Skip to main content

In Situ Growth Analysis

  • Chapter
  • First Online:
Epitaxy of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1787 Accesses

Abstract

Sensors to analyse layer structures already during epitaxial growth provide valuable information for developing device structures and for ensuring the reproducibility of run-to-run conditions. Most analytical online tools are applicable to all major growth techniques. Today a variety of probes is routinely integrated into growth systems for monitoring in situ sample temperature, growth rate, layer thickness, composition, strain, and other parameters of the growth process. Sensors measure either the ambient in the vicinity of the growing sample or the sample surface. Ambient analysis comprises mass spectrometry and optical probes; they provide information about the mass transport, the kind and density of species, their temperature, and potential mutual reactions. Surface probes include diffraction techniques and various optical tools. Surface sensitivity for diffraction is achieved by applying grazing-incidence angles, and the diffracted electron and X-ray beams disclose the surface morphology and reconstructions. Optical probes are widely applied in gaseous growth ambient. The selectivity for the surface may strongly be enhanced by taking advantages of symmetry-related surface properties, and several optical probes can resolve the growth of single monolayers. The chapter describes prominent techniques for in situ analysis of epitaxy. After discussing ambient analysis using mass spectrometry and optical spectroscopy, surface probes are considered. Structural analysis by reflection high-energy electron diffraction and by X-ray diffraction is outlined, and optical probes by pyrometry and deflectometry yielding data on temperature and strain are presented. The text then focuses on reflectometry, ellipsometry, and reflectance-difference spectroscopy (reflectance-anisotropy spectroscopy); these techniques provide both chemical and structural information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.P. Seah, W.A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)

    Google Scholar 

  2. W. Richter, D. Zahn, Analysis of epitaxial growth, in Optical Characterization of Epitaxial Semiconductor Layers, ed. by G. Bauer, W. Richter (Springer, Berlin, 1996), pp. 12–67

    Google Scholar 

  3. A.S.Y. Chan, M.P. Skegg, R.G. Jones, Line of sight techniques: providing an inventory of all species arriving at and departing from a surface. J. Vac. Sci. Technol., A 19, 2007 (2001)

    ADS  Google Scholar 

  4. S.G. Hessey, R.G. Jones, Line-of-sight mass spectrometry: principles and practice. Surf. Interface Anal. 47, 587 (2015)

    Google Scholar 

  5. S. Fernández-Garrido, G. Koblmüller, E. Calleja, J.S. Speck, In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction. J. Appl. Phys. 104, 033541 (2008)

    ADS  Google Scholar 

  6. G. Koblmüller, R. Averbeck, H. Riechert, P. Pongratz, Direct observation of different equilibrium Ga adlayer coverages and their desorption kinetics on GaN (0001) and (\( 000\bar{1} \)) surfaces. Phys. Rev. B 69, 035325 (2004)

    Google Scholar 

  7. J.E. Northrup, J. Neugebauer, R.M. Feenstra, A.R. Smith, Structure of GaN(0001): the laterally contracted Ga bilayer model. Phys. Rev. B 61, 9932 (2000)

    ADS  Google Scholar 

  8. J. Neugebauer, T.K. Zywietz, M. Scheffler, J.E. Northrup, H. Chen, R.M. Feenstra, Adatom kinetics on and below the surface: the existence of a new diffusion channel. Phys. Rev. Lett. 90, 056101 (2003)

    ADS  Google Scholar 

  9. M. Yoshida, H. Watanabe, F. Uesugi, Mass spectrometric study of Ga(CH3)3 and Ga(C2H5)3 decomposition reaction in H2 and N2. J. Electrochem. Soc. 132, 677 (1985)

    ADS  Google Scholar 

  10. L. Nattermann, O. Maßmeyer, E. Sterzer, V. Derpmann, H.Y. Chung, W. Stolz, K. Volz, An experimental approach for real time mass spectrometric CVD gas phase investigations. Sci. Rep. 8, 319 (2018)

    ADS  Google Scholar 

  11. P.W. Lee, T.R. Omstead, D.R. McKenna, K.F. Jensen, In situ mass spectroscopy and thermo-gravimetric studies of GaAs MOCVD gas phase and surface reactions. J. Cryst. Growth 85, 165 (1987)

    ADS  Google Scholar 

  12. G.B. Stringfellow, Alternate sources and growth chemistry for OMVPE and CBE processes. J. Cryst. Growth 105, 260 (1990)

    ADS  Google Scholar 

  13. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy, 2nd edn. (Academic Press, San Diego, 1999)

