Skip to main content

Effect of Bacterial Infection on the Expression of Stress Proteins and Antioxidative Enzymes in Japanese Flounder

  • Conference paper
  • First Online:
Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes

Abstract

Stress induced by environmental stimuli, such as pollutants and infection, in fish is thought to influence their fitness. Bacterium Edwardsiella tarda is a virulent intracellular pathogen of commercial fish species. Edwardsiellosis caused by E. tarda is one of the most severe diseases in Japanese flounder Paralichthys olivaceus. However, little is known about the effect of bacterial (such as E. tarda) infectious-induced stress on the expression of stress proteins and antioxidative enzymes in fish. In the present study, we examined the expression of heat shock protein (HSP) 70 and superoxide dismutases (SODs) in the hepatopancreas of Japanese flounder in response to E. tarda infection. HSP70 expression was rapidly increased and was significantly higher in fish 48 h after being infected with E. tarda, compared to that in control fish. The expression level of Cu, Zn–SOD in infected fish increased from 24 to 48 h and peaked at 48 h post-infection. On the other hand, the expression level of Mn–SOD in infected fish gradually increased from 12 h post-infection and remained high between 24 and 48 h post-infections. The changes in expression levels of HSP70 and SODs are suggestive of reactive oxygen species-induced oxidative stress in Japanese flounder. The results also suggest that both HSP70 and SODs play roles in mediating immune response upon E. tarda infection in Japanese flounder. We hypothesize that these proteins are important factors that protect cells against oxidative stress.

T. Nakano and K. Osatomi are the two main contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman PA, Iwama GK (2001) Physiological and cellular stress responses of juvenile rainbow trout to Vibriosis. J Aquat Anim Health 13:173–180

    Article  Google Scholar 

  • Adeyemi JA (2014) Oxidative stress and antioxidant enzymes activites in the African catfish, Clarias gariepinus, experimentally challenged with Escherichia coli and Vibrio fischeri. Fish Physiol Biochem 40:347–354

    Article  CAS  PubMed  Google Scholar 

  • Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  CAS  PubMed  Google Scholar 

  • Anju A, Jeswin J, Thomas P, Paulton M, Vijayan K (2013) Molecular cloning, characterization and expression analysis of cytoplasmic Cu/Zn-superoxide dismutase (SOD) from pearl oyster Pinctada fucata. Fish Shellfish Immunol 34:946–950

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Kanai K, Muroga K, Wakabayashi H (1996) Bacterial desiases. In: Egusa S, Muroga K (eds) Fundamental of fish desiases. Kouseisha Kouseikaku, Tokyo, pp 46–69

    Google Scholar 

  • Arrigo A-P (1999) Gene expression and the thiol redox state. Free Radic Biol Med 27:936–944

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1987) Generation of reactive oxygen. In: Niki E, Shimazaki H (eds) Reactive oxygen. Ishiyaku Shuppan, Tokyo, pp 33–63

    Google Scholar 

  • Bao Y, Li L, Wu Q, Zhang G (2009) Cloning, characterization, and expression analysis of extracellular copper/zinc superoxide dismutase gene from bay scallop Argopecten irradians. Fish Shellfish Immunol 27:17–25

    Article  CAS  PubMed  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological change in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Basu N, Nakano T, Grau EG, Iwama GK (2001) The effects of cortisol on heat shock protein 70 levels in two fish species. Gen Comp Endocrinol 124:97–105

    Article  CAS  PubMed  Google Scholar 

  • Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Shulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183

    Article  CAS  PubMed  Google Scholar 

  • Bonga SEW (1997) The stress response in fish. Physiol Rev 77:591–625

    Article  Google Scholar 

  • Brady TC, Chang L-Y, Day BJ, Crapo JD (1997) Extracellular superoxide dismutase is upregulated with inducible nitric oxide synthase after NF-κB activation. Am J Physiol: Lung Cell Mol Physiol 273:L1002–L1006

    CAS  Google Scholar 

  • Breloer M, Dorner B, More SH, Roderian T, Fleischer B, von-Bonin A (2001) Heat shock proteins as “danger signals”: eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-gamma production in T cells. Eur J Immunol 31:2051–2059

