Skip to main content

In Vitro Nanotoxicity: Toward the Development of Safe and Effective Treatments

  • Chapter
  • First Online:
Preclinical Evaluation of Antimicrobial Nanodrugs

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 274 Accesses

Abstract

One of the major limitations in the translation of the research results obtained in nanomaterial investigations is the presence of toxicity in organs and tissues. This toxicity can eventually lead to tissue damage, necrosis, and chronic inflammation, with potential induction of the phenomenon of carcinogenesis. Thus, it is a priority in any initiative that aims to design nanomedicaments to have adequate screening platforms to predict the toxicological behavior of the products obtained. Then, in this order of ideas, several aspects must be considered, depending on the use and mechanism of action of the nanocomposites, as well as the nanostructures, which must involve the risk, the correlation between the minimum effective and toxic doses, as well as the different possibilities to implement risk mitigation strategies during therapy. For the above reasons, the objective of this chapter is to integrate the necessary concepts that are required in case you want to evaluate and determine the risk of toxicity of nanomaterials, with a view to establishing adequate safety parameters in the discovery of new antimicrobial drugs.

The ten commandments according to Leó Szilárd1.

1. Recognize the connections of things and laws of conduct of men, so that you may know what you are doing.

2. Let your acts be directed toward a worthy goal, but do not ask if they will reach it; they are to be models and examples, not means to an end.

3. Speak to all men as you do to yourself, with no concern for the effect you make, so that you do not shut them out from your world; lest in isolation the meaning of life slips out of sight and you lose the belief in the perfection of creation.

4. Do not destroy what you cannot create.

5. Touch no dish, except that you are hungry.

6. Do not covet what you cannot have.

7. Do not lie without need.

8. Honor children. Listen reverently to their words and speak to them with infinite love.

9. Do your work for six years; but in the seventh, go into solitude or among strangers, so that the memory of your friends does not hinder you from being what you have become.

10. Lead your life with a gentle hand and be ready to leave whenever you are called.Leo Szilard (1898–1964) “Die Stimme der Delphine.”

Utopische Erzählungen. Rowohit Taschenbuch Verlag. 1963.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal Dayem, A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G. M., et al. (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 18(1), 120.

    Article  PubMed Central  CAS  Google Scholar 

  • Ahmad, M. Z., Abdel-Wahab, B. A., Alam, A., Zafar, S., Ahmad, J., Ahmad, F. J., et al. (2016). Toxicity of inorganic nanoparticles used in targeted drug delivery and other biomedical application: An updated account on concern of biomedical nanotoxicology. Journal of Nanoscience and Nanotechnology, 16(8), 7873–7897.

    Article  CAS  Google Scholar 

  • Ahmad, I., Qais, F. A., Abulreesh, H. H., Ahmad, S., & Rumbaugh, K. P. (2019). Antibacterial drug discovery: Perspective insights. In Antibacterial drug discovery to combat MDR (pp. 1–21). Singapore: Springer.

    Chapter  Google Scholar 

  • Åkerlund, E., Islam, M. S., McCarrick, S., Alfaro-Moreno, E., & Karlsson, H. L. (2019). Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicology, 13(8), 1060–1072.

    Article  PubMed  CAS  Google Scholar 

  • Alarifi, S., Ali, D., Alkahtani, S., & Almeer, R. S. (2017). ROS-mediated apoptosis and genotoxicity induced by palladium nanoparticles in human skin malignant melanoma cells. Oxidative Medicine and Cellular Longevity, 2017, 8439098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alshehri, R., Ilyas, A. M., Hasan, A., Arnaout, A., Ahmed, F., & Memic, A. (2016). Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity: Miniperspective. Journal of Medicinal Chemistry, 59(18), 8149–8167.