    Google Scholar 

  14. S.H. Li, C.A. Larsen, N.I. Buchan, G.B. Stringfellow, Pyrolysis of tertiarybutylphosphine. J. Electron. Mater. 18, 457 (1989)

    ADS  Google Scholar 

  15. U.W. Pohl, C. Möller, K. Knorr, W. Richter, J. Gottfriedsen, H. Schumann, A. Fielicke, K. Rademann, Tertiarybutylhydrazine: a new precursor for the MOVPE of III nitrides. Mater. Sci. Engin. B 59, 20 (1999)

    Google Scholar 

  16. C.A. Larsen, S.H. Li, N.J. Buchan, G.B. Stringfellow, Mechanisms of GaAs growth using tertiarybutylarsine and trimethylgallium. J. Cryst. Growth 94, 673 (1989)

    ADS  Google Scholar 

  17. A. Stegmüller, R.A. Tonner, Quantum chemical descriptor for CVD precursor design: predicting decomposition rates of TBP and TBAs isomers and derivatives. Chem. Vap. Depos. 21, 161 (2015)

    Google Scholar 

  18. F. Durst, A. Melling, J.H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd edn. (Academic Press, London, 1981)

    Google Scholar 

  19. G.A. Hebner, K.P. Killeen, R.M. Biefeld, In situ measurement of the metalorganic and hydride partial pressures in a MOCVD reactor using ultraviolet absorption spectroscopy. J. Cryst. Growth 98, 293 (1989)

    ADS  Google Scholar 

  20. H. Itoh, M. Watanabe, S. Mukai, H. Yajima, Ultraviolet absorption spectra of metalorganic molecules diluted in hydrogen gas. J. Cryst. Growth 93, 165 (1988)

    ADS  Google Scholar 

  21. R.F. Karlicek, B. Hammarlund, J. Ginocchio, UV absorption spectroscopy for monitoring hydride vapor-phase epitaxy of InGaAsP alloys. J. Appl. Phys. 60, 794 (1986)

    ADS  Google Scholar 

  22. M.C. Johnson, K. Poochinda, N.L. Ricker, J.W. Rogers Jr., T.P. Pearsall, In situ monitoring and control of multicomponent gas-phase streams for growth of GaN via MOCVD. J. Cryst. Growth 212, 11 (2000)

    ADS  Google Scholar 

  23. J.E. Butler, N. Bottka, R.S. Sillmon, D.K. Gaskill, In situ, real-time diagnostics of OMVPE using IR-diode laser spectroscopy. J. Cryst. Growth 77, 163 (1986)

    ADS  Google Scholar 

  24. S. Salim, C.A. Wang, R.D. Driver, K.F. Jensen, In situ concentration monitoring in a vertical OMVPE reactor by fiber-optics-based Fourier transform infrared spectroscopy. J. Cryst. Growth 169, 443 (1996)

    ADS  Google Scholar 

  25. S.P. Watkins, T. Pinnington, J. Hu, P. Yeo, M. Kluth, N.J. Mason, R.J. Nicholas, P.J. Walker, Infrared single wavelength gas composition monitoring for metalorganic vapour-phase epitaxy. J. Cryst. Growth 221, 166 (2000)

    ADS  Google Scholar 

  26. D. Hayashi, A. Teraoka, Y. Sakaguchi, M. Minami, H. Nishizato, Real-time measurement of Cp2Mg vapor concentration using the non-dispersive infrared spectroscopy. J. Cryst. Growth 453, 54 (2016)

    ADS  Google Scholar 

  27. C. Park, W.-S. Jung, Z. Huang, T.J. Anderson, In situ Raman spectroscopic studies of trimethyl-indium pyrolysis in an OMVPE reactor. J. Mater. Chem. 12, 356 (2002)

    Google Scholar 

  28. I.P. Herman, Optical Diagnostics for Thin Film Processing, Chapter 7 Laser-induced fluorescence (Academic Press, New York 1996)

    Google Scholar 

  29. B. Zhou, X. Li, T.L. Tansley, K.S.A. Butcher, Growth mechanisms in excimer laser photolytic deposition of gallium nitride at 500 °C. J. Cryst. Growth 160, 201 (1996)

    Google Scholar 

  30. V.M. Donnelly, R.F. Karlicek, Development of laser diagnostic probes for chemical vapor deposition of InP/InGaAsP epitaxial layers. J. Applied Physics 53, 6399 (1982)