    Article  CAS  PubMed  Google Scholar 

  • Cha IS, Kwon J, Park SB, Jang HB, Nho SW, Kim YK, Hikima J, Aoki T, Jung TS (2013) Heat shock protein profiles on the protein and gene expression levels in olive flounder kidney infected with Streptococcus parauberis. Fish Shellfish Immunol 34:1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy N, Aravindan K, Kalaimani N, Alavandi SV, Poornima M, Santiago TC (2012) Intracellular copper zinc superoxide dismutase (icCuZnSOD) from Asian seabass (Lates calcarifer): molecular cloning, characterization and gene expression with reference to Vibrio anguillarum infection. Dev Comp Immunol 36:751–755

    Article  CAS  PubMed  Google Scholar 

  • Charmandari E, Tsigos C, Chrousos G (2005) Endocrinology of the stress response. Annu Rev Physiol 67:259–284

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Choi B, Kim K, Kim S, Kim D, Bang I, Nam Y (2006) Differential expression of Cu/Zn superoxide dismutase mRNA during exposures to heavy metals in rock bream (Oplegnathus fasciatus). Aquaculture 253:667–679

    Article  CAS  Google Scholar 

  • Cho Y, Lee S, Bang I, Kim D, Nam Y (2009) Genomic organization and mRNA expression of manganese superoxide dismutases (Mn–SOD) from Hemibarbus mylodon (Teleostei, Cypriniformes). Fish Shellfish Immunol 27:571–576

    Article  CAS  PubMed  Google Scholar 

  • Craig PM, Wood CM, McClelland GB (2007) Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 293:R1882–R1892

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Zhang QZ, Yao ZJ, Zhang ZH (2011) Molecular cloning and expression analysis of heat-shock protein 70 in orange-spotted grouper Epinephelus coioides following heat shock and Vibrio alginolyticus challenge. J Fish Biol 79:486–501

    Article  CAS  PubMed  Google Scholar 

  • Deane EE, Woo NYS (2011) Advances and perspectives on the regulation and expression of piscine heat shock proteins. Rev Fish Biol Fisheries 21:153–185

    Article  Google Scholar 

  • Deane EE, Li J, Woo NYS (2004) Modulated heat shock protein expression during pathogenic Vibrio alginolyticus stress of sea bream. Dis Aquat Org 62:205–215

    Article  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez-Perez P, Cadenas S, Lamas S (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol (Official J Soc Free Radic Biol Med and Soc Free Radic Res Eur published by Elsevier) 6:183–197

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Forsyth RB, Candido EPM, Babich SL, Iwama GK (1997) Stress protein expression in coho salmon with bacterial kidney disease. J Aquat Anim Health 9:18–25

    Article  Google Scholar 

  • Han Y-L, Hou C-C, Du C, Zhu J-Q (2017) Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Laterolabrax maculatus with Vibrio harveyi infection. Fish Shellfish Immunol 60:299–310

    Article  CAS  PubMed  Google Scholar 

  • Ho E, Galougahi KK, Liu C-C, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol (Official J Soc Free Radic Biol Med and Soc Free Radic Res Eur published by Elsevier) 1:483–491

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Temperature. In: Hochachka PW, Somero GN (eds) Biochemical adaptation. Oxford University Press, Oxford, pp 290–449

    Google Scholar 

  • Ishibe K, Osatomi K, Hara K, Kanai K, Yamaguchi K, Oda T (2008) Comparison of the responses of peritoneal macrophages from Japanese flounder (Paralichthys olivaceus) against high virulent and low virulent strains of Edwarsiella tarda. Fish Shellfish Immunol 24:243–251

    Article  CAS  PubMed  Google Scholar 

  • Iwama GK, Thomas PT, Forsyth RB, Vijayan MM (1998) Heat shock protein expression in fish. Rev Fish Biol Fish 8:35–56

    Article  Google Scholar 

  • Iwama GK, Vijayan MM, Forsyth RB, Ackerman PA (1999) Heat shock protein and physiological stress in fish. Am Zool 39:901–909

    Article  CAS  Google Scholar 

  • Iwama GK, Afonso LOB, Todgham AE, Ackerman PA, Nakano K (2004) Are hsps suitable for indicating stressed states in fish? J Exp Biol 207:15–19

    Article  CAS  PubMed  Google Scholar 

  • Iwama GK, Afonso LOB, Vijayan MM (2006) Stress in fishes. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, pp 319–342

