Skip to main content

Antimicrobial Nanotechnology in Preventing the Transmission of Infectious Disease

  • Chapter
  • First Online:
Preclinical Evaluation of Antimicrobial Nanodrugs

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Infections acquired in the hospital are one of the greatest threats to public health by increasing the morbidity and mortality of affected patients. In this way, it is necessary to implement robust and innovative control measures that prevent the formation of biofilms and the dissemination inside hospital areas. Thus, nanotechnology offers innovative solutions through the design and development of nanosurfaces capable of reducing the transmission, virulence, and infectivity of pathogenic microorganisms within medical care. In this order of ideas, the methods and protocols for evaluating nanomaterials functionalized with bioactive molecules applied to surfaces and medical devices acquire radical importance in order to determine activity and safety. For this reason the objective of this chapter is to make a comprehensive analysis of this interesting approach, in order to develop alternatives for control and prevention of infectious disease with low toxicity and an adequate safety margin, which allows the implementation of hospital environments more biosafety and with greater protection for communities.

There is a difficulty with only one person changing. People call that person a great saint or a great mystic or a great leader, and they say, ‘Well, he’s different from me – I could never do it.’ What’s wrong with most people is that they have this block – they feel they could never make a difference, and therefore, they never face the possibility, because it is too disturbing, too frightening

Space is not empty. It is full, a plenum as opposed to a vacuum, and is the ground for the existence of everything, including ourselves. The universe is not separate from this cosmic sea of energy

Thus, in scientific research, a great deal of our thinking is in terms of theories. The word ‘theory’ derives from the Greek ‘theoria’, which has the same root as ‘theatre’, in a word meaning ‘to view’ or ‘to make a spectacle’. Thus, it might be said that a theory is primarily a form of insight, i.e. a way of looking at the world, and not a form of knowledge of how the world is

― David Bohm (1917–1992)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegoke, A., Faleye, A., Singh, G., & Stenström, T. (2017). Antibiotic resistant superbugs: Assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules, 22(1), 29.

    Article  CAS  Google Scholar 

  • Adlhart, C., Verran, J., Azevedo, N. F., Olmez, H., Keinänen-Toivola, M. M., Gouveia, I., et al. (2018). Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. Journal of Hospital Infection, 99(3), 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Ahonen, M., Kahru, A., Ivask, A., Kasemets, K., Kõljalg, S., Mantecca, P., et al. (2017). Proactive approach for safe use of antimicrobial coatings in healthcare settings: Opinion of the COST action network AMiCI. International Journal of Environmental Research and Public Health, 14(4), 366.

    Article  PubMed Central  CAS  Google Scholar 

  • Álvarez-Paino, M., Muñoz-Bonilla, A., & Fernández-García, M. (2017). Antimicrobial polymers in the nano-world. Nanomaterials, 7(2), 48.

    Article  PubMed Central  CAS  Google Scholar 

  • Arendsen, L. P., Thakar, R., & Sultan, A. H. (2019). The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clinical Microbiology Reviews, 32(4), e00125–e00118.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bahamondez-Canas, T. F., Heersema, L. A., & Smyth, H. D. (2019). Current status of in vitro models and assays for susceptibility testing for wound biofilm infections. Biomedicine, 7(2), 34.

    CAS  Google Scholar 

  • Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Frontiers in Microbiology, 9, 1441.

    Google Scholar 

  • Besinis, A., Hadi, S. D., Le, H. R., Tredwin, C., & Handy, R. D. (2017). Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology, 11(3), 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., & Hazan, R. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015. 15, 1, 42–59

    Google Scholar 

  • Bloomfield, S., Exner, M., Flemming, H. C., Goroncy-Bermes, P., Hartemann, P., Heeg, P., et al. (2015). Lesser-known or hidden reservoirs of infection and implications for adequate prevention strategies: Where to look and what to look for. GMS Hygiene and Infection Control, 10, Doc04

    Google Scholar 

  • Bohnsack, J. P., Assemi, S., Miller, J. D., & Furgeson, D. Y. (2012). The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: A review of the zebrafish nanotoxicology model. In Nanotoxicity (pp. 261–316). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Borges, A., Abreu, A., Dias, C., Saavedra, M., Borges, F., & Simões, M. (2016). New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules, 21(7), 877.