    ADS  Google Scholar 

  31. M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction (Springer, Berlin 1986)

    Google Scholar 

  32. A. Ichimiya, P.I. Cohen, Reflection High Energy Electron Diffraction (Cambridge University Press, Campridge, 2004)

    Google Scholar 

  33. W. Braun, Applied RHEED, Reflection High-Energy Electron Diffraction During Crystal Growth (Springer, Berlin, 1999)

    Google Scholar 

  34. Y. Ma, S. Lordi, J.A. Eades, Dynamical analysis of a RHEED pattern from the Si(111)-7 × 7 surface. Surf. Sci. 313, 317 (1994)

    ADS  Google Scholar 

  35. Y. Nabetani, T. Ishikawa, S. Noda, A. Sasaki, Initial growth stage and optical properties of a three-dimensional InAs structure on GaAs. J. Appl. Phys. 76, 347 (1994)

    ADS  Google Scholar 

  36. T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, Y. Bando, Well defined superlattice structures made by phase-locked epitaxy using RHEED intensity oscillations. Superlattices Microstruct. 1, 347 (1985)

    ADS  Google Scholar 

  37. D.W. Kisker, G.B. Stephenson, P.H. Fuoss, S. Brennan, Characterization of vapor phase growth using X-ray techniques. J. Cryst. Growth 146, 104 (1995)

    ADS  Google Scholar 

  38. G. Ju, M.J. Highland, A. Yanguas-Gil, C. Thompson, J.A. Eastman, H. Zhou, S.M. Brennan, G.B. Stephenson, P.H. Fuoss, An instrument for in situ coherent X-ray studies of metal-organic vapor phase epitaxy of III-nitrides. Rev. Sci. Instrum. 88, 035113 (2017)

    ADS  Google Scholar 

  39. B. Jenichen, W. Braun, V.M. Kaganer, A.G. Shtukenberg, L. Däweritz, C.-G. Schulz, K.H. Ploog, A. Erko, Combined molecular beam epitaxy and diffractometer system for in situ X-ray studies of crystal growth. Rev. Sci. Instrum. 74, 1267 (2003)

    ADS  Google Scholar 

  40. G. Ju, S. Fuchi, M. Tabuchi, H. Amano, Y. Takeda, Continuous in situ X-ray reflectivity investigation on epitaxial growth of InGaN by metalorganic vapor phase epitaxy. J. Cryst. Growth 407, 68 (2014)

    ADS  Google Scholar 

  41. G. Ju, M. Tabuchi, Y. Takeda, H. Amano, Role of threading dislocations in strain relaxation during GaInN growth monitored by real-time X-ray reflectivity. Appl. Phys. Lett. 110, 262105 (2017)

    ADS  Google Scholar 

  42. I. Kamiya, L. Mantese, D.E. Aspnes, D.W. Kisker, P.H. Fuoss, G.B. Stephenson, S. Brennan, Optical characterization of surfaces during epitaxial growth using RDS and GIXS. J. Cryst. Growth 163, 67 (1996)

    Google Scholar 

  43. W. Braun, B. Jenichen, V.M. Kaganer, A.G. Shtukenberg, L. Däweritz, K.H. Ploog, Layer-by-layer growth of GaAs(001) studied by in situ synchrotron X-ray diffraction. Surf. Sci. 525, 126 (2003)

    ADS  Google Scholar 

  44. D.W. Kisker, G.B. Stephenson, P.H. Fuoss, F.J. Lamelas, S. Brennan, Atomic scale characterization of organometallic vapor phase epitaxial growth using in-situ grazing incidence X-ray scattering. J. Cryst. Growth 124, 1 (1992)

    ADS  Google Scholar 

  45. D.W. Kisker, G.B. Stephenson, J. Tersoff, P.H. Fuoss, S. Brennan, Atomic scale studies of epitaxial growth processes using X-ray techniques. J. Cryst. Growth 163, 54 (1996)

    ADS  Google Scholar 

  46. W.G. Breiland, Reflectance-correcting pyrometry in thin film deposition applications, Technical Report, Sandia National Laboratories, Albuquerque, NM 87185, SAND2003-1868

    Google Scholar 

  47. K. Haberland, J.T. Mullins, T. Schenk, T. Trepk, L. Considine, A. Pakes, A. Taylor, J.-T. Zettler, First real-time true wafer temperature and growth rate measurements in a closed-coupled showerhead MOVPE reactor during growth of InGa(AsP). In International Conference on InP and Related Materials. Santa Barbara, CA, USA (2003)

    Google Scholar 

  48. J.A. Floro, E. Chason, S.R. Lee, Real time measurement of epilayer strain using a simplified wafer curvature technique. Mat. Res. Soc. Symp. Proc. 405, 381 (1996)