    Google Scholar 

  • Kaattari S, Piganelli JD (1996) The specific immune system: humoral defence. In: Iwama GK, Nakanishi T (eds) The fish immune system. Academic, San Diego, pp 207–254

    Google Scholar 

  • Kanai K, Tawaki S, Uchida Y (1988) An ecological study of Edwardsiella tarda in flounder farm. Fish Pathology 23:41–47

    Article  Google Scholar 

  • Kim K-Y, Lee S, Cho Y, Bang I, Kim K, Kim D, Nam Y (2007) Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus. Fish Shellfish Immunol 23:1043–1059

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Rhee J-S, Lee J-S, Dahms H-U, Lee J, Han K-N, Lee J-S (2010) Effect of cadmium exposure on expression of antioxidant gene transcripts in the liver pufferfish, Takifugu obscurus (Tetraodontiformes). Comp Biochem Physiol 152C:473–479

    CAS  Google Scholar 

  • Kiron V (2012) Fish immune system and its nutritional modulation for preventive health care. Anim Feed Sci Technol 173:111–133

    Article  CAS  Google Scholar 

  • Kole S, Anand D, Sharma R, Tripathi G, Makesh M, Rajendran K, Kadan M, Bedekar K (2017) Tissue specific expression profile of some immune related genes in Labeo rohita to Edwardsiella tarda infection. Fish Shellfish Immunol 66:575–582

    Article  CAS  PubMed  Google Scholar 

  • Kusuda R, Salati F (1993) Major bacterial diseases affecting mariculture in Japan. Annu Rev Fish Dis 3:69–85

    Article  Google Scholar 

  • Lambeth JD (2004) Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang H, Zhang X, Yang S, Yan T, Song Z (2015) Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant’s schizothoractin (Schizothorax prenanti). Fish Physiol Biochem 41:573–585

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Xianping G, Xie J, Xu P, He Y, Cui Y, Ming J, Zhou Q, Pan L (2012) Effects of anthraquinoe extract from Rheum officinale Bail on the physiological responses and HSP70 gene expression of Megalobrama amblycephala under Aeromonas hydrophila infection. Fish Shellfish Immunol 32:1–7

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Xu L, Xianping G, Xie J, Xu P, Zhou Q, Pan L, YuanYuan Z (2013) Effects of mannan oligosaccharide on the physiological responses, HSP70 gene expression and disease resistance of Allogynogenetic crucian carp (Carassius auratus gibelio) under Aeromonas hydrophila infection. Fish Shellfish Immunol 34:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Akaike T (2000) Inflamation and oxidative stress. In: Taniguchi N, Yodoi J (eds) Biochemistry in oxidative stress and redox. Kyoritsu Shuppan, Tokyo, pp 137–145

    Google Scholar 

  • Maehara K, Hasegawa T, Xiao H, Takeuchi A, Abe R, Isobe K (1999) Cooperative interaction of NF-kB and C/EBP binding sites is necessary for manganese superoxide dismutase gene transcription mediated by lipopolysaccharide and interferon-γ. FEBS Lett 449:115–119

    Article  CAS  PubMed  Google Scholar 

  • Manning MJ, Nakanishi T (1996) The specific immune system: cellular defences. In: Iwama GK, Nakanishi T (eds) The fish immune system. Academic, San Diego, pp 159–205

    Google Scholar 

  • Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defences in fish: biotic and abiotic factors. Rev Fish Biol Fisheries 15:75–88

    Article  Google Scholar 

  • Meng Q, Chen J, Chenchao X, Huang Y, Wang Y, Wang T, Zhai X, Gu W, Wang W (2013) The characterization, expression and activity analysis of superoxide dismutases (SODs) from Procambarus clarkii. Aquaculture 406–407:131–140

    Article  CAS  Google Scholar 

  • Ming J, Xie J, Xu P, Liu W, Ge X, Liu B, He Y, Cheng Y, Zhou Q, Pan L (2010) Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol 28:407–418

    Article  CAS  PubMed  Google Scholar 

  • Mitani H (1997) Stress proteins. In: Japanese Society for Comparative Endocrinology (ed) Stress and hormone. Gakkai Shuppan Center, Tokyo, pp 167–193