    Article  PubMed  CAS  Google Scholar 

  • Arms, L., Smith, D. W., Flynn, J., Palmer, W., Martin, A., Woldu, A., & Hua, S. (2018). Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Frontiers in Pharmacology, 9, 802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aston, W. J., Hope, D. E., Nowak, A. K., Robinson, B. W., Lake, R. A., & Lesterhuis, W. J. (2017). A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice. BMC Cancer, 17(1), 684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babele, P. K., Gedda, M. R., Zahra, K., & Madhukar, P. (2019). Epigenetic aspects of engineered nanomaterials: Is the collateral damage inevitable? Frontiers in Bioengineering and Biotechnology, 7, 228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2016). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 20(1), 1.

    PubMed  PubMed Central  Google Scholar 

  • Bawa, R., Szebeni, J., Webster, T. J., & Audette, G. F. (2019). Immune aspects of biopharmaceuticals and nanomedicines. Milton: Pan Stanford.

    Book  Google Scholar 

  • Borm, P. J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., et al. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3(1), 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulusu, K. C., Guha, R., Mason, D. J., Lewis, R. P., Muratov, E., Motamedi, Y. K., et al. (2016). Modelling of compound combination effects and applications to efficacy and toxicity: State-of-the-art, challenges and perspectives. Drug Discovery Today, 21(2), 225–238.

    Article  PubMed  CAS  Google Scholar 

  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71.

    Article  PubMed  Google Scholar 

  • Casals, E., Gusta, M. F., Piella, J., Casals, G., Jiménez, W., & Puntes, V. (2017). Intrinsic and extrinsic properties affecting innate immune responses to nanoparticles: The case of cerium oxide. Frontiers in Immunology, 8, 970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheah, H. Y., Kiew, L. V., Lee, H. B., Japundžić-Žigon, N., Vicent, M. J., Hoe, S. Z., & Chung, L. Y. (2017). Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. Journal of Applied Toxicology, 37(11), 1268–1285.

    Article  PubMed  CAS  Google Scholar 

  • Chinedu, E., Arome, D., & Ameh, F. S. (2013). A new method for determining acute toxicity in animal models. Toxicology International, 20(3), 224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681.

    Article  PubMed  CAS  Google Scholar 

  • Choudhury, P., Dinda, S., & Kumar, D. P. (2019). Fabrication of soft-nanocomposites from functional molecules with diversified applications. Soft Matter, 16, 27.

    Article  PubMed  Google Scholar 

  • Chudzik, B., Bonio, K., Dabrowski, W., Pietrzak, D., Niewiadomy, A., Olender, A., et al. (2019). Synergistic antifungal interactions of amphotericin B with 4-(5-methyl-1, 3, 4-thiadiazole-2-yl) benzene-1, 3-diol. Scientific Reports, 9(1), 1–14.

    Article  CAS  Google Scholar 

  • Clemente-Casares, X., & Santamaria, P. (2014). Nanomedicine in autoimmunity. Immunology Letters, 158(1–2), 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Cristian, R. E., Mohammad, I. J., Mernea, M., Sbarcea, B. G., Trica, B., Stan, M. S., & Dinischiotu, A. (2019). Analyzing the interaction between two different types of nanoparticles and serum albumin. Materials, 12(19), 3183.

    Article  PubMed Central  CAS  Google Scholar 

  • Davis, M. E., Chen, Z., & Shin, D. M. (2010). Nanoparticle therapeutics: An emerging treatment modality for cancer. In Nanoscience and technology: A collection of reviews from nature journals (pp. 239–250) World Scientific, Singapore.

    Google Scholar 

  • De Matteis, V. (2017). Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics, 5(4), 29.

    Article  PubMed Central  CAS  Google Scholar 

  • Dekkers, S., Oomen, A. G., Bleeker, E. A., Vandebriel, R. J., Micheletti, C., Cabellos, J., et al. (2016). Towards a nanospecific approach for risk assessment. Regulatory Toxicology and Pharmacology, 80, 46–59.

    Article  PubMed  Google Scholar 

  • Dickinson, A. M., Godden, J. M., Lanovyk, K., & Ahmed, S. S. (2019). Assessing the safety of nanomedicines: A mini review. Applied In Vitro Toxicology, 5(3), 114–122.