    Google Scholar 

  49. S. Terao, M. Iwaya, R. Nakamura, S. Kamiyama, H. Amano, I. Akasaki, Fracture of AlxGa1−xN/GaN heterostructure—compositional and impurity dependence. Jpn. J. Appl. Phys. 40, L195 (2001)

    ADS  Google Scholar 

  50. A. Krost, A. Dadgar, G. Strassburger, R. Clos, GaN-based epitaxy on silicon: stress measurements. Phys. Stat. Sol. A 200, 26 (2003)

    ADS  Google Scholar 

  51. F. Brunner, V. Hoffmann, A. Knauer, E. Steimetz, T. Schenk, J.-T. Zettler, M. Weyers, Growth optimization during III-nitride multiwafer MOVPE using realtime curvature, reflectance and true temperature measurements. J. Cryst. Growth 298, 202 (2007)

    ADS  Google Scholar 

  52. G. Stoney, The tension of metallic films deposited by electrolysis. Proc. R. Soc. London A 82, 172 (1909)

    ADS  Google Scholar 

  53. L.B. Freund, J.A. Floro, E. Chason, Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74, 1987 (1999)

    ADS  Google Scholar 

  54. C.A. Klein, How accurate are Stoney’s equation and recent modifications. J. Appl. Phys. 88, 5487 (2000)

    ADS  Google Scholar 

  55. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J.W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E.R. Weber, M.D. Bremser, R.F. Davis, Strain-related phenomena in GaN thin films. Phys. Rev. B 54, 17745 (1996)

    ADS  Google Scholar 

  56. F. Brunner, A. Knauer, T. Schenk, M. Weyers, J.-T. Zettler, Quantitative analysis of in situ wafer bowing measurements for III-nitride growth on sapphire. J. Cryst. Growth 310, 2432 (2008)

    ADS  Google Scholar 

  57. S. Hearne, E. Chason, J. Han, J.A. Floro, J. Figiel, J. Hunter, H. Amano, I.S.T. Tsong, Stress evolution during metalorganic chemical vapor deposition of GaN. Appl. Phys. Lett. 74, 356 (1999)

    ADS  Google Scholar 

  58. D.E. Aspnes, Minimal-data approaches for determining outer-layer dielectric responses of films from kinetic reflectometric and ellipsometric measurements. J. Opt. Soc. Am. A 10, 974 (1993)

    ADS  Google Scholar 

  59. D.E. Aspnes, Optical approaches to determine near-surface compositions during epitaxy. J. Vac. Sci. Technol., A 14, 960 (1996)

    ADS  Google Scholar 

  60. J.-T. Zettler, Characterization of epitaxial semiconductor growth by reflectance anisotropy spectroscopy and ellipsometry. Prog. Cryst. Growth Charact. 35, 27 (1997)

    Google Scholar 

  61. F.K. Urban III, M.F. Tabet, Virtual interface method for in situ ellipsometry of films grown on unknown substrates. J. Vac. Sci. Technol., A 11, 976 (1993)

    ADS  Google Scholar 

  62. W.G. Breiland, K.P. Killeen, A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance. J. Appl. Phys. 78, 6726 (1995)

    ADS  Google Scholar 

  63. R.M.A. Azzam, N.M. Bashara, Ellipsometty and Polarized Light (North Holland, New York, 1987)

    Google Scholar 

  64. W.G. Breiland, H.Q. Hou, H.C. Chui, B.E. Hammons, In situ pre-growth calibration using reflectance as a control strategy for MOCVD fabrication of device structures. J. Cryst. Growth 174, 564 (1997)

    ADS  Google Scholar 

  65. C. Pickering, In situ optical studies of epitaxial growth, in Handbook of Crystal Growth 3, Part B: Thin Films and Epitaxy, Growth Mechanisms and Dynamics, ed. by D. Hurle (Elsevier, Amsterdam, 1994), pp. 819–878

    Google Scholar 

  66. R.W. Collins, I. An, H. Nguyen, Y. Li, Y. Lu, Realtime spectroscopic ellipsometry studies of the nucleation, growth, and optical functions of thin films, Part I: Tetrahedrally bonded materials, in Optical Characterization of Real Surfaces and Films, ed. by K. Vedam (Academic Press, Orlando, 1994), pp. 49–125

    Google Scholar 

  67. D.E. Aspnes, W.E. Quinn, S. Gregory, Application of ellipsometry to crystal growth by organometallic molecular beam epitaxy. Appl. Phys. Lett. 56, 2569 (1990)