    Article  PubMed Central  CAS  Google Scholar 

  • Boukherroub, R., Szunerits, S., & Drider, D. (Eds.). (2016). Functionalized nanomaterials for the management of microbial infection: A strategy to address microbial drug resistance. William Andrew, Norwich, NY.

    Google Scholar 

  • Bueno, J. (2014). Anti-biofilm drug susceptibility testing methods: Looking for new strategies against resistance mechanism. Journal of Microbial Biochemical Technology, 3, 2.

    Google Scholar 

  • Burdușel, A. C., Gherasim, O., Grumezescu, A., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681.

    Article  PubMed Central  CAS  Google Scholar 

  • Calfee, M. W., Ryan, S. P., Wood, J. P., Mickelsen, L., Kempter, C., Miller, L., et al. (2012). Laboratory evaluation of large-scale decontamination approaches. Journal of Applied Microbiology, 112(5), 874–882.

    Article  PubMed  CAS  Google Scholar 

  • Caliendo, A. M., Gilbert, D. N., Ginocchio, C. C., Hanson, K. E., May, L., Quinn, T. C., et al. (2013). Better tests, better care: Improved diagnostics for infectious diseases. Clinical Infectious Diseases, 57(suppl_3), S139–S170.

    Article  PubMed  Google Scholar 

  • Camele, I., Elshafie, H. S., De Feo, V., & Caputo, L. (2019). Anti-quorum sensing and antimicrobial effect of mediterranean plant essential oils against phytopathogenic bacteria. Frontiers in Microbiology, 10, 2619.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos, M. D., Zucchi, P. C., Phung, A., Leonard, S. N., & Hirsch, E. B. (2016). The activity of antimicrobial surfaces varies by testing protocol utilized. PLoS One, 11(8), e0160728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Čáp, M., Váchová, L., & Palková, Z. (2012). Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxidative Medicine and Cellular Longevity, 2012, 1.

    Article  CAS  Google Scholar 

  • Cassar, S., Adatto, I., Freeman, J. L., Gamse, J. T., Iturria, I., Lawrence, C., et al. (2020). Use of zebrafish in drug discovery toxicology. Chemical Research in Toxicology, 33(1), 95–118.

    Google Scholar 

  • Cattò, C., & Cappitelli, F. (2019). Testing anti-biofilm polymeric surfaces: Where to start? International Journal of Molecular Sciences, 20(15), 3794.

    Article  PubMed Central  Google Scholar 

  • Caven, B., Redl, B., & Bechtold, T. (2019). An investigation into the possible antibacterial properties of wool fibers. Textile Research Journal, 89(4), 510–516.

    Article  CAS  Google Scholar 

  • Cebrián, R., Rodríguez-Cabezas, M. E., Martín-Escolano, R., Rubiño, S., Garrido-Barros, M., Montalbán-López, M., et al. (2019). Preclinical studies of toxicity and safety of the AS-48 bacteriocin. Journal of Advanced Research, 20, 129–139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandler, C. I. (2019). Current accounts of antimicrobial resistance: Stabilisation, individualisation and antibiotics as infrastructure. Palgrave Communications, 5(1), 53.

    Article  PubMed Central  Google Scholar 

  • Chang, B. M., Pan, L., Lin, H. H., & Chang, H. C. (2019). Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents. Scientific Reports, 9(1), 1–11.