    Google Scholar 

  • Nakano M (1987) Scavenging of reactive oxygen. In: Niki E, Shimazaki H (eds) Reactive oxygen. Ishiyaku Shuppan, Tokyo, pp 64–85

    Google Scholar 

  • Nakano T (2007) Microorganisms. In: Nakagawa H, Sato M, Gatlin DM III (eds) Dietary supplements for the health and quality of cultured fish. CAB International, Oxfordshire, pp 86–108

    Chapter  Google Scholar 

  • Nakano T (2011) Stress in fish. Yoshoku (Aquaculture Magazine) 48:64–67

    CAS  Google Scholar 

  • Nakano T (2016) Studies on stress and stress tolerance mechanisms in fish. Nippon Suisan Gakkaishi 82:278–281

    Article  Google Scholar 

  • Nakano T (2018) Carotenoids in marine organisms—An exeptional properties of astaxanthin. Aquaculture Bus 55:36–40

    Google Scholar 

  • Nakano T (2020) Stress in fish and application of carotenoid for aquafeed as an anti-stress supplement. In: Kim S-K (ed) Encyclopedia of marine biotechnology. Wiley Publications, Hoboken (in Press)

    Google Scholar 

  • Nakano T, Takeuchi M (1997) Relationship between fish and reactive oxygen species. Yoshoku (Aquaculture Mag) 34:69–73

    Google Scholar 

  • Nakano T, Sato M, Takeuchi M (1993) Superoxide dismutase activity in the skin of fish. J Fish Biol 43:492–496

    CAS  Google Scholar 

  • Nakano T, Sato M, Takeuchi M (1995) Unique molecular properties of superoxide dismutase from teleost fish skin. FEBS Lett 360:197–201

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Kanmuri T, Sato M, Takeuchi M (1999a) Effect of astaxanthin rich red yeast (Phaffia rhodozyma) on oxidative stress in rainbow trout. Biochem Biophys Acta 1426:119–125

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Miura Y, Wazawa M, Sato M, Takeuchi M (1999b) Red yeast Phaffia rhodozyma reduces susceptibility of liver homogenate to lipid peroxidation in rainbow trout. Fish Sci 65:961–962

    Article  CAS  Google Scholar 

  • Nakano T, Wazawa M, Yamaguchi T, Sato M, Iwama GK (2004) Positive biological actions of astaxanthin in rainbow trout. Mar Biotechnol 6:S100–S105

    Google Scholar 

  • Nakano T, Masuda M, Suzuki T, Ohshima H (2012) Inhibition by polyphenolic phytochemicals and sulfurous compounds of the formation of 8-chloroguanosine mediated by hypochlorous acid, human myeloperoxidase, and activated human neutrophils. Biosci Biotechnol Biochem 76:2208–2213

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Afonso LO, Beckman BR, Iwama GK, Devlin RH (2013) Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon. PLoS ONE 8:e71421. https://doi.org/10.1371/journal.pone.0071421

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Kameda M, Shoji Y, Hayashi S, Yamaguchi T, Sato M (2014) Effect of severe environmental thermal stress on redox state in salmon. Redox Biol (Official J Soc Free Radic Biol Med and Soc Free Radic Res Eur published by Elsevier) 2:772–776

    Google Scholar 

  • Nakano T, Hayashi S, Nagamine N (2018) Effect of excessive doses of oxytetracycline on stress-related biomarker expression in coho salmon. Environmental Sci Pollut Res (Official J Eur Assoc Chem Mol Sci published by Springer-Nature) 25:7121–7128

    Google Scholar 

  • Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima H, Tazawa H, Sylla B, Sawa T (2005) Prevention of human cancer by modulation of chronic inflammatory processes. Mutation Res 591:110–122

    Article  CAS  PubMed  Google Scholar 

  • Osatomi K, Kanai K, Hara K, Ishihara T (2002) Changes in Cu, Zn–SOD activity in Japanese flounder Paralichtys olivaceus with bacterial infection. Nippon Suisan Gakkaishi 68:207–213

    Article  CAS  Google Scholar 

  • Oyanagui Y (1989) Reactive oxygen species and desiases. Kagaku Dojin, Tokyo

    Google Scholar 

  • Oyanagui Y (1993) NO and medicine. Kyoritsu