Verhás, Irreversible thermodynamics of nematic liquid crystals. Acta Phys. Hung. 55, 275–291 (1984)

    MathSciNet  Google Scholar 

  17. V. Ciancio, On rheological equations and heat dissipation in anisotropic viscoanelastic media. Atti Acc. Sc. Lett. ed Arti di Palermo 1, 3–16 (1981)

    Google Scholar 

  18. J. Verhas, A thermodynamic approach to viscoanelasticity and plasticity. Acta Mech. 53, 125–139 (1984)

    Article  MATH  Google Scholar 

  19. J. Verhas, Irreversible thermodynamics for rheological properties of colloids. Int. J. Heat Mass Transfer 30, 1001–1006 (1987)

    Article  MATH  Google Scholar 

  20. J. Verhas, The thermodynamic theory of non-Newtonian flows. J. Non-Equilib. Thermodyn. 18, 311 (1993)

    MATH  Google Scholar 

  21. J.R. Rice, Inelastic constitutive relations for solids: an internal-variable. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  ADS  MATH  Google Scholar 

  22. G.D.C. Kuiken, Thermodynamics of Irreversible Processes—Applications to Diffusion and Rheology (Wiley, Chichester, New York, Brisbane, 1996)

    Google Scholar 

  23. J. Meixner, H.G. Reik, Thermodynamik der Irreversiblen Prozesse, in Handbuch der Physik, vol. III./2 (Springer, Berlin, 1959), p. 413

    Google Scholar 

  24. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience, New York, 1961)

    MATH  Google Scholar 

  25. K.C. Valanis, Irreversible Thermodynamics of Continuous Media (Springer, Wien, 1971)

    Book  Google Scholar 

  26. H. Stegemeyer, H. Kelker, 100-jähriges Jubiläum: Flüssigkristalle-Blaue Phasen. Nachr. Chem. Tech. Lab. 36(4), 360–364 (1988)

    Article  Google Scholar 

  27. C. Papenfuss, Applied Wave Mathematics—Selected Topics in Solids, Fluids, and Mathematical Methods, chapter Dynamics of Internal Variables from the Mesoscopic Background for the Example of Liquid Crystals and Ferrofluids (Springer, Berlin Heidelberg, 2009), pp. 89–125

    Google Scholar 

  28. L. Longa, D. Monselesan, H.-R. Trebin, An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liq. Cryst. 2(6), 769–796 (1987)

    Article  Google Scholar 

  29. S. Hess, Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals. Z. Naturforsch. 30a, 728–733 (1975)

    Google Scholar 

  30. S. Hess, Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals ii. Z. Naturforsch. 30a, 1224–1232 (1975)

    Google Scholar 

  31. I. Pardowitz, S. Hess, On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena associated with the second and fourth rank alignment-tensors. Physica 100A, 540–562 (1980)

    Article  ADS  Google Scholar 

  32. W. Gröbner, Matrizenrechnung, no. 103 (B.I.-Hochschultaschenbücher. Bibliographisches Institut, Mannheim, Wien, Zürich, 1966)

    Google Scholar 

  33. H. See, M. Doi, R. Larson, J. Chem. Phys. 92, 792 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Vertogen, W.H. de Jeu, Thermotropic Liquid Crystals, Fundamentals, no. 45 in Chemical Physics (Springer, Berlin, Heidelberg, 1988)

    Google Scholar 

  35. P.G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974)

    MATH  Google Scholar 

  36. P.-G. De Gennes, J. Prost, The Physics of Liquid Crystals. Monographs on Physics, 2nd edn. (Clarendon Press, Oxford, 1995)

    Google Scholar 

  37. E.G. Virga, Variational Theories for Liquid Crystals (Chapman and Hall, London, 1994)

    Book  MATH  Google Scholar 

  38. P.-G. de Gennes, Simple Views on Condensed Matter. Series in Modern Condensed Matter Physics, vol. 4 (World Scientific, Singapore, New Jersey, London, Hong Kong, 1992)

    Google Scholar 

  39. H. Grebel, R.M. Hornreich, S. Shtrikman, Landau theory of cholesteric blue phases: the role of higher harmonics. Phys. Rev. A 30, 3264 (1984)

    Article  ADS  Google Scholar 

  40. H. Grebel, R.M. Hornreich, S. Shtrikman, Landau theory of cholesteric blue phases. Phys. Rev. A 28, 1114 (1983)

    Article  ADS  Google Scholar 

  41. L.D. Landau, V.L. Ginzburg, K theorii sverkhrovodimosti. Zh. Eksp. Teor. Fiz.20, 1064 (1950). English translation: on the theory of superconductivity, in Collected papers of L. D. Landau, ed. by D. ter Haar (Pergamon, Oxford, 1965), pp. 626–633