    Article  CAS  Google Scholar 

  • Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114(10), 5161–5214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng, L. C., Jiang, X., Wang, J., Chen, C., & Liu, R. S. (2013). Nano–bio effects: Interaction of nanomaterials with cells. Nanoscale, 5(9), 3547–3569.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y., Feng, G., & Moraru, C. I. (2019). Micro-and Nanotopography sensitive bacterial attachment mechanisms: A review. Frontiers in Microbiology, 10, 191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciofu, O., & Tolker-Nielsen, T. (2019). Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-How P. aeruginosa can escape antibiotics. Frontiers in Microbiology, 10, 913.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciraldo, F. E., Schnepf, K., Goldmann, W. H., & Boccaccini, A. R. (2019). Development and characterization of bioactive glass containing composite coatings with ion releasing function for antibiotic-free antibacterial surgical sutures. Materials, 12(3), 423.

    Article  PubMed Central  CAS  Google Scholar 

  • Coelho, A. C., & García Díez, J. (2015). Biological risks and laboratory-acquired infections: A reality that cannot be ignored in health biotechnology. Frontiers in Bioengineering and Biotechnology, 3, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coenye, T., De Prijck, K., De Wever, B., & Nelis, H. J. (2008). Use of the modified Robbins device to study the in vitro biofilm removal efficacy of NitrAdine™, a novel disinfecting formula for the maintenance of oral medical devices. Journal of Applied Microbiology, 105(3), 733–740.

    Article  PubMed  CAS  Google Scholar 

  • Cools, F., Torfs, E., Aizawa Porto de Abreu, J., Vanhoutte, B., Maes, L., Caljon, G., et al. (2019). Optimization and characterization of a galleria mellonella larval infection model for virulence studies and the evaluation of therapeutics against Streptococcus pneumoniae. Frontiers in Microbiology, 10, 311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cutuli, M. A., Petronio Petronio, G., Vergalito, F., Magnifico, I., Pietrangelo, L., Venditti, N., & Di Marco, R. (2019). Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence, 10(1), 527–541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Souza, A. W., Potter, R. F., Wallace, M., Shupe, A., Patel, S., Sun, X., et al. (2019). Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nature Communications, 10(1), 1–19.

    Article  CAS  Google Scholar 

  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Simone, S., Gallo, A. L., Paladini, F., Sannino, A., & Pollini, M. (2014). Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. Journal of Materials Science: Materials in Medicine, 25(9), 2205–2214.

    PubMed  Google Scholar 

  • Edmiston, C. E., Krepel, C. J., Marks, R. M., Rossi, P. J., Sanger, J., Goldblatt, M., et al. (2013). Microbiology of explanted suture segments from infected and noninfected surgical patients. Journal of Clinical Microbiology, 51(2), 417–421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elsabahy, M., Heo, G. S., Lim, S. M., Sun, G., & Wooley, K. L. (2015). Polymeric nanostructures for imaging and therapy. Chemical Reviews, 115(19), 10967–11011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eze, E. C., Chenia, H. Y., & El Zowalaty, M. E. (2018). Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infection and Drug Resistance, 11, 2277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Bunster, G., Gonzalez, C., Barros, J., & Martinez, M. (2012). Quorum sensing circuit and reactive oxygen species resistance in Deinococcus sp. Current Microbiology, 65(6), 719–725.

    Article  PubMed  CAS  Google Scholar 

  • Francolini, I., Vuotto, C., Piozzi, A., & Donelli, G. (2017). Antifouling and antimicrobial biomaterials: An overview. APMIS, 125(4), 392–417.

    Article  PubMed  Google Scholar 

  • Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of Infection and Public Health, 10(4), 369–378.

    Article  PubMed  Google Scholar 

  • Fuqua, C., Filloux, A., Ghigo, J. M., & Visick, K. L. (2019). Biofilms 2018: A diversity of microbes and mechanisms. Journal of Bacteriology, JB-00118.

    Google Scholar 

  • Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Genwa, M., & Kumar, P. (2019). Implications of nanotechnology in healthcare. Nanoscience and Nanotechnology-Asia, 9(1), 44–57.