    ADS  Google Scholar 

  68. D.E. Aspnes, Above-bandgap optical anisotropies in cubic semiconductors: a visible—near ultraviolet probe of surfaces. J. Vacuum Sci. Technol. B 3, 1498 (1985)

    ADS  Google Scholar 

  69. W.G. Schmidt, Calculation of reflectance anisotropy for semiconductor surface exploration. Phys. Stat. Sol. B 242, 2751 (2005)

    ADS  Google Scholar 

  70. K. Hingerl, D.E. Aspnes, I. Kamiya, L.T. Florez, Relationship among reflectance-difference spectroscopy, surface photoabsorption, and spectroellipsometry. Appl. Phys. Lett. 63, 885 (1993)

    ADS  Google Scholar 

  71. L.F. Lastras-Martínez, A. Lastras-Martínez, Reflectance anisotropy of GaAs(100): Dislocation-induced piezo-optic effects. Phys. Rev. B 54, 10726 (1996)

    ADS  Google Scholar 

  72. M. Zorn, P. Kurpas, A.I. Shkrebtii, B. Junno, A. Bhattacharya, K. Knorr, M. Weyers, L. Samuelson, J.T. Zettler, W. Richter, Correlation of InGaP(001) surface structure during growth and bulk ordering. Phys. Rev. B 60, 8185 (1999)

    ADS  Google Scholar 

  73. W.G. Schmidt, F. Bechstedt, K. Fleischer, C. Cobet, N. Esser, W. Richter, J. Bernholc, G. Onida, GaAs(001): Surface structure and optical properties. Phys. Stat. Sol A 188, 1401 (2001)

    ADS  Google Scholar 

  74. C. Hogan, R. Del Sole, Optical properties of the GaAs(001)-c(4 × 4) surface: direct analysis of the surface dielectric function. Phys. Stat. Sol B 242, 3040 (2005)

    ADS  Google Scholar 

  75. I. Kamiya, D.E. Aspnes, H. Tanaka, L.T. Florez, J.P. Harbison, R. Bhat, Surface science at atmospheric pressure: Reconstructions on (001) GaAs in organometallic chemical vapor deposition. Phys. Rev. Lett. 68, 627 (1992)

    ADS  Google Scholar 

  76. D.W. Kisker, G.B. Stephenson, I. Kamiya, P.H. Fuoss, D.E. Aspnes, L. Mantese, S. Brennan, Investigation of the relationship between reflectance difference spectroscopy and surface structure using grazing incidence X-ray scattering. Phys. Stat. Sol. A 152, 9 (1995)

    ADS  Google Scholar 

  77. W. Richter, J.-T. Zettler, Real-time analysis of III-V-semiconductor epitaxial growth, Appl. Surf. Sci. 100/101, 465 (1996)

    Google Scholar 

  78. C. Kaspari, M. Pristovsek, W. Richter, Deoxidation of (001) III–V semiconductors in metal-organic vapour phase epitaxy. J. Appl. Phys. 120, 085701 (2016)

    ADS  Google Scholar 

  79. M. Zorn, M. Weyers, Application of reflectance anisotropy spectroscopy to laser diode growth in MOVPE. J. Cryst. Growth 276, 29 (2005)

    ADS  Google Scholar 

  80. N.A. Kalyuzhnyy, V.V. Evstropov, V.M. Lantratov, S.A. Mintairov, M.A. Mintairov, A.S. Gudovskikh, A. Luque, V.M. Andreev, Characterization of the manufacturing processes to grow triple-junction solar cells, Int. J. Photoenergy 2014, 836284 (2014)

    Google Scholar 

  81. J. Ortega-Gallegos, L.E. Guevara-Macías, A.D. Ariza-Flores, R. Castro-García, L.F. Lastras-Martínez, R.E. Balderas-Navarro, R.E. López-Estopier, A. Lastras-Martínez, On the origin of reflectance-anisotropy oscillations during GaAs (001) homoepitaxy. Appl. Surf. Sci. 439, 963 (2018)

    ADS  Google Scholar 

  82. U.W. Pohl, K. Pötschke, I. Kaiander, J.-T. Zettler, D. Bimberg, Real-time control of quantum dot laser growth using reflectance anisotropy spectroscopy. J. Crystal Growth 272, 143 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pohl, U.W. (2020). In Situ Growth Analysis. In: Epitaxy of Semiconductors. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-43869-2_8

Download citation

Publish with us

Policies and ethics