    Google Scholar 

  42. S. Hess, Birefringence caused by the diffusion of macromolecules or colloidal particles. Physica 74, 277–293 (1974)

    Article  ADS  Google Scholar 

  43. P. Ilg, M. Kröger, Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension. Phys. Rev. E 66(2) (2002). Art. no. 021501

    Google Scholar 

  44. P. Ilg, M. Kröger, S. Hess, Magnetoviscosity and orientational order parameters of dilute ferrofluids. J. Chem. Phys. 116(20), 9078–9088 (2002)

    Article  ADS  Google Scholar 

  45. J. Verhas, C. Papenfuss, W. Muschik, A simplified thermodynamic theory for biaxial nematics using Gyarmati’s Principle. Mol. Cryst. Liq. Cryst. 215, 313–321 (1992)

    Article  Google Scholar 

  46. T. Nishimura, Orientation behaviour of fibers in suspension flow through a branching channel. J. Non-Newton. Fluid Mech. 73(3), 279–288 (1997)

    Article  Google Scholar 

  47. J. Azaiez, Investigation of the abrupt contraction flow of fiber suspensions in polymeric fluids. J Non-Newton. Fluid Mech. 73(3), 289–316 (1997)

    Article  Google Scholar 

  48. M. Vincent, Fibre orientation calculation in injection moulding of reinforced thermoplastics. J. Non-Newton. Fluid Mech. 73(3), 317–326 (1997)

    Article  Google Scholar 

  49. C. Papenfuss, J. Verhas, Constitutive theory of fiber suspensions. J. Non-Newton. Fluid Mech. 253, 27–35 (2018)

    Article  MathSciNet  Google Scholar 

  50. J. Verhás, Thermodynamic theory for couple stress, in Second Workshop on Dissipation in Physical Systems (Borkow, Poland, 1997)

    Google Scholar 

  51. V.K. Stokes, Theory of Fluids with Microstructure (Springer, Berlin, 1984)

    Book  Google Scholar 

  52. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)

    Google Scholar 

  53. E. Abisset-Chavanne, J. Férec, G. Ausias, E. Cueto, F. Chinesta, R. Keunings, A second-gradient theory of dilute suspensions of flexible rods in a newtonian fluid. Arch. Computat. Methods Eng. 22, 511–527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Garrod, J. Hurley, Symmetry relations for the conductivity tensor. Phys. Rev A 27, 1487–1490 (1983)

    Google Scholar 

  55. P. Glansdorff, I. Prigogine, Themodynamic Theory of Structure. Stability and Fluctuations (Wiley-Interscience, London, 1971)

    MATH  Google Scholar 

  56. J. Hurley, C. Garrod, Generalization of the Onsager reciprocity theorem. Phys. Rev. Lett. 48, 1575–1577 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  57. S. Machlup, L. Onsager, Fluctuations and irreversible processes II. Systems with kinetic energy. Phys. Rev. 91, 1512–1515 (1953)

    Google Scholar 

  58. L. Onsager, Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  ADS  MATH  Google Scholar 

  59. L. Onsager, Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  ADS  MATH  Google Scholar 

  60. L. Onsager, S. Maclup, Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. G.F. Smith, R.S. Rivlin, The anisotropic tensors. Quart. Appl. Math. 15, 308–314 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Kröger, Rheologie und Struktur von Polymerschmelzen. Ph.D. thesis, Technische Universität Berlin, W und T Verlag, Berlin, 1995

    Google Scholar 

  63. H. Ehrentraut, S. Hess, Viscosity coefficients of partially aligned nematic and nematic discotic liquid crystals. Phys. Rev. E 51(3), 2203–2212 (1995)

    Article  ADS  Google Scholar 

  64. G. Rienacker, M. Kröger, S. Hess, Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals. Physica A 315, 537–568 (2002)

    Article  ADS  Google Scholar 

  65. S. Halelfadl, P. Estellao, B. Aladag, N. Doner, T. Marao, Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. Int. J. Therm. Sci. 71, 111–117 (2013)

    Article  Google Scholar 

  66. Z. Fan, S.G. Advani, Rheology of multiwall carbon nanotube suspensions. J. Rheol. 51(4), 585–604 (2007)

    Article  ADS  Google Scholar 

  67. Z. Fan, S.G. Advani, Characterization of orientation state of carbon nanotubes in shear flow. Polymer 46(14), 5232–5240 (2005)