    Google Scholar 

  • Giaouris, E., Heir, E., Desvaux, M., Hebraud, M., Møretrø, T., Langsrud, S., et al. (2015). Intra-and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in Microbiology, 6, 841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grumezescu, A. M. (Ed.). (2017). Antimicrobial nanoarchitectonics: From synthesis to applications. William Andrew, Norwich, NY.

    Google Scholar 

  • Günther, F., Scherrer, M., Kaiser, S. J., DeRosa, A., & Mutters, N. T. (2017). Comparative testing of disinfectant efficacy on planktonic bacteria and bacterial biofilms using a new assay based on kinetic analysis of metabolic activity. Journal of Applied Microbiology, 122(3), 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, K., & Chhibber, S. (2019). Biofunctionalization of silver nanoparticles with lactonase leads to altered antimicrobial and cytotoxic properties. Frontiers in Molecular Biosciences, 6, 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoseinnejad, M., Jafari, S. M., & Katouzian, I. (2018). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161–181.

    Article  PubMed  CAS  Google Scholar 

  • Husain, F. M., Ansari, A. A., Khan, A., Ahmad, N., Albadri, A., & Albalawi, T. H. (2019). Mitigation of acyl-homoserine lactone (AHL) based bacterial quorum sensing, virulence functions, and biofilm formation by yttrium oxide core/shell nanospheres: Novel approach to combat drug resistance. Scientific Reports, 9(1), 1–10.

    Article  CAS  Google Scholar 

  • Ignasiak, K., & Maxwell, A. (2017). Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Research Notes, 10(1), 428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, Q., Chen, J., Yang, C., Yin, Y., & Yao, K. (2019). Quorum sensing: A prospective therapeutic target for bacterial diseases. BioMed Research International, 2019.

    Google Scholar 

  • Johns, K. (2003). Hygienic coatings: The next generation. Surface Coatings International Part B: Coatings Transactions, 86(2), 101–110.

    Article  CAS  Google Scholar 

  • Juhas, M. (2015). Horizontal gene transfer in human pathogens. Critical Reviews in Microbiology, 41(1), 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Karahan, H. E., Wiraja, C., Xu, C., Wei, J., Wang, Y., Wang, L., et al. (2018). Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Advanced Healthcare Materials, 7(13), e1701406.

    Article  PubMed  CAS  Google Scholar 

  • Khanna, P., Ong, C., Bay, B., & Baeg, G. (2015). Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials, 5(3), 1163–1180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 4(12), e01067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khelissa, S. O., Abdallah, M., Jama, C., Faille, C., & Chihib, N. E. (2017). Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence. Journal of Materials and Environmental Science, 8, 3326–3346.

    CAS  Google Scholar 

  • Konop, M., Damps, T., Misicka, A., & Rudnicka, L. (2016). Certain aspects of silver and silver nanoparticles in wound care: A minireview. Journal of Nanomaterials, 2016, 47.

    Article  CAS  Google Scholar 

  • Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: Current and prospective therapeutic strategies. Nature Reviews Microbiology, 15(12), 740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krzyżek, P. (2019). Challenges and limitations of anti-quorum sensing therapies. Frontiers in Microbiology, 10, 2473.

    Article  PubMed  PubMed Central  Google Scholar 

  • Labreure, R., Sona, A. J., & Turos, E. (2019). Anti-methicillin resistant Staphylococcus aureus (MRSA) nanoantibiotics. Frontiers in Pharmacology, 10, 1121.

    Article  CAS  Google Scholar 

  • Lebeaux, D., Ghigo, J. M., & Beloin, C. (2014). Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510–543.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20(4), 865.

