Skip to main content

Antimicrobial Activity of Nanomaterials: From Selection to Application

  • Chapter
  • First Online:
Preclinical Evaluation of Antimicrobial Nanodrugs

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 276 Accesses

Abstract

The correct application of nanotechnology for the treatment and control of antimicrobial resistance requires the implementation of translational science protocols capable of selecting the most active products with the lowest toxicity and that can be applied in the different areas where they may be needed. In this order of ideas, the selection of a reproducible antimicrobial platform that can be scalable, robust, and automatable becomes a necessity to be solved by nanotechnology researchers. Thus, the design and development of nanomaterials should be together with the implementation of evaluation and toxicity protocols in order to determine the promising nanoproducts to be used in the different innovations. For this reason, the objective of this chapter is to analyze the elements to be considered in the selection, implementation, and standardization of the necessary platforms to translate nanotechnology to medicine, industry, and agriculture, as well as the protocols implemented to obtain an adequate therapeutic index of the products obtained in order to increase their efficacy and safety.

When it comes to atoms, language can be used only as in poetry. The poet, too, is not nearly so concerned with describing facts as with creating images

―Niels Bohr (1885–1962)

I believe that the same process of moulding of plastic materials into a configuration complementary to that of another molecule, which serves as a template, is responsible for all biological specificity. I believe that the genes serve as the templates on which are moulded the enzymes that are responsible for the chemical characters of the organisms, and that they also serve as templates for the production of replicas of themselves. The detailed mechanism by means of which a gene or a virus molecule produces replicas of itself is not yet known. In general the use of a gene or virus as a template would lead to the formation of a molecule not with identical structure but with complementary structure. It might happen, of course, that a molecule could be at the same time identical with and complementary to the template on which it is moulded

―Linus Pauling (1901–1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J., & White, J. (2019). Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environmental Science: Nano 6, 2002–2030.

    Google Scholar 

  • Adlhart, C., Verran, J., Azevedo, N. F., Olmez, H., Keinänen-Toivola, M. M., Gouveia, I., et al. (2018). Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. Journal of Hospital Infection, 99(3), 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Ahonen, M., Kahru, A., Ivask, A., Kasemets, K., Kõljalg, S., Mantecca, P., et al. (2017). Proactive approach for safe use of antimicrobial coatings in healthcare settings: Opinion of the COST action network AMiCI. International Journal of Environmental Research and Public Health, 14(4), 366.

    Article  PubMed Central  CAS  Google Scholar 

  • Akter, M., Sikder, M. T., Rahman, M. M., Ullah, A. A., Hossain, K. F. B., Banik, S., et al. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research, 9, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Allah, E. H., Saber, M., & Zaghloul, A. (2019). Nanotechnology applications in agriculture. International Journal of Environmental Pollution and Environmental Modelling, 2(4), 196–211.

    Google Scholar 

  • Alvarez, M. M., Aizenberg, J., Analoui, M., Andrews, A. M., Bisker, G., Boyden, E. S., et al. (2017). Emerging trends in micro-and nanoscale technologies in medicine: From basic discoveries to translation. ACS Nano, 11(6), 5195.

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Paino, M., Muñoz-Bonilla, A., & Fernández-García, M. (2017). Antimicrobial polymers in the nano-world. Nanomaterials, 7(2), 48.

    Article  PubMed Central  CAS  Google Scholar 

  • Arévalo, L., Yarce, C., Oñate-Garzón, J., & Salamanca, C. (2019). Decrease of antimicrobial resistance through polyelectrolyte-coated nanoliposomes loaded with β-lactam drug. Pharmaceuticals (Basel), 12(1), 1.

    Article  CAS  Google Scholar 

  • Armas, F., Pacor, S., Ferrari, E., Guida, F., Pertinhez, T. A., Romani, A. A., et al. (2019). Design, antimicrobial activity and mechanism of action of Arg-rich ultra-short cationic lipopeptides. PLoS One, 14(2), e0212447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Habib, S. S., & Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine, 7, 6003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., et al. (2017). Critical review on biofilm methods. Critical Reviews in Microbiology, 43(3), 313–351.

    Article  PubMed  CAS  Google Scholar 

  • Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79.

    Article  PubMed  Google Scholar 

  • Bell, S. M., Chang, X., Wambaugh, J. F., Allen, D. G., Bartels, M., Brouwer, K. L., et al. (2018). In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicology In Vitro, 47, 213–227.