    Article  Google Scholar 

  • Dietert, R. R., Dietert, J. M., & Gavalchin, J. (2010). Risk of autoimmune disease: Challenges for immunotoxicity testing. In Immunotoxicity testing (pp. 39–51). New York: Humana Press.

    Chapter  Google Scholar 

  • Dobrovolskaia, M. A. (2015). Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. Journal of Controlled Release, 220, 571–583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drasler, B., Sayre, P., Steinhaeuser, K. G., Petri-Fink, A., & Rothen-Rutishauser, B. (2017). In vitro approaches to assess the hazard of nanomaterials. NanoImpact, 8, 99–116.

    Article  Google Scholar 

  • Dusinska, M., Tulinska, J., El Yamani, N., Kuricova, M., Liskova, A., Rollerova, E., et al. (2017). Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food and Chemical Toxicology, 109, 797–811.

    Article  PubMed  CAS  Google Scholar 

  • Elsabahy, M., & Wooley, K. L. (2013). Cytokines as biomarkers of nanoparticle immunotoxicity. Chemical Society Reviews, 42(12), 5552–5576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engin, A. B., & Hayes, A. W. (2018). The impact of immunotoxicity in evaluation of the nanomaterials safety. Toxicology Research and Application, 2, 2397847318755579.

    Article  CAS  Google Scholar 

  • Erhirhie, E. O., Ihekwereme, C. P., & Ilodigwe, E. E. (2018). Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology, 11(1), 5–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ettrup, K., Kounina, A., Hansen, S. F., Meesters, J. A., Vea, E. B., & Laurent, A. (2017). Development of comparative toxicity potentials of TiO2 nanoparticles for use in life cycle assessment. Environmental Science and Technology, 51(7), 4027–4037.

    Article  PubMed  CAS  Google Scholar 

  • Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., et al. (2018). Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano, 12(11), 10582–10620.

    Article  PubMed  CAS  Google Scholar 

  • Farnoud, A. M., & Nazemidashtarjandi, S. (2019). Emerging investigator series: Interactions of engineered nanomaterials with the cell plasma membrane; what have we learned from membrane models? Environmental Science: Nano, 6(1), 13–40.

    CAS  Google Scholar 

  • Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., & Loguercio, C. (2007). Chronic inflammation and oxidative stress in human carcinogenesis. International Journal of Cancer, 121(11), 2381–2386.

    Article  PubMed  CAS  Google Scholar 

  • Ferdousi, R., Safdari, R., & Omidi, Y. (2017). Computational prediction of drug-drug interactions based on drugs functional similarities. Journal of Biomedical Informatics, 70, 54–64.

    Article  PubMed  Google Scholar 

  • Fornaguera, C., & García-Celma, M. J. (2017). Personalized nanomedicine: A revolution at the nanoscale. Journal of Personalized Medicine, 7(4), 12.

    Article  PubMed Central  Google Scholar 

  • Fu, P. P., Xia, Q., Hwang, H. M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75.

    Article  PubMed  CAS  Google Scholar 

  • Ganguly, P., Breen, A., & Pillai, S. C. (2018). Toxicity of nanomaterials: Exposure, pathways, assessment, and recent advances. ACS Biomaterials Science and Engineering, 4(7), 2237–2275.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Yang, D., Fang, Y., Lin, X., Jin, X., Wang, Q., et al. (2019). Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics, 9(1), 126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerber, W., Steyn, J. D., Kotzé, A. F., & Hamman, J. H. (2018). Beneficial pharmacokinetic drug interactions: A tool to improve the bioavailability of poorly permeable drugs. Pharmaceutics, 10(3), 106.

    Article  PubMed Central  CAS  Google Scholar 

  • Gilbertson, L. M., Zimmerman, J. B., Plata, D. L., Hutchison, J. E., & Anastas, P. T. (2015). Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry. Chemical Society Reviews, 44(16), 5758–5777.