    Article  PubMed Central  CAS  Google Scholar 

  • Lee, N. Y., Hsueh, P. R., & Ko, W. C. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 10, 1153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lis, M. J., Caruzi, B. B., Gil, G. A., Samulewski, R. B., Bail, A., Scacchetti, F. A. P., et al. (2019). In-situ direct synthesis of HKUST-1 in wool fabric for the improvement of antibacterial properties. Polymers, 11(4), 713.

    Article  PubMed Central  CAS  Google Scholar 

  • Liu, S., Gunawan, C., Barraud, N., Rice, S. A., Harry, E. J., & Amal, R. (2016). Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environmental Science and Technology, 50(17), 8954–8976.

    Article  PubMed  CAS  Google Scholar 

  • López, Y., & Soto, S. M. (2020). The usefulness of microalgae compounds for preventing biofilm infections. Antibiotics, 9(1), 9.

    Article  Google Scholar 

  • Lorite, G. S., Janissen, R., Clerici, J. H., Rodrigues, C. M., Tomaz, J. P., Mizaikoff, B., et al. (2013). Surface physicochemical properties at the micro and nano length scales: Role on bacterial adhesion and Xylella fastidiosa biofilm development. PLoS One, 8(9), e75247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, Y., Chen, M., Jones, J. E., Ritts, A. C., Yu, Q., & Sun, H. (2012). Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrobial Agents and Chemotherapy, 56(11), 5923–5937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, H., Williams, P. L., & Diamond, S. A. (2013). Ecotoxicity of manufactured ZnO nanoparticles–a review. Environmental Pollution, 172, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Macia, M. D., Rojo-Molinero, E., & Oliver, A. (2014). Antimicrobial susceptibility testing in biofilm-growing bacteria. Clinical Microbiology and Infection, 20(10), 981–990.

    Article  PubMed  CAS  Google Scholar 

  • Magana, M., Sereti, C., Ioannidis, A., Mitchell, C. A., Ball, A. R., Magiorkinis, E., et al. (2018). Options and limitations in clinical investigation of bacterial biofilms. Clinical Microbiology Reviews, 31(3), e00084–e00016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makowski, M., Silva, Í. C., Pais do Amaral, C., Gonçalves, S., & Santos, N. C. (2019). Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 11(11), 588.

    Article  PubMed Central  CAS  Google Scholar 

  • Mariappan, N. (2019). Recent trends in nanotechnology applications in surgical specialties and orthopedic surgery. Biomedical and Pharmacology Journal, 12(3), 1095–1127.

    Article  CAS  Google Scholar 

  • Martínez-Carmona, M., Gun’ko, Y., & Vallet-Regí, M. (2018). ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 8(4), 268.

    Article  PubMed Central  CAS  Google Scholar 

  • Matteucci, F., Giannantonio, R., Calabi, F., Agostiano, A., Gigli, G., and Rossi, M. (2018). Deployment and exploitation of nanotechnology nanomaterials and nanomedicine. In AIP conference proceedings (Vol. 1990, no. 1, p. 020001). AIP Publishing, College Park, Maryland.

    Google Scholar 

  • Megaw, J., Thompson, T. P., Lafferty, R. A., & Gilmore, B. F. (2015). Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. Chemosphere, 139, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Mehrad, B., Clark, N. M., Zhanel, G. G., & Lynch, J. P., III. (2015). Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest, 147(5), 1413–1421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miquel, S., Lagrafeuille, R., Souweine, B., & Forestier, C. (2016). Anti-biofilm activity as a health issue. Frontiers in Microbiology, 7, 592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanty, A., Tan, C. H., & Cao, B. (2016). Impacts of nanomaterials on bacterial quorum sensing: Differential effects on different signals. Environmental Science: Nano, 3(2), 351–356.

    CAS  Google Scholar 

  • Monteiro, C., Costa, F., Pirttilä, A. M., Tejesvi, M. V., & Martins, M. C. L. (2019). Prevention of urinary catheter-associated infections by coating antimicrobial peptides from crowberry endophytes. Scientific Reports, 9(1), 1–14.

