Skip to main content

Computational Materials Science and Engineering

  • Chapter
  • First Online:
Parallel Algorithms in Computational Science and Engineering

Abstract

Computational methods in materials science have made huge strides in recent years and parallel computing methodologies have played a major role in enabling such a progress. The goal of this chapter is to discuss the current state of the art in computational materials science as it stands today, illustrating advances in the development of parallel algorithms and the impact such algorithms have had in the area. The paper is intended to be accessible to a diverse scientific computing audience. The focus of the paper will be the Density Functional Theory methodology and the solution of the eigenvalue problems that are encountered in solving the resulting equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evsl. http://www.cs.umn.edu/~saad/software/EVSL.

  2. Feast. http://www.feast-solver.org.

  3. Mika. http://www.csc.fi/physics/mika.

  4. Nessie. http://www.nessie-code.org.

  5. Octopus. http://www.tddft.org/programs/octopus/.

  6. Parsec. http://www.ices.utexas.edu/parsec/index.html.

  7. Pexsi. https://math.berkeley.edu/~linlin/pexsi/download/doc_v0.6.0/.

  8. X. ANDRADE, J. ALBERDI-RODRIGUEZ, D. A. STRUBBE, M. J. T. OLIVEIRA, F. NOGUEIRA, A. CASTRO, J. MUGUERZA, A. ARRUABARRENA, S. G. LOUIE, A. ASPURU-GUZIK, A. RUBIO, AND M. A. L. MARQUES, Time-dependent density-functional theory in massively parallel computer architectures: the octopus project, Journal of Physics: Condensed Matter, 24 (2012), p. 233202.

    Google Scholar 

  9. X. ANDRADE, D. A. STRUBBE, U. D. GIOVANNINI, A. H. LARSEN, M. J. T. OLIVEIRA, J. ALBERDI-RODRIGUEZ, A. VARAS, I. THEOPHILOU, N. HELBIG, M. VERSTRAETE, L. STELLA, F. NOGUEIRA, A. ASPURU-GUZIK, A. CASTRO, M. A. L. MARQUES, AND A. RUBIO, Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems, Physical Chemistry Chemical Physics, 17 (2015), pp. 31371–31396.

    Google Scholar 

  10. S. BARONI AND P. GIANNOZZI, Towards very large-scale electronic-structure calculations, Europhysics Letters (EPL), 17 (1992), pp. 547–552.

    Google Scholar 

  11. T. L. BECK, Real-space mesh techniques in density functional theory, Rev. Mod. Phys., 74 (2000), pp. 1041–1080.

    Article  Google Scholar 

  12. E. L. BRIGGS, D. J. SULLIVAN, AND J. BERNHOLC, Large-scale electronic-structure calculations with multigrid acceleration, Phys. Rev. B, 52 (1995), pp. R5471–R5474.

    Google Scholar 

  13. A. BRILEY, M. R. PEDERSON, K. A. JACKSON, D. C. PATTON, AND D. V. POREZAG, Vibrational frequencies and intensities of small molecules: All-electron, pseudopotential, and mixed-potential methodologies, Phys. Rev. B, 58 (1997), pp. 1786–1793.

    Google Scholar 

  14. K. BURKE, Perspective on density functional theory., The Journal of chemical physics, 136 15 (2012), p. 150901.

    Google Scholar 

  15. R. CAR AND M. PARRINELLO, Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett., 55 (1985), pp. 2471–2474.

    Google Scholar 

  16. J. R. CHELIKOWSKY AND M. L. COHEN, Pseudopotentials for semiconductors, in Handbook of Semiconductors, T. S. Moss and P. T. Landsberg, eds., Elsevier, Amsterdam, 2nd edition, 1992.

    Google Scholar 

  17. J. R. CHELIKOWSKY AND S. G. LOUIE, First-principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: Application to diamond, Phys. Rev. B, 29 (1984), pp. 3470–3481.

    Google Scholar 

  18. J. R. CHELIKOWSKY, N. TROULLIER, X. JING, D. DEAN, N. BIGGELI, K. WU, AND Y. SAAD, Algorithms for the structural properties of clusters, Comp. Phys. Comm., 85 (1995), pp. 325–335.

    Google Scholar 

  19. J. R. CHELIKOWSKY, N. TROULLIER, AND Y. SAAD, The finite-difference-pseudopotential method: Electronic structure calculations without a basis, Phys. Rev. Lett., 72 (1994), pp. 1240–1243.