    Article  PubMed  CAS  Google Scholar 

  • Gobbo, O. L., Sjaastad, K., Radomski, M. W., Volkov, Y., & Prina-Mello, A. (2015). Magnetic nanoparticles in cancer theranostics. Theranostics, 5(11), 1249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodson, W. H., III, Lowe, L., Carpenter, D. O., Gilbertson, M., Manaf Ali, A., Lopez de Cerain Salsamendi, A., et al. (2015). Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 36(Suppl_1), S254–S296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, Y. Y., Zhang, J., Zheng, Y. F., Yang, J., & Zhu, X. Q. (2011). Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 721(2), 184–191.

    Article  CAS  Google Scholar 

  • Gupta, R. C., Chang, D., Nammi, S., Bensoussan, A., Bilinski, K., & Roufogalis, B. D. (2017). Interactions between antidiabetic drugs and herbs: An overview of mechanisms of action and clinical implications. Diabetology and Metabolic Syndrome, 9(1), 59.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gurunathan, S., Kang, M. H., Qasim, M., & Kim, J. H. (2018). Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. International Journal of Molecular Sciences, 19(10), 3264.

    Article  PubMed Central  CAS  Google Scholar 

  • Halamoda-Kenzaoui, B., & Bremer-Hoffmann, S. (2018). Main trends of immune effects triggered by nanomedicines in preclinical studies. International Journal of Nanomedicine, 13, 5419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., et al. (2018). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 16(7), 5327.

    Google Scholar 

  • Hobson, D. W., Roberts, S. M., Shvedova, A. A., Warheit, D. B., Hinkley, G. K., & Guy, R. C. (2016). Applied nanotoxicology. International Journal of Toxicology, 35(1), 5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Frontiers in Pharmacology, 9, 790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, Y. W., Cambre, M., & Lee, H. J. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. International Journal of Molecular Sciences, 18(12), 2702.

    Article  PubMed Central  CAS  Google Scholar 

  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jesus, S., Schmutz, M., Som, C., Borchard, G., Wick, P., & Borges, O. (2019). Hazard assessment of polymeric nanobiomaterials for drug delivery: What can we learn from literature so far. Frontiers in Bioengineering and Biotechnology, 7, 261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao, Q., Li, L., Mu, Q., & Zhang, Q. (2014). Immunomodulation of nanoparticles in nanomedicine applications. BioMed Research International, 2014, 426028.

    PubMed  PubMed Central  Google Scholar 

  • Joshi, K., Mazumder, B., Chattopadhyay, P., Bora, N. S., Goyary, D., & Karmakar, S. (2019). Graphene family of nanomaterials: Reviewing advanced applications in drug delivery and medicine. Current Drug Delivery, 16(3), 195–214.

    Article  PubMed  CAS  Google Scholar 

  • Jurj, A., Braicu, C., Pop, L. A., Tomuleasa, C., Gherman, C. D., & Berindan-Neagoe, I. (2017). The new era of nanotechnology, an alternative to change cancer treatment. Drug Design, Development and Therapy, 11, 2871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashif, M., Andersson, C., Hassan, S., Karlsson, H., Senkowski, W., Fryknäs, M., et al. (2015). In vitro discovery of promising anti-cancer drug combinations using iterative maximisation of a therapeutic index. Scientific Reports, 5, 14118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleandrova, V. V., Luan, F., Speck-Planche, A., & Cordeiro, N. D. (2015). In silico assessment of the acute toxicity of chemicals: Recent advances and new model for multitasking prediction of toxic effect. Mini Reviews in Medicinal Chemistry, 15(8), 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Kong, B., Seog, J. H., Graham, L. M., & Lee, S. B. (2011). Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine, 6(5), 929–941.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, J. A., Sagartz, J. E., & Morris, D. L. (2007). The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nature Reviews Drug Discovery, 6(8), 636.

    Article  PubMed  CAS  Google Scholar 

  • Krewski, D., Acosta, D., Jr., Andersen, M., Anderson, H., Bailar, J. C., III, Boekelheide, K., et al. (2010). Toxicity testing in the 21st century: A vision and a strategy. Journal of Toxicology and Environmental Health, Part B, 13(2–4), 51–138.