    Article  CAS  Google Scholar 

  • Montero, D. A., Arellano, C., Pardo, M., Vera, R., Gálvez, R., Cifuentes, M., et al. (2019). Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrobial Resistance and Infection Control, 8(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller, M. P., MacDougall, C., Lim, M., Armstrong, I., Bialachowski, A., Callery, S., et al. (2016). Antimicrobial surfaces to prevent healthcare-associated infections: A systematic review. Journal of Hospital Infection, 92(1), 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Naskar, A., & Kim, K. S. (2019). Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections: Advantages and limitations. Microorganisms, 7(9), 356.

    Article  PubMed Central  CAS  Google Scholar 

  • Natan, M., & Banin, E. (2017). From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiology Reviews, 41(3), 302–322.

    Article  PubMed  CAS  Google Scholar 

  • Navya, P. N., & Daima, H. K. (2016). Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 3(1), 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novoa, B., & Figueras, A. (2012). Zebrafish: Model for the study of inflammation and the innate immune response to infectious diseases. In Current topics in innate immunity II (pp. 253–275). New York: Springer.

    Chapter  Google Scholar 

  • Okeke, I. N., Peeling, R. W., Goossens, H., Auckenthaler, R., Olmsted, S. S., de Lavison, J. F., et al. (2011). Diagnostics as essential tools for containing antibacterial resistance. Drug Resistance Updates, 14(2), 95–106.

    Article  PubMed  Google Scholar 

  • Ostrikov, K. K., Cvelbar, U., & Murphy, A. B. (2011). Plasma nanoscience: Setting directions, tackling grand challenges. Journal of Physics D: Applied Physics, 44(17), 174001.

    Article  CAS  Google Scholar 

  • Otter, J. A., Vickery, K., Walker, J. D., Pulcini, E. D., Stoodley, P., Goldenberg, S. D., et al. (2015). Surface-attached cells, biofilms and biocide susceptibility: Implications for hospital cleaning and disinfection. Journal of Hospital Infection, 89(1), 16–27.

    Article  PubMed  CAS  Google Scholar 

  • Oves, M., Rauf, M. A., Qari, H. A., Muhammad, P., Khan, P. A., Ismail, I. M., et al. (2019). Antibacterial silver nanomaterials synthesis from Mesoflavibacter zeaxanthinifaciens and targeting biofilm formation. Frontiers in Pharmacology, 10, 801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paladini, F., Pollini, M., Sannino, A., & Ambrosio, L. (2015). Metal-based antibacterial substrates for biomedical applications. Biomacromolecules, 16(7), 1873–1885.

    Article  PubMed  CAS  Google Scholar 

  • Patil, A., Mishra, V., Thakur, S., Riyaz, B., Kaur, A., Khursheed, R., et al. (2019). Nanotechnology derived nanotools in biomedical perspectives: An update. Current Nanoscience, 15(2), 137–146.

    Article  CAS  Google Scholar 

  • Peddinti, B. S., Scholle, F., Vargas, M. G., Smith, S. D., Ghiladi, R. A., & Spontak, R. J. (2019). Inherently self-sterilizing charged multiblock polymers that kill drug-resistant microbes in minutes. Materials Horizons, 6(10), 2056–2062.

    Article  CAS  Google Scholar 

  • Prasad, R., Shah, A. H., & Dhamgaye, S. (2014). Mechanisms of drug resistance in fungi and their significance in biofilms. In Antibiofilm agents (pp. 45–65). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Prasad, Y. S., Miryala, S., Lalitha, K., Ranjitha, K., Barbhaiwala, S., Sridharan, V., et al. (2017). Disassembly of bacterial biofilms by the self-assembled glycolipids derived from renewable resources. ACS Applied Materials and Interfaces, 9(46), 40047–40058.

    Article  PubMed  CAS  Google Scholar 

  • Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706–713.