    Google Scholar 

  68. A. B. Sulong, J. Park, Alignment of multi-walled carbon nanotubes in a polyethylene matrix by extrusion shear flow: mechanical properties enhancement. J. Compos. Mater. 45(8), 931–941 (2011)

    Google Scholar 

  69. F. Folgar, C.L. Tucker, Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Compos. 3, 98–119 (1984)

    Article  ADS  Google Scholar 

  70. M. Keshtkar, M.C. Heuzey, P.J. Carreau, Rheological behavior of fiber-filled model suspensions: effect of fiber flexibility. J. Rheol. 53(3), 631–650 (2009)

    Article  ADS  Google Scholar 

  71. M. Keshtkar, M.C. Heuzey, P.J. Carreau, M. Rajabian, C. Dubois, Rheological properties and microstructural evolution of semi-flexible fiber suspensions under shear flow. J. Rheol. 54(2), 197–222 (2010)

    Article  ADS  Google Scholar 

  72. M. Morse, Relation between the critical points of a real function of n independent variables. Trans. Am. Math. Soc. 27, 345–396 (1925)

    MathSciNet  MATH  Google Scholar 

  73. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland Publishing, Amsterdam, 1963)

    MATH  Google Scholar 

  74. H. Lamb, Hydrodynamics, 6th edn. (Cambridge University Press, Cambridge, 1963)

    MATH  Google Scholar 

  75. L.D. Landau, F.M. Lifshitz, Course of Theoretical Physics, vol. 6 (Pergamon Press, Oxford, 1959)

    Google Scholar 

  76. J.U. Keller, Theory of measurement of gas adsorption equilibria by rotational oscillations, in 25th International Conference on Vacuum Microbalance Techniques (University of Siegen, Siegen, Germany, 1993)

    Google Scholar 

  77. I. Gyarmati, On the wave approach of thermodynamics and some problems of non-linear theories. Non-Equilib. Thermodyn. 2, 233–260 (1977)

    ADS  MATH  Google Scholar 

  78. I. Gyarmati, Non-Equilibrium Thermodynamics (Springer, 1970)

    Google Scholar 

  79. D. Fekete, A systematic application of Gyarmati’s wave theory of thermodynamics to thermal waves in solids. Phys. Stat. Sol. (b) 105, 161–174 (1981)

    Article  ADS  Google Scholar 

  80. L.S. Garcia-Colin, R.F. Rodriguez, On the relationship between extended thermodynamics and the wave approach to thermodynamics. J. Non-Equilib. Thermodyn. 13, 81–94 (1988)

    Article  ADS  MATH  Google Scholar 

  81. G.A. Kluitenberg, On dielectric and magnetic relaxation phenomena and non-equilibrium thermodynamics. Physica 68, 75–92 (1973)

    Article  ADS  Google Scholar 

  82. G.A. Kluitenberg, On dielectric and magnetic relaxation phenomena and vectorial internal degrees of freedom in thermodynamics. Physica 87A, 302–330 (1977)

    Article  ADS  Google Scholar 

  83. G.A. Kluitenberg, On vectorial internal variables and dielectric and magnetic relaxation phenomena. Physica 109A, 91–122 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  84. G.A. Kluitenberg, V. Ciancio, On linear dynamical equations of state for isotropic media. I. General formalism. Physica 93A, 273–286 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  85. D. Fekete, Application of the fundamental principle of dissipative processes to Gyarmati’s wave theory. Russ. J. Phys. Chem. 57, 2700–2703 (1983) (in russian)

    Google Scholar 

  86. V. Ciancio, G.A. Kluitenberg, On linear dynamical equations of state for isotropic media. II. Some cases of special interest. Physica 99A, 592–600 (1979)

    Google Scholar 

  87. S.R. De Groot, Thermodynamics of Irreversible Processes (North-Holland Publ. Co., Amsterdam, 1951)

    MATH  Google Scholar 

  88. D. Jou, J.M. Rubi, J. Casas-Vazquez, A generalized Gibbs equation for second order fluids. J. Phys. A 12, 2515–2520 (1979)

    Article  ADS  MATH  Google Scholar 

  89. I. Müller, Thermodynamics (Pitman Publ. Co., London, 1985)

    MATH  Google Scholar 

  90. B. Nyíri, Thermodynamical derivation of equations of motion for multicomponent fluids. Acta Phys. Hung. 60, 245–260 (1986)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papenfuß, C. (2020). Thermodynamics of Irreversible Processes with Internal Variables. In: Continuum Thermodynamics and Constitutive Theory. Springer, Cham. https://doi.org/10.1007/978-3-030-43989-7_7

Download citation

Publish with us

Policies and ethics