    Google Scholar 

  20. J. R. CHELIKOWSKY, N. TROULLIER, K. WU, AND Y. SAAD, Higher order finite difference pseudopotential method: An application to diatomic molecules, Phys. Rev. B, 50 (1994), pp. 11355–11364.

    Google Scholar 

  21. E. DI NAPOLI, E. POLIZZI, AND Y. SAAD, Efficient estimation of eigenvalue counts in an interval, Numerical Linear Algebra with Applications, 23 (2016), pp. 674–692.

    Google Scholar 

  22. J.-L. FATTEBERT AND J. BERNHOLC, Towards grid-based O(N) density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration, Phys. Rev. B, 62 (2000), pp. 1713–1722.

    Google Scholar 

  23. ——, Towards grid-based O(N) density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration, Phys. Rev. B, 62 (2000), pp. 1713–1722.

    Google Scholar 

  24. C. Y. FONG, Topics in Computational Materials Science, World Scientific, 1998.

    Book  Google Scholar 

  25. B. FORNBERG AND D. M. SLOAN, A review of pseudospectral methods for solving partial differential equations, Acta Numer., 94 (1994), pp. 203–268.

    Google Scholar 

  26. S. GüTTEL, E. POLIZZI, P. TANG, AND G. VIAUD, Zolotarev quadrature rules and load balancing for the feast eigensolver, SIAM Journal on Scientific Computing, 37 (2015), pp. A2100–A2122.

    Google Scholar 

  27. F. GYGI AND G. GALLI, Real-space adaptive-coordinate electronic-structure calculations, Phys. Rev. B, 52 (1995), pp. R2229–R2232.

    Google Scholar 

  28. Y. HASEGAWA, J. IWATA, M. TSUJI, D. TAKAHASHI, A. OSHIYAMA, K. MINAMI, T. BOKU, F. SHOJI, A. UNO, M. KUROKAWA, H. INOUE, I. MIYOSHI, AND M. YOKOKAWA, First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the k computer, in Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011, ACM, pp. 1:1–1:11.

    Google Scholar 

  29. A. HAUG, Theoretical Solid State Physics, Pergamon Press, 1972.

    Google Scholar 

  30. M. HEIKANEN, T. TORSTI, M. J. PUSKA, AND R. M. NIEMINEN, Multigrid method for electronic structure calculations, Phys. Rev. B, 63 (2001), pp. 245106–245113.

    Google Scholar 

  31. P. HOHENBERG AND W. KOHN, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864–B871.

    Google Scholar 

  32. K. A. JACKSON, M. R. PEDERSON, D. V. POREZAG, Z. HAJNAL, AND T. FRAUNHEIM, Density-functional-based predictions of Raman and IR spectra for small Si clusters, Phys. Rev. B, 55 (1997), pp. 2549–2555.

    Google Scholar 

  33. R. W. JANSEN AND O. F. SANKEY, Ab initio linear combination of pseudo-atomic-orbital scheme for the electronic properties of semiconductors: Results for ten materials, Phys. Rev. B, 36 (1987), pp. 6520–6531.

    Google Scholar 

  34. J. KESTYN, V. KALANTZIS, E. POLIZZI, AND Y. SAAD, PFEAST: A high performance sparse eigenvalue solver using distributed-memory linear solvers, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’16, Piscataway, NJ, USA, 2016, IEEE Press, pp. 16:1–16:12.

    Google Scholar 

  35. Y. H. KIM, I. H. LEE, AND R. M. MARTIN, Object-oriented construction of a multigrid electronic structure code with Fortran, Comp. Phys. Comm., 131 (2000), pp. 10–25.

    Google Scholar 

  36. W. KOHN AND L. J. SHAM, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965), pp. A1133–A1138.

    Google Scholar 

  37. L. KRONIK, A. MAKMAL, M. L. TIAGO, M. M. G. ALEMANY, M. JAIN, X. HUANG, Y. SAAD, AND J. R. CHELIKOWSKY, PARSEC – the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structure, Phys. Stat. Sol. (B), 243 (2006), p. 1063–1079.

    Google Scholar 

  38. C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards, 45 (1950), pp. 255–282.

    Article  MathSciNet  Google Scholar 

  39. R. M. LARSEN, PROPACK: A software package for the symmetric eigenvalue problem and singular value problems on Lanczos and Lanczos bidiagonalization with partial reorthogonalization, SCCM, Stanford University URL: http://sun.stanford.edu/~rmunk/PROPACK/.

  40. ——, Efficient Algorithms for Helioseismic Inversion, PhD thesis, Dept. Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark, October 1998.

    Google Scholar 

  41. I. H. LEE, Y. H. KIM, AND R. M. MARTIN, One-way multigrid method in electronic-structure calculations, Phys. Rev. B, 61 (2000), p. 4397.

    Google Scholar 

  42. L. LEHTOVAARA, V. HAVU, AND M. PUSKA, All-electron density functional theory and time-dependent density functional theory with high-order finite elements, The Journal of Chemical Physics, 131 (2009), p. 054103.

    Google Scholar 

  43. A. R. LEVIN, D. ZHANG, AND E. POLIZZI, Feast fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem, Computer Physics Communications, 183 (2012), pp. 2370 – 2375.

    Google Scholar 

  44. R. LI, Y. XI, L. ERLANDSON, AND Y. SAAD, The EigenValues Slicing Library (EVSL): Algorithms, implementation, and software, Tech. Report ys-2018-02, Dept. Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 2018. Submitted. ArXiv: https://arxiv.org/abs/1802.05215.

  45. R. LI, Y. XI, E. VECHARYNSKI, C. YANG, AND Y. SAAD, A Thick-Restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems, SIAM Journal on Scientific Computing, 38 (2016), pp. A2512–A2534.

    Google Scholar 

  46. L. LIN, Y. SAAD, AND C. YANG, Approximating spectral densities of large matrices, SIAM Review, 58 (2016), pp. 34–65.

    Google Scholar 

  47. L. LIN, C. YANG, J. C. MEZA, J. LU, L. YING, AND E. WEINAN, Selinv - an algorithm for selected inversion of a sparse symmetric matrix, ACM Trans. Math. Softw., 37 (2011), pp. 40:1–40:19.

    Google Scholar 

  48. S. LUNDQVIST AND N. H. MARCH, eds., Theory of the Inhomogeneous Electron Gas, Plenum, 1983.

    Google Scholar 

  49. R. MARTIN, R. MARTIN, AND C. U. PRESS, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, 2004.

    Google Scholar 

  50. J. L. MARTINS AND M. COHEN, Diagonalization of large matrices in pseudopotential band-structure calculations: Dual-space formalism, Phys. Rev. B, 37 (1988), pp. 6134–6138.

    Google Scholar 

  51. J. L. MARTINS, N. TROULLIER, AND S.-H. WEI, Pseudopotential plane-wave calculations for ZnS, Phys. Rev. B, 43 (1991), pp. 2213–2217.

    Google Scholar 

  52. R. B. MORGAN AND D. S. SCOTT, Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Comput., 7 (1986), pp. 817–825.

    Google Scholar 

  53. T. ONO AND K. HIROSE, Timesaving double-grid method for real-space electronic structure calculations, Phys. Rev. Lett., 82 (1999), pp. 5016–5019.

    Google Scholar 

  54. ——, Timesaving double-grid method for real-space electronic structure calculations, Phys. Rev. Lett., 82 (1999), pp. 5016–5019.

    Google Scholar 

  55. C. C. PAIGE, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices, PhD thesis, University of London, 1971.

    Google Scholar 

  56. B. N. PARLETT, The Symmetric Eigenvalue Problem, no. 20 in Classics in Applied Mathematics, SIAM, Philadelphia, 1998.

    Google Scholar 

  57. P. PETER TANG AND E. POLIZZI, Feast as a subspace iteration eigensolver accelerated by approximate spectral projection, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 354–390.

    Google Scholar 

  58. E. POLIZZI, A density matrix-based algorithm for solving eigenvalue problems, phys. rev. B, 79 (2009).

    Google Scholar 

  59. E. POLIZZI AND S. DATTA, Multidimensional nanoscale device modeling: the finite element method applied to the non-equilibrium Green’s function formalism, in 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003., vol. 1, Aug 2003, pp. 40–43 vol.2.

    Google Scholar 

  60. H. RUTISHAUSER, Simultaneous iteration for symmetric matrices, in Handbook for automatic computations (linear algebra), J. Wilkinson and C. Reinsch, eds., New York, 1971, Springer Verlag, pp. 202–211.

    Google Scholar 

  61. Y. SAAD, Numerical Methods for Large Eigenvalue Problems, John Wiley, New York, 1992.

    MATH  Google Scholar 

  62. Y. SAAD, A. STATHOPOULOS, J. R. CHELIKOWSKY, K. WU, AND S. OGUT, Solution of large eigenvalue problems in electronic structure calculations, BIT, 36 (1996), pp. 563–578.

    Google Scholar 

  63. T. SAKURAI AND H. SUGIURA, A projection method for generalized eigenvalue problems using numerical integration, Journal of Computational and Applied Mathematics, 159 (2003), pp. 119–128. Japan-China Joint Seminar on Numerical Mathematics; In Search for the Frontier of Computational and Applied Mathematics toward the 21st Century.

    Google Scholar 

  64. T. SAKURAI AND H. TADANO, Cirr: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Hokkaido Mathematical Journal, 36 (2007), p. 745–757.

    Google Scholar 

  65. L. J. SHAM, Theoretical and computational development some efforts beyond the local density approximation, International Journal of Quantum Chemistry, Vol. 56, 4 , pp 345–350, (2004).

    Article  Google Scholar 

  66. H. D. SIMON, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods, Linear Algebra Appl., 61 (1984), pp. 101–132.

    Article  MathSciNet  Google Scholar 

  67. ——, The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984), pp. 115–142.

    Article  MathSciNet  Google Scholar 

  68. J. M. SOLER, E. ARTACHO, J. D. GALE, A. GARCIA, J. JUNQUERA, P. ORDEJóN, AND D. SáNCHEZ-PORTAL, The SIESTA method for ab-initio order-N materials simulation, J. Phys.: Condens. Matter, 14 (2002), pp. 2745–2779.

    Google Scholar 

  69. D. C. SORENSEN, Implicit application of polynomial filters in ak-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

    Article  MathSciNet  Google Scholar 

  70. E. M. STOUDENMIRE, L. O. WAGNER, S. R. WHITE, AND K. BURKE, One-dimensional continuum electronic structure with the density matrix renormalization group and its implications for density functional theory, Phys. Rev. Lett. 109, I5, 056402, (2012).

    Google Scholar 

  71. J. TAYLOR, H. GUO, AND J. WANG, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 63 (2001), p. 245407.

    Google Scholar 

  72. T. TORSTI, M. HEISKANEN, M. PUSKA, AND R. NIEMINEN, MIKA: A multigrid-based program package for electronic structure calculations, Int. J. Quantum Chem., 91 (2003), pp. 171–176.

    Google Scholar 

  73. L.-W. WANG AND A. ZUNGER, Electronic structure pseudopotential calculations of large ( 1000 atoms) SI quantum dots, J. Phys. Chem., 98 (1994), pp. 2158–2165.

    Google Scholar 

  74. S. R. WHITE, J. W. WILKINS, AND M. P. TETER, Finite-element method for electronic structure, Phys. Rev. B, 39 (1989), pp. 5819–5833.

    Google Scholar 

  75. K. WU AND H. SIMON, A parallel Lanczos method for symmetric generalized eigenvalue problems, Tech. Report 41284, Lawrence Berkeley National Laboratory, 1997. Available on line at http://www.nersc.gov/research/SIMON/planso.html.

  76. R. ZELLER, J. DEUTZ, AND P. DEDERICHS, Application of complex energy integration to self-consistent electronic structure calculations, Solid State Communications, 44 (1982), pp. 993–997.

    Google Scholar 

  77. D. ZHANG AND E. POLIZZI, Linear scaling techniques for first-principle calculations of large nanowire devices, 2008 NSTI Nanotechnology Conference and Trade Show. Technical Proceedings, Vol. 1 pp12–15, (2008).

    Google Scholar 

  78. Y. ZHOU, Y. SAAD, M. L. TIAGO, AND J. R. CHELIKOWSKY, Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration, Phy. rev. E, 74 (2006), p. 066704.

    Google Scholar 

  79. J. M. ZIMAN, Electrons and Phonons, Oxford University Press, 1960.

    MATH  Google Scholar 

  80. G. ZUMBACH, N. A. MODINE, AND E. KAXIRAS, Adaptive coordinate, real-space electronic structure calculations on parallel computers, Solid State Commun., 99 (1996), pp. 57–61.

    Google Scholar 

Download references

Acknowledgements

The work of the author “Eric Polizzi” was supported by NSF awards CCF-1510010 and SI2-SSE-1739423. The work of the author “Yousef Saad” was supported by NSF award CCF-1505970.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Polizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polizzi, E., Saad, Y. (2020). Computational Materials Science and Engineering. In: Grama, A., Sameh, A. (eds) Parallel Algorithms in Computational Science and Engineering. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-43736-7_5

Download citation

Publish with us

Policies and ethics