    Article  PubMed  CAS  Google Scholar 

  • Qasim, M., Lim, D. J., Park, H., & Na, D. (2014). Nanotechnology for diagnosis and treatment of infectious diseases. Journal of Nanoscience and Nanotechnology, 14(10), 7374–7387.

    Article  PubMed  CAS  Google Scholar 

  • Qayyum, S., & Khan, A. U. (2016). Nanoparticles vs. biofilms: A battle against another paradigm of antibiotic resistance. MedChemComm, 7(8), 1479–1498.

    Article  CAS  Google Scholar 

  • Ramasamy, M., & Lee, J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International, 2016, 1851242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramos, M. A. D. S., Da Silva, P. B., Sposito, L., De Toledo, L. G., Bonifacio, B. V., Rodero, C. F., et al. (2018). Nanotechnology-based drug delivery systems for control of microbial biofilms: A review. International Journal of Nanomedicine, 13, 1179.

    Article  Google Scholar 

  • Reinbold, J., Uhde, A. K., Müller, I., Weindl, T., Geis-Gerstorfer, J., Schlensak, C., et al. (2017). Preventing surgical site infections using a natural, biodegradable, antibacterial coating on surgical sutures. Molecules, 22(9), 1570.

    Article  PubMed Central  CAS  Google Scholar 

  • Renner, L. D., & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bulletin, 36(5), 347–355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology. AIMS Microbiology, 4(3), 482–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reza, A., Sutton, J. M., & Rahman, K. M. (2019). Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria. Antibiotics, 8(4), 229.

    Article  PubMed Central  Google Scholar 

  • Riool, M., de Breij, A., Drijfhout, J. W., Nibbering, P. H., & Zaat, S. A. (2017). Antimicrobial peptides in biomedical device manufacturing. Frontiers in Chemistry, 5, 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues, M. E., Gomes, F., & Rodrigues, C. F. (2020). Candida spp./Bacteria mixed biofilms. Journal of Fungi, 6(1), 5.

    Article  Google Scholar 

  • Rodríguez-Hernández, J. (2017). Polymers against microorganisms. In Polymers against microorganisms (pp. 1–11). Cham: Springer.

    Chapter  Google Scholar 

  • Rowan-Nash, A. D., Korry, B. J., Mylonakis, E., & Belenky, P. (2019). Cross-domain and viral interactions in the microbiome. Microbiology and Molecular Biology Reviews, 83(1), e00044–e00018.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554.

    Article  PubMed  CAS  Google Scholar 

  • Ruddaraju, L. K., Pammi, S. V. N., Padavala, V. S., & Kolapalli, V. R. M. (2019). A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences, 15(1), 42–59.

    Google Scholar 

  • Saccucci, M., Bruni, E., Uccelletti, D., Bregnocchi, A., Sarto, M. S., Bossù, M., et al. (2018). Surface disinfections: Present and future. Journal of Nanomaterials, 2018.

    Google Scholar 

  • Sadekuzzaman, M., Yang, S., Mizan, M. F. R., & Ha, S. D. (2015). Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety, 14(4), 491–509.

    Article  Google Scholar 

  • Sampath Kumar, T. S., & Madhumathi, K. (2014). Antibacterial potential of nanobioceramics used as drug carriers. In Handbook of bioceramics and biocomposites (pp. 1–42). Springer, Berlin/Heidelberg, Germany.

    Google Scholar 

  • Sani, M. A., & Ehsani, A. (2018). Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbial Pathogenesis, 123, 505–526.

    Article  CAS  Google Scholar 

  • Satpute, S. K., Mone, N. S., Das, P., Banat, I. M., & Banpurkar, A. G. (2019). Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology, 19(1), 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte, P. A., Geraci, C. L., Murashov, V., Kuempel, E. D., Zumwalde, R. D., Castranova, V., et al. (2014). Occupational safety and health criteria for responsible development of nanotechnology. Journal of Nanoparticle Research, 16(1), 2153.