    Article  CAS  Google Scholar 

  • Kumar, A., Chen, F., Mozhi, A., Zhang, X., Zhao, Y., Xue, X., et al. (2013). Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale, 5(18), 8307–8325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurutas, E. B. (2015). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1), 71.

    Article  CAS  Google Scholar 

  • Kwon, J. Y., Koedrith, P., & Seo, Y. R. (2014). Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: Carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations. International Journal of Nanomedicine, 9(Suppl 2), 271.

    PubMed  PubMed Central  Google Scholar 

  • La-Beck, N. M., Liu, X., & Wood, L. M. (2019). Harnessing liposome interactions with the immune system for the next breakthrough in cancer drug delivery. Frontiers in Pharmacology, 10, 220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laux, P., Tentschert, J., Riebeling, C., Braeuning, A., Creutzenberg, O., Epp, A., et al. (2018). Nanomaterials: Certain aspects of application, risk assessment and risk communication. Archives of Toxicology, 92(1), 121–141.

    Article  PubMed  CAS  Google Scholar 

  • Lavik, E., & von Recum, H. (2011). The role of nanomaterials in translational medicine. ACS Nano, 5(5), 3419–3424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, D., Seo, Y., Khan, M. S., Hwang, J., Jo, Y., Son, J., et al. (2018). Use of nanoscale materials for the effective prevention and extermination of bacterial biofilms. Biotechnology and Bioprocess Engineering, 23(1), 1–10.

    Article  CAS  Google Scholar 

  • Li, Y., Ayala-Orozco, C., Rauta, P. R., & Krishnan, S. (2019). The application of nanotechnology in enhancing immunotherapy for cancer treatment: Current effects and perspective. Nanoscale, 11(37), 17157–17178.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lim, S., Park, J., Shim, M. K., Um, W., Yoon, H. Y., Ryu, J. H., et al. (2019). Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 9(25), 7906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, A., Giuliano, C. J., Palladino, A., John, K. M., Abramowicz, C., Yuan, M. L., et al. (2019). Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 11(509), eaaw8412.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu, Y., Peng, J., Wang, S., Xu, M., Gao, M., Xia, T., et al. (2018). Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. NPG Asia Materials, 10(1), e458.

    Article  Google Scholar 

  • Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019, 3702518.

    Article  CAS  Google Scholar 

  • Manke, A., Wang, L., & Rojanasakul, Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013, 942916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchant, G. E., Sylvester, D. J., & Abbott, K. W. (2008). Risk management principles for nanotechnology. NanoEthics, 2(1), 43–60.

    Article  Google Scholar 

  • McCallion, C., Burthem, J., Rees-Unwin, K., Golovanov, A., & Pluen, A. (2016). Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 104, 235–250.

    Article  PubMed  CAS  Google Scholar 

  • Morales-Dalmau, J., Vilches, C., Sanz, V., de Miguel, I., Rodríguez-Fajardo, V., Berto, P., et al. (2019). Quantification of gold nanoparticle accumulation in tissue by two-photon luminescence microscopy. Nanoscale, 11(23), 11331.

    Article  PubMed  CAS  Google Scholar 

  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871–12934.

    Article  PubMed  CAS  Google Scholar 

  • Mu, Q., Yu, J., McConnachie, L. A., Kraft, J. C., Gao, Y., Gulati, G. K., & Ho, R. J. (2018). Translation of combination nanodrugs into nanomedicines: Lessons learned and future outlook. Journal of Drug Targeting, 26(5–6), 435–447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. M., et al. (2017). Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 7(4), 74.

    Article  PubMed Central  CAS  Google Scholar 

  • Naskar, A., & Kim, K. S. (2019). Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections: Advantages and limitations. Microorganisms, 7(9), 356.

    Article  PubMed Central  CAS  Google Scholar 

  • Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1), 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neagu, M., Piperigkou, Z., Karamanou, K., Engin, A. B., Docea, A. O., Constantin, C., et al. (2017). Protein bio-corona: critical issue in immune nanotoxicology. Archives of Toxicology, 91(3), 1031–1048.

    Article  PubMed  CAS  Google Scholar 

  • Nel, A., Xia, T., Meng, H., Wang, X., Lin, S., Ji, Z., & Zhang, H. (2012). Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Accounts of Chemical Research, 46(3), 607–621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5(2), 081–089.

    Article  CAS  Google Scholar 

  • Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., et al. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2(1), 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onoue, S., Yamada, S., & Chan, H. K. (2014). Nanodrugs: Pharmacokinetics and safety. International Journal of Nanomedicine, 9, 1025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paraskevaidi, M., Martin-Hirsch, P. L., Kyrgiou, M., & Martin, F. L. (2017). Underlying role of mitochondrial mutagenesis in the pathogenesis of a disease and current approaches for translational research. Mutagenesis, 32(3), 335–342.

    PubMed  CAS  Google Scholar 

  • Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., et al. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prado-Audelo, D., María, L., Caballero-Florán, I. H., Meza-Toledo, J. A., Mendoza-Muñoz, N., González-Torres, M., et al. (2019). Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 9(2), 56.

    Article  PubMed Central  CAS  Google Scholar 

  • Qiu, T. A., Clement, P. L., & Haynes, C. L. (2018). Linking nanomaterial properties to biological outcomes: Analytical chemistry challenges in nanotoxicology for the next decade. Chemical Communications, 54(91), 12787–12803.

    Article  PubMed  CAS  Google Scholar 

  • Radomska, A., Leszczyszyn, J., & Radomski, M. W. (2016). The nanopharmacology and nanotoxicology of nanomaterials: New opportunities and challenges. Advances in Clinical and Experimental Medicine, 25(1), 151–162.

    Article  PubMed  Google Scholar 

  • Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2), 147–172.

    PubMed  CAS  Google Scholar 

  • Rampado, R., Crotti, S., Caliceti, P., Pucciarelli, S., & Agostini, M. (2019). Nanovectors design for theranostic applications in colorectal cancer. Journal of Oncology, 2019, 2740923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray, P. C., Yu, H., & Fu, P. P. (2009). Toxicity and environmental risks of nanomaterials: Challenges and future needs. Journal of Environmental Science and Health Part C, 27(1), 1–35.

    Article  CAS  Google Scholar 

  • Riediker, M., Zink, D., Kreyling, W., Oberdörster, G., Elder, A., Graham, U., et al. (2019). Particle toxicology and health-where are we? Particle and Fibre Toxicology, 16(1), 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizvi, S. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 64–70.

    Article  PubMed  Google Scholar 

  • Roberti, A., Valdes, A. F., Torrecillas, R., Fraga, M. F., & Fernandez, A. F. (2019). Epigenetics in cancer therapy and nanomedicine. Clinical Epigenetics, 11(1), 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahlgren, C., Meinander, A., Zhang, H., Cheng, F., Preis, M., Xu, C., et al. (2017). Tailored approaches in drug development and diagnostics: From molecular design to biological model systems. Advanced Healthcare Materials, 6(21), 1700258.

    Article  CAS  Google Scholar 

  • Sahu, D., Kannan, G. M., Tailang, M., & Vijayaraghavan, R. (2016). In vitro cytotoxicity of nanoparticles: A comparison between particle size and cell type. Journal of Nanoscience, 2016, 4023852.

    Article  CAS  Google Scholar 

  • Sang, W., Zhang, Z., Dai, Y., & Chen, X. (2019). Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chemical Society Reviews, 48, 3771.

    Article  PubMed  Google Scholar 

  • Schwarz-Plaschg, C., Kallhoff, A., & Eisenberger, I. (2017). Making nanomaterials safer by design? NanoEthics, 3(11), 277–281.

    Article  Google Scholar 

  • Seaton, A., Tran, L., Aitken, R., & Donaldson, K. (2009). Nanoparticles, human health hazard and regulation. Journal of the Royal Society Interface, 7(Suppl_1), S119–S129.

    PubMed Central  PubMed  Google Scholar 

  • Senapati, V. A., Kumar, A., Gupta, G. S., Pandey, A. K., & Dhawan, A. (2015). ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach. Food and Chemical Toxicology, 85, 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Senchukova, M. (2019). A brief review about the role of nanomaterials, mineral-organic nanoparticles, and extra-bone calcification in promoting carcinogenesis and tumor progression. Biomedicine, 7(3), 65.

    CAS  Google Scholar 

  • Sharma, A., Madhunapantula, S. V., & Robertson, G. P. (2012). Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opinion on Drug Metabolism and Toxicology, 8(1), 47–69.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, P., Jang, N. Y., Lee, J. W., Park, B. C., Kim, Y. K., & Cho, N. H. (2019). Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy. Pharmaceutics, 11(10), 493.

    Article  PubMed Central  CAS  Google Scholar 

  • Sierra, M. I., Valdés, A., Fernández, A. F., Torrecillas, R., & Fraga, M. F. (2016). The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. International Journal of Nanomedicine, 11, 6297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simeonidis, S., Koutsilieri, S., Vozikis, A., Cooper, D. N., Mitropoulou, C., & Patrinos, G. P. (2019). Application of economic evaluation to assess feasibility for reimbursement of genomic testing as part of personalized medicine interventions. Frontiers in Pharmacology, 10, 830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, A. P., Biswas, A., Shukla, A., & Maiti, P. (2019). Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction and Targeted Therapy, 4(1), 1–21.

    Article  CAS  Google Scholar 

  • Smolkova, B., Dusinska, M., & Gabelova, A. (2017). Nanomedicine and epigenome. Possible health risks. Food and Chemical Toxicology, 109, 780–796.

    Article  PubMed  CAS  Google Scholar 

  • Sonali, M. K. V., Singh, R. P., Agrawal, P., Mehata, A. K., Datta Maroti Pawde, N., Sonkar, R., & Muthu, M. S. (2018). Nanotheranostics: Emerging strategies for early diagnosis and therapy of brain cancer. Nano, 2(1), 70.

    CAS  Google Scholar 

  • Spivak, M. Y., Bubnov, R. V., Yemets, I. M., Lazarenko, L. M., Tymoshok, N. O., & Ulberg, Z. R. (2013). Gold nanoparticles-the theranostic challenge for PPPM: Nanocardiology application. EPMA Journal, 4(1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunderland, K. S., Yang, M., & Mao, C. (2017). Phage-enabled nanomedicine: From probes to therapeutics in precision medicine. Angewandte Chemie International Edition, 56(8), 1964–1992.

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh, J. (2011). DNA methylation topology: Potential of a chromatin landmark for epigenetic drug toxicology. Epigenomics, 3(6), 761–770.

    Article  PubMed  CAS  Google Scholar 

  • Tamargo, J., Le Heuzey, J. Y., & Mabo, P. (2015). Narrow therapeutic index drugs: A clinical pharmacological consideration to flecainide. European Journal of Clinical Pharmacology, 71(5), 549–567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan, B. L., Norhaizan, M. E., & Winnie-Pui-Pui Liew, H. S. (2018). Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Frontiers in Pharmacology, 9, 1162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tardiff, R. G., & Rodricks, J. V. (Eds.). (2013). Toxic substances and human risk: Principles of data interpretation. Springer Science and Business Media. Berlin/Heidelberg, Germany.

    Google Scholar 

  • Tavares, A. M., Louro, H., Antunes, S., Quarré, S., Simar, S., De Temmerman, P. J., et al. (2014). Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicology In Vitro, 28(1), 60–69.

    Article  PubMed  CAS  Google Scholar 

  • Teow, Y., Asharani, P. V., Hande, M. P., & Valiyaveettil, S. (2011). Health impact and safety of engineered nanomaterials. Chemical Communications, 47(25), 7025–7038.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. P., Lempiäinen, H., Hackett, J. A., Nestor, C. E., Müller, A., Bolognani, F., et al. (2012). Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biology, 13(10), R93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trimble, W. S., & Grinstein, S. (2015). Barriers to the free diffusion of proteins and lipids in the plasma membrane. The Journal of Cell Biology, 208(3), 259–271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsatsakis, A. M., Vassilopoulou, L., Kovatsi, L., Tsitsimpikou, C., Karamanou, M., Leon, G., et al. (2018). The dose response principle from philosophy to modern toxicology: The impact of ancient philosophy and medicine in modern toxicology science. Toxicology Reports, 5, 1107–1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuntland, T., Ethell, B., Kosaka, T., Blasco, F., Zang, R. X., Jain, M., et al. (2014). Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Frontiers in Pharmacology, 5, 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ud Din, F., Aman, W., Ullah, I., Qureshi, O. S., Mustapha, O., Shafique, S., & Zeb, A. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 12, 7291.

    Article  CAS  Google Scholar 

  • Ventola, C. L. (2017). Progress in nanomedicine: Approved and investigational nanodrugs. Pharmacy and Therapeutics, 42(12), 742.

    PubMed  PubMed Central  Google Scholar 

  • Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L., & Stout, D. A. (2017). Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine, 12, 3941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitorino, C. V. (2018). Nanomedicine: Principles, properties and regulatory issues. Frontiers in Chemistry, 6, 360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warheit, D. B. (2018). Hazard and risk assessment strategies for nanoparticle exposures: How far have we come in the past 10 years? F1000Research, 7, 376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen, H., Dan, M., Yang, Y., Lyu, J., Shao, A., Cheng, X., et al. (2017). Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One, 12(9), e0185554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams, D., Amman, M., Autrup, H., Bridges, J., Cassee, F., & Donaldson, K., et al. (2005). The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Report for the European Commission Health and Consumer Protection Directorate General by the Scientific Committee on Emerging and Newly Identified Health Risks, Brussels.

    Google Scholar 

  • Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., et al. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16(14), 1671–1681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing, Y., Zhao, J., Conti, P. S., & Chen, K. (2014). Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics, 4(3), 290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, N. J., & Hinner, M. J. (2015). Getting across the cell membrane: An overview for small molecules, peptides, and proteins. In Site-specific protein labeling (pp. 29–53). New York: Humana Press.

    Chapter  Google Scholar 

  • Yazdimamaghani, M., Moos, P. J., Dobrovolskaia, M. A., & Ghandehari, H. (2018). Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomedicine, 16, 106.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y., Zhang, Q., Mu, Q., Zhang, B., & Yan, B. (2008). Exploring the immunotoxicity of carbon nanotubes. Nanoscale Research Letters, 3(8), 271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, D., Kahen, E., Cubitt, C. L., McGuire, J., Kreahling, J., Lee, J., et al. (2015). Identification of synergistic, clinically achievable, combination therapies for osteosarcoma. Scientific Reports, 5, 16991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, Y. G., Zhang, S., Hwang, J. Y., & Kong, I. K. (2018). Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxidative Medicine and Cellular Longevity, 2018, 6121328.

    PubMed  PubMed Central  Google Scholar 

  • Yuan, X., Zhang, X., Sun, L., Wei, Y., & Wei, X. (2019). Cellular toxicity and immunological effects of carbon-based nanomaterials. Particle and Fibre Toxicology, 16(1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. Q., Xu, X., Bertrand, N., Pridgen, E., Swami, A., & Farokhzad, O. C. (2012). Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Advanced Drug Delivery Reviews, 64(13), 1363–1384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zottel, A., Videtič Paska, A., & Jovčevska, I. (2019). Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and therapy. Materials, 12(10), 1588.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Sebastian Ritoré for his collaboration and invaluable support during the writing of this chapter, as well as the graphics contained in this book.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, J. (2020). In Vitro Nanotoxicity: Toward the Development of Safe and Effective Treatments. In: Preclinical Evaluation of Antimicrobial Nanodrugs. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43855-5_4

Download citation

Publish with us

Policies and ethics