    Article  PubMed  CAS  Google Scholar 

  • Bilal, M., Rasheed, T., Iqbal, H. M., Hu, H., Wang, W., & Zhang, X. (2017). Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. International Journal of Biological Macromolecules, 103, 554–574.

    Article  PubMed  CAS  Google Scholar 

  • Binas, V., Venieri, D., Kotzias, D., & Kiriakidis, G. (2017). Modified TiO2 based photocatalysts for improved air and health quality. Journal of Materiomics, 3(1), 3–16.

    Article  Google Scholar 

  • Bloomfield, S. F., Carling, P. C., & Exner, M. (2017). A unified framework for developing effective hygiene procedures for hands, environmental surfaces and laundry in healthcare, domestic, food handling and other settings. GMS Hygiene and Infection Control, 12 Doc08.

    Google Scholar 

  • Bogachev, M. I., Volkov, V. Y., Markelov, O. A., Trizna, E. Y., Baydamshina, D. R., Melnikov, V., et al. (2018). Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS One, 13(5), e0193267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bondarenko, O. M., Heinlaan, M., Sihtmäe, M., Ivask, A., Kurvet, I., Joonas, E., et al. (2016). Multilaboratory evaluation of 15 bioassays for (eco) toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology, 10(9), 1229–1242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Botha, T. L., Elemike, E. E., Horn, S., Onwudiwe, D. C., Giesy, J. P., & Wepener, V. (2019). Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Scientific Reports, 9(1), 4169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boudarel, H., Mathias, J. D., Blaysat, B., & Grédiac, M. (2018). Towards standardized mechanical characterization of microbial biofilms: Analysis and critical review. NPJ Biofilms and Microbiomes, 4(1), 1–15.

    Article  Google Scholar 

  • Bueno, J. (2014). Anti-biofilm drug susceptibility testing methods: Looking for new strategies against resistance mechanism. Journal of Microbial & Biochemical Technology, 3, 2.

    Google Scholar 

  • Burdușel, A. C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., Ficai, A., & Andronescu, E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681.

    Article  PubMed Central  CAS  Google Scholar 

  • Card, M. L., Gomez-Alvarez, V., Lee, W. H., Lynch, D. G., Orentas, N. S., Lee, M. T., et al. (2017). History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments. Environmental Science: Processes and Impacts, 19(3), 203–212.

    CAS  Google Scholar 

  • Cardano, F., Frasconi, M., & Giordani, S. (2018). Photo-responsive graphene and carbon nanotubes to control and tackle biological systems. Frontiers in Chemistry, 6, 102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cattò, C., & Cappitelli, F. (2019). Testing anti-biofilm polymeric surfaces: Where to start? International Journal of Molecular Sciences, 20(15), 3794.

    Article  PubMed Central  Google Scholar 

  • Chattopadhyay, P., Banerjee, G., & Mukherjee, S. (2017). Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech, 7(1), 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu, L., Bazin, T., Truchetet, M. E., Schaeverbeke, T., Delhaes, L., & Pradeu, T. (2017). Protective microbiota: From localized to long-reaching co-immunity. Frontiers in Immunology, 8, 1678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicine, 4(3), 58.

    Google Scholar 

  • Cossarizza, A., Chang, H. D., Radbruch, A., Akdis, M., Andrä, I., Annunziato, F., et al. (2017). Guidelines for the use of flow cytometry and cell sorting in immunological studies. European Journal of Immunology, 47(10), 1584–1797.

    Article  PubMed  CAS  Google Scholar 

  • de Melo Carrasco, L., Sampaio, J., & Carmona-Ribeiro, A. (2015). Supramolecular cationic assemblies against multidrug-resistant microorganisms: Activity and mechanism of action. International Journal of Molecular Sciences, 16(3), 6337–6352.

    Article  PubMed Central  CAS  Google Scholar 

  • de Souza, I. O., Schrekker, C. M., Lopes, W., Orru, R. V., Hranjec, M., Perin, N., et al. (2016). Bifunctional fluorescent benzimidazo [1, 2-α] quinolines for Candida spp. biofilm detection and biocidal activity. Journal of Photochemistry and Photobiology B: Biology, 163, 319–326.

    Article  CAS  Google Scholar 

  • Dearfield, K. L., Gollapudi, B. B., Bemis, J. C., Benz, R. D., Douglas, G. R., Elespuru, R. K., et al. (2017). Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations. Environmental and Molecular Mutagenesis, 58(5), 264–283.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering. C. Materials for Biological Applications, 97, 954.

    Article  PubMed  CAS  Google Scholar 

  • Dijck, P. V., Sjollema, J., Cammue, B. P., Lagrou, K., Berman, J., d’Enfert, C., et al. (2018). Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 5(7), 300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drasler, B., Sayre, P., Steinhaeuser, K. G., Petri-Fink, A., & Rothen-Rutishauser, B. (2017). In vitro approaches to assess the hazard of nanomaterials. NanoImpact, 8, 99–116.

    Article  Google Scholar 

  • Egorova, K. S., Gordeev, E. G., & Ananikov, V. P. (2017). Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chemical Reviews, 117(10), 7132–7189.

    Article  PubMed  CAS  Google Scholar 

  • Eloff, J. N. (2019). Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complementary and Alternative Medicine, 19(1), 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Sayed, A., & Kamel, M. (2019). Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environmental Science and Pollution Research 2019, 1–14.

    Google Scholar 

  • Emerson, J. B., Adams, R. I., Román, C. M. B., Brooks, B., Coil, D. A., Dahlhausen, K., et al. (2017). Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome, 5(1), 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erdem, S. S., Khan, S., Palanisami, A., & Hasan, T. (2014). Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility. Journal of Biomedical Optics, 19(10), 105007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., et al. (2018). Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano, 12(11), 10582–10620.

    Article  PubMed  CAS  Google Scholar 

  • Francolini, I., Vuotto, C., Piozzi, A., & Donelli, G. (2017). Antifouling and antimicrobial biomaterials: An overview. APMIS, 125(4), 392–417.

    Article  PubMed  Google Scholar 

  • Galdiero, E., Siciliano, A., Maselli, V., Gesuele, R., Guida, M., Fulgione, D., et al. (2016). An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. International Journal of Nanomedicine, 11, 4199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, X., & Lowry, G. V. (2018). Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact, 9, 14–30.

    Article  CAS  Google Scholar 

  • Garcia, E., Shinde, R., Martinez, S., Kaushik, A., Chand, H. S., Nair, M., & Jayant, R. D. (2019). Cell-line-based studies of nanotechnology drug-delivery systems: A brief review. In Nanocarriers for drug delivery (pp. 375–393). Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Gazzola, G., Habimana, O., Murphy, C. D., & Casey, E. (2015). Comparison of biomass detachment from biofilms of two different Pseudomonas spp. under constant shear conditions. Biofouling, 31(1), 13–18.

    Article  PubMed  Google Scholar 

  • Hafner, A., Lovrić, J., Lakoš, G. P., & Pepić, I. (2014). Nanotherapeutics in the EU: An overview on current state and future directions. International Journal of Nanomedicine, 9, 1005.

    PubMed  PubMed Central  Google Scholar 

  • Han, G., & Ceilley, R. (2017). Chronic wound healing: A review of current management and treatments. Advances in Therapy, 34(3), 599–610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, J., Zhao, D., Li, D., Wang, X., Jin, Z., & Zhao, K. (2018). Polymer-based nanomaterials and applications for vaccines and drugs. Polymers, 10(1), 31.

    Article  PubMed Central  CAS  Google Scholar 

  • Hanson, M. A., Dostalova, A., Ceroni, C., Poidevin, M., Kondo, S., & Lemaitre, B. (2019). Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife, 8, e44341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartung, T., & Sabbioni, E. (2011). Alternative in vitro assays in nanomaterial toxicology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 3(6), 545–573.

    PubMed  CAS  Google Scholar 

  • Helmi, K., David, F., Di Martino, P., Jaffrezic, M. P., & Ingrand, V. (2018). Assessment of flow cytometry for microbial water quality monitoring in cooling tower water and oxidizing biocide treatment efficiency. Journal of Microbiological Methods, 152, 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmann-Amtenbrink, M., Grainger, D. W., & Hofmann, H. (2015). Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine: Nanotechnology, Biology and Medicine, 11(7), 1689–1694.

    Article  CAS  Google Scholar 

  • Horká, M., Kubesová, A., Moravcová, D., Šalplachta, J., Šesták, J., Tesařová, M., & Růžička, F. (2016). Identification of nosocomial pathogens and antimicrobials using phenotypic techniques. Frontiers in Clinical Drug Research: Anti-Infectives, 2, 151.

    Article  Google Scholar 

  • Horky, P., Skalickova, S., Baholet, D., & Skladanka, J. (2018). Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials, 8(9), 727.

    Article  PubMed Central  CAS  Google Scholar 

  • Jamil, B., & Imran, M. (2018). Factors pivotal for designing of nanoantimicrobials: An exposition. Critical Reviews in Microbiology, 44(1), 79–94.

    Article  PubMed  CAS  Google Scholar 

  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadiyala, U., Kotov, N. A., & VanEpps, J. S. (2018). Antibacterial metal oxide nanoparticles: Challenges in interpreting the literature. Current Pharmaceutical Design, 24(8), 896–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J., et al. (2019). Antimicrobial polymers: The potential replacement of existing antibiotics? International Journal of Molecular Sciences, 20(11), 2747.

    Article  PubMed Central  CAS  Google Scholar 

  • Kerstens, M., Boulet, G., Clais, S., Lanckacker, E., Delputte, P., Maes, L., & Cos, P. (2015). A flow cytometric approach to quantify biofilms. Folia Microbiologica, 60(4), 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931.

    Article  CAS  Google Scholar 

  • Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: Current and prospective therapeutic strategies. Nature Reviews Microbiology, 15(12), 740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine, 3(4), a010306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology, 8, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer, A., Dissemond, J., Kim, S., Willy, C., Mayer, D., Papke, R., et al. (2018). Consensus on wound antisepsis: Update 2018. Skin Pharmacology and Physiology, 31(1), 28–58.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., Kumar, P., Anandan, A., Fernandes, T. F., Ayoko, G. A., & Biskos, G. (2014). Engineered nanomaterials: Knowledge gaps in fate, exposure, toxicity, and future directions. Journal of Nanomaterials, 2014, 5.

    Google Scholar 

  • LaCourse, K. D., Peterson, S. B., Kulasekara, H. D., Radey, M. C., Kim, J., & Mougous, J. D. (2018). Conditional toxicity and synergy drive diversity among antibacterial effectors. Nature Microbiology, 3(4), 440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larimer, C., Winder, E., Jeters, R., Prowant, M., Nettleship, I., Addleman, R. S., & Bonheyo, G. T. (2016). A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis. Analytical and Bioanalytical Chemistry, 408(3), 999–1008.

    Article  PubMed  CAS  Google Scholar 

  • Leekha, S., Terrell, C. L., & Edson, R. S. (2011, February). General principles of antimicrobial therapy. In Mayo Clinic proceedings (Vol. 86, No. 2, pp. 156–167). Elsevier.

    Google Scholar 

  • Leonard, H., Colodner, R., Halachmi, S., & Segal, E. (2018). Recent advances in the race to design a rapid diagnostic test for antimicrobial resistance. ACS Sensors, 3(11), 2202–2217.

    Article  PubMed  CAS  Google Scholar 

  • Leontiev, R., Hohaus, N., Jacob, C., Gruhlke, M. C., & Slusarenko, A. J. (2018). A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Scientific Reports, 8(1), 6763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, J., Dong, B., Wang, K., Cai, S., Liu, T., Cheng, X., et al. (2017). Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One, 12(4), e0176883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magana, M., Sereti, C., Ioannidis, A., Mitchell, C. A., Ball, A. R., Magiorkinis, E., et al. (2018). Options and limitations in clinical investigation of bacterial biofilms. Clinical Microbiology Reviews, 31(3), e00084–e00016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makowski, M., Silva, Í. C., Pais do Amaral, C., Gonçalves, S., & Santos, N. C. (2019). Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 11(11), 588.

    Article  PubMed Central  CAS  Google Scholar 

  • Malone, M., Goeres, D. M., Gosbell, I., Vickery, K., Jensen, S., & Stoodley, P. (2017). Approaches to biofilm-associated infections: The need for standardized and relevant biofilm methods for clinical applications. Expert Review of Anti-Infective Therapy, 15(2), 147–156.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Serrano, Á., Gómez, R., Ortega, P., & de la Mata, F. J. (2019). Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics, 11(9), 448.

    Article  PubMed Central  CAS  Google Scholar 

  • Masters, E. A., Trombetta, R. P., de Mesy Bentley, K. L., Boyce, B. F., Gill, A. L., Gill, S. R., et al. (2019). Evolving concepts in bone infection: Redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Research, 7(1), 1–18.

    Article  CAS  Google Scholar 

  • Medina, F. T., Andueza, I., & Suarez, A. I. (2018). Methods and protocols for in vivo animal nanotoxicity evaluation: A detailed review. In Nanotoxicology (pp. 323–388). CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Mitrano, D. M., Motellier, S., Clavaguera, S., & Nowack, B. (2015). Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environment International, 77, 132–147.

    Article  PubMed  CAS  Google Scholar 

  • Mühlen, S., & Dersch, P. (2015). Anti-virulence strategies to target bacterial infections. In How to overcome the antibiotic crisis (pp. 147–183). Cham: Springer.

    Chapter  Google Scholar 

  • Munguia, J., & Nizet, V. (2017). Pharmacological targeting of the host–pathogen interaction: Alternatives to classical antibiotics to combat drug-resistant superbugs. Trends in Pharmacological Sciences, 38(5), 473–488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Halloran, C., Walsh, N., O’Grady, M. C., Barry, L., Hooton, C., Corcoran, G. D., & Lucey, B. (2018). Assessment of the comparability of CLSI, EUCAST and stokes antimicrobial susceptibility profiles for Escherichia coli uropathogenic isolates. British Journal of Biomedical Science, 75(1), 24–29.

    Article  PubMed  Google Scholar 

  • Panic, G., Flores, D., Ingram-Sieber, K., & Keiser, J. (2015). Fluorescence/luminescence-based markers for the assessment of Schistosoma mansoni schistosomula drug assays. Parasites and Vectors, 8(1), 624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panpaliya, N. P., Dahake, P. T., Kale, Y. J., Dadpe, M. V., Kendre, S. B., Siddiqi, A. G., & Maggavi, U. R. (2019). In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. The Saudi Dental Journal, 31(1), 76–83.

    Article  PubMed  Google Scholar 

  • Parmar, K. M., Hathi, Z. J., & Dafale, N. A. (2017). Control of multidrug-resistant gene flow in the environment through bacteriophage intervention. Applied Biochemistry and Biotechnology, 181(3), 1007–1029.

    Article  PubMed  CAS  Google Scholar 

  • Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., et al. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavoni, L., Pavela, R., Cespi, M., Bonacucina, G., Maggi, F., Zeni, V., et al. (2019). Green micro-and nanoemulsions for managing parasites, vectors and pests. Nanomaterials, 9(9), 1285.

    Article  PubMed Central  CAS  Google Scholar 

  • Pedrazzani, R., Bertanza, G., Brnardić, I., Cetecioglu, Z., Dries, J., Dvarionienė, J., et al. (2019). Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective. Science of the Total Environment, 651, 3202–3221.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, E. J., Diamond, S. A., Kennedy, A. J., Goss, G. G., Ho, K., Lead, J., et al. (2015). Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: Key issues and consensus recommendations. Environmental Science and Technology, 49(16), 9532–9547.

    Article  PubMed  CAS  Google Scholar 

  • Pezzi, L., Pane, A., Annesi, F., Losso, M. A., Guglielmelli, A., Umeton, C., & De Sio, L. (2019). Antimicrobial effects of chemically functionalized and/or photo-heated nanoparticles. Materials (Basel), 12(7), 1078.

    Article  CAS  Google Scholar 

  • Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: A promise for the future. International Journal of Antimicrobial Agents, 49(2), 137–152.

    Article  PubMed  CAS  Google Scholar 

  • Rai, M., Deshmukh, S. D., Ingle, A. P., Gupta, I. R., Galdiero, M., & Galdiero, S. (2016). Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology, 42(1), 46–56.

    Article  PubMed  CAS  Google Scholar 

  • Rana, S., & Kalaichelvan, P. T. (2013). Ecotoxicity of nanoparticles. ISRN Toxicology, 2013, 1.

    Article  CAS  Google Scholar 

  • Rancoita, P. M., Cugnata, F., Cruz, A. L. G., Borroni, E., Hoosdally, S. J., Walker, T. M., et al. (2018). Validating a 14-drug microtiter plate containing bedaquiline and delamanid for large-scale research susceptibility testing of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 62(9), e00344–e00318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reichard, J. F., Maier, M. A., Naumann, B. D., Pecquet, A. M., Pfister, T., Sandhu, R., et al. (2016). Toxicokinetic and toxicodynamic considerations when deriving health-based exposure limits for pharmaceuticals. Regulatory Toxicology and Pharmacology, 79, S67–S78.

    Article  PubMed  CAS  Google Scholar 

  • Riediker, M., Zink, D., Kreyling, W., Oberdörster, G., Elder, A., Graham, U., et al. (2019). Particle toxicology and health-where are we? Particle and Fibre Toxicology, 16(1), 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ristić, T., Persin, Z., Kralj Kuncic, M., Kosalec, I., & Zemljic, L. F. (2019). The evaluation of the in vitro antimicrobial properties of fibers functionalized by chitosan nanoparticles. Textile Research Journal, 89(5), 748–761.

    Article  CAS  Google Scholar 

  • Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554.

    Article  PubMed  CAS  Google Scholar 

  • Ruddaraju, L. K., Pammi, S. V. N., Padavala, V. S., & Kolapalli, V. R. M. (2020). A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences, 15(1), 42–59.

    Article  PubMed  Google Scholar 

  • Ruffin, M., & Brochiero, E. (2019). Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: Major features and potential therapeutic avenues. Frontiers in Cellular and Infection Microbiology, 9, 182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabaté Brescó, M., Harris, L. G., Thompson, K., Stanic, B., Morgenstern, M., O’Mahony, L., et al. (2017). Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Frontiers in Microbiology, 8, 1401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampath Kumar, T. S., & Madhumathi, K. (2014). Antibacterial potential of nanobioceramics used as drug carriers. In Handbook of bioceramics and biocomposites (pp. 1–42), Berlin/Heidelberg, Germany.

    Google Scholar 

  • Savage, D. T., Hilt, J. Z., & Dziubla, T. D. (2019). In vitro methods for assessing nanoparticle toxicity. In Nanotoxicity (pp. 1–29). New York: Humana Press.

    Google Scholar 

  • Sedghizadeh, P. P., Sun, S., Junka, A. F., Richard, E., Sadrerafi, K., Mahabady, S., et al. (2017). Design, synthesis, and antimicrobial evaluation of a novel bone-targeting bisphosphonate-ciprofloxacin conjugate for the treatment of osteomyelitis biofilms. Journal of Medicinal Chemistry, 60(6), 2326–2343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control, 8(1), 76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegrist, S., Cörek, E., Detampel, P., Sandström, J., Wick, P., & Huwyler, J. (2019). Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology, 13(1), 73–99.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. P., Choi, J. W., Tiwari, A., & Pandey, A. C. (2014). Functional nanomaterials for multifarious nanomedicine. In Biosensors nanotechnology (pp. 141–197), Wiley, Hoboken, New Jersey.

    Google Scholar 

  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242.

    Article  PubMed  CAS  Google Scholar 

  • Soeteman-Hernandez, L. G., Apostolova, M. D., Bekker, C., Dekkers, S., Grafström, R. C., Groenewold, M., et al. (2019). Safe innovation approach: Towards an agile system for dealing with innovations. Materials Today Communications, 20, 100548.

    Article  CAS  Google Scholar 

  • Soltani, A. M., & Pouypouy, H. (2019). Standardization and regulations of nanotechnology and recent government policies across the world on nanomaterials. In Advances in phytonanotechnology (pp. 419–446). Academic Press, Cambridge, Massachusetts.

    Google Scholar 

  • Stratton, C. W. (2018). Advanced phenotypic antimicrobial susceptibility testing methods. In Advanced techniques in diagnostic microbiology (pp. 69–98). Cham: Springer.

    Chapter  Google Scholar 

  • Taghipour, S., Hosseini, S. M., & Ataie-Ashtiani, B. (2019). Engineering nanomaterials for water and wastewater treatment: Review of classifications, properties and applications. New Journal of Chemistry., 43, 7902.

    Article  CAS  Google Scholar 

  • Tamargo, J., Le Heuzey, J. Y., & Mabo, P. (2015). Narrow therapeutic index drugs: A clinical pharmacological consideration to flecainide. European Journal of Clinical Pharmacology, 71(5), 549–567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiruvengadam, M., Rajakumar, G., & Chung, I. M. (2018). Nanotechnology: Current uses and future applications in the food industry. 3 Biotech, 8(1), 74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tidwell, T. J., De Paula, R., Smadi, M. Y., & Keasler, V. V. (2015). Flow cytometry as a tool for oilfield biocide efficacy testing and monitoring. International Biodeterioration and Biodegradation, 98, 26–34.

    Article  CAS  Google Scholar 

  • Torres, N. S., Montelongo-Jauregui, D., Abercrombie, J. J., Srinivasan, A., Lopez-Ribot, J. L., Ramasubramanian, A. K., & Leung, K. P. (2018). Antimicrobial and antibiofilm activity of synergistic combinations of a commercially available small compound library with colistin against Pseudomonas aeruginosa. Frontiers in Microbiology, 9, 2541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Sangiao, E., Holban, A. M., & Gestal, M. C. (2016). Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases. Molecules, 21(7), 867.

    Article  PubMed Central  CAS  Google Scholar 

  • Vanhauteghem, D., Audenaert, K., Demeyere, K., Hoogendoorn, F., Janssens, G. P., & Meyer, E. (2019). Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. PLoS One, 14(2), e0211583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vega-Jiménez, A. L., Vázquez-Olmos, A. R., Acosta-Gío, E., & Álvarez-Pérez, M. A. (2019). In vitro antimicrobial activity evaluation of metal oxide nanoparticles. In Nanoemulsions-properties, fabrications and applications. IntechOpen, Rijeka - Croatia.

    Google Scholar 

  • Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L., & Stout, D. A. (2017). Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine, 12, 3941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vitorino, C. V. (2018). Nanomedicine: Principles, properties and regulatory issues. Frontiers in Chemistry, 6, 360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Von Borowski, R. G., Gnoatto, S. C. B., Macedo, A. J., & Gillet, R. (2018). Promising antibiofilm activity of peptidomimetics. Frontiers in Microbiology, 9, 2157.

    Article  Google Scholar 

  • Wang, Y., & Salazar, J. K. (2016). Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Comprehensive Reviews in Food Science and Food Safety, 15(1), 183–205.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wesgate, R., Grasha, P., & Maillard, J. Y. (2016). Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. American Journal of Infection Control, 44(4), 458–464.

    Article  PubMed  CAS  Google Scholar 

  • Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., et al. (2015). Safety of nanoparticles in medicine. Current Drug Targets, 16(14), 1671–1681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, K., Han, Q., Chen, B., Zheng, Y., Zhang, K., Li, Q., & Wang, J. (2018). Antimicrobial hydrogels: Promising materials for medical application. International Journal of Nanomedicine, 13, 2217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, B., Chen, Y., & Shi, J. (2019). Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews, 119(8), 4881–4985.

    Article  PubMed  CAS  Google Scholar 

  • Yildirimer, L., Thanh, N. T., Loizidou, M., & Seifalian, A. M. (2011). Toxicology and clinical potential of nanoparticles. Nano Today, 6(6), 585–607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, Y. J., Wang, X. H., & Fan, G. C. (2018). Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacologica Sinica, 39(4), 514.

    Article  PubMed  CAS  Google Scholar 

  • Yusof, H. M., Mohamad, R., & Zaidan, U. H. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. Journal of Animal Science and Biotechnology, 10(1), 57.

    Article  CAS  Google Scholar 

  • Zeng, Q., Zhu, Y., Yu, B., Sun, Y., Ding, X., Xu, C., et al. (2018). Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules, 19(7), 2805–2811.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S., Gong, L., Li, Y., Xu, H., Gu, Z., & Zhao, Y. (2019). Safety assessment of nanomaterials to eyes: An important but neglected issue. Advanced Science, 1802289.

    Google Scholar 

  • Zoffmann, S., Vercruysse, M., Benmansour, F., Maunz, A., Wolf, L., Marti, R. B., et al. (2019). Machine learning-powered antibiotics phenotypic drug discovery. Scientific Reports, 9(1), 5013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Sebastian Ritoré for his collaboration and invaluable support during the writing of this chapter, as well as the graphics contained in this book.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, J. (2020). Antimicrobial Activity of Nanomaterials: From Selection to Application. In: Preclinical Evaluation of Antimicrobial Nanodrugs. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43855-5_2

Download citation

Publish with us

Policies and ethics