    Article  PubMed  CAS  Google Scholar 

  • Seaton, A., Tran, L., Aitken, R., & Donaldson, K. (2009). Nanoparticles, human health hazard and regulation. Journal of the Royal Society Interface, 7(suppl_1), S119–S129.

    PubMed Central  PubMed  Google Scholar 

  • Simpkin, V. L., Renwick, M. J., Kelly, R., & Mossialos, E. (2017). Incentivising innovation in antibiotic drug discovery and development: Progress, challenges and next steps. The Journal of Antibiotics, 70(12), 1087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, F., Koo, H., & Ren, D. (2015). Effects of material properties on bacterial adhesion and biofilm formation. Journal of Dental Research, 94(8), 1027–1034.

    Article  PubMed  CAS  Google Scholar 

  • Subhadra, B., Kim, D., Woo, K., Surendran, S., & Choi, C. (2018). Control of biofilm formation in healthcare: Recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors. Materials, 11(9), 1676.

    Article  PubMed Central  CAS  Google Scholar 

  • Thomas, R. J., Hamblin, K. A., Armstrong, S. J., Müller, C. M., Bokori-Brown, M., Goldman, S., et al. (2013). Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei. International Journal of Antimicrobial Agents, 41(4), 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C. J. Y., Loh, J. M. S., & Proft, T. (2016). Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 7(3), 214–229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallet-Regí, M., González, B., & Izquierdo-Barba, I. (2019). Nanomaterials as promising alternative in the infection treatment. International Journal of Molecular Sciences, 20(15), 3806.

    Article  PubMed Central  Google Scholar 

  • Vazquez-Muñoz, R., Meza-Villezcas, A., Fournier, P. G. J., Soria-Castro, E., Juarez-Moreno, K., Gallego-Hernández, A. L., et al. (2019). Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One, 14(11), e0224904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velazquez, S., Griffiths, W., Dietz, L., Horve, P., Nunez, S., Hu, J., et al. (2019). From one species to another: A review on the interaction between chemistry and microbiology in relation to cleaning in the built environment. Indoor Air, 29(6), 880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weber, D. J., Anderson, D., & Rutala, W. A. (2013). The role of the surface environment in healthcare-associated infections. Current Opinion in Infectious Diseases, 26(4), 338–344.

    Article  PubMed  Google Scholar 

  • Weichbrod, R. H., Thompson, G. A. H., & Norton, J. N. (2017). Management of animal care and use programs in research, education, and testing. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wilson, C., Lukowicz, R., Merchant, S., Valquier-Flynn, H., Caballero, J., Sandoval, J., et al. (2017). Quantitative and qualitative assessment methods for biofilm growth: A mini-review. Research and Reviews Journal of Engineering and Technology, 6(4).

    Google Scholar 

  • Yu, Q., Wu, Z., & Chen, H. (2015). Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 16, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Q., Zhu, Y., Yu, B., Sun, Y., Ding, X., Xu, C., et al. (2018). Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules, 19(7), 2805–2811.

    Article  PubMed  CAS  Google Scholar 

  • Zhiqing, L., Yongyun, C., Wenxiang, C., Mengning, Y., Yuanqing, M., Zhenan, Z., et al. (2018). Surgical masks as source of bacterial contamination during operative procedures. Journal of Orthopaedic Translation, 14, 57–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, X., Radovic-Moreno, A. F., Wu, J., Langer, R., & Shi, J. (2014). Nanomedicine in the management of microbial infection–overview and perspectives. Nano Today, 9(4), 478–498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Sebastian Ritoré for his collaboration and invaluable support during the writing of this chapter, as well as the graphics contained in this book.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, J. (2020). Antimicrobial Nanotechnology in Preventing the Transmission of Infectious Disease. In: Preclinical Evaluation of Antimicrobial Nanodrugs. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43855-5_6

Download citation

Publish with us

Policies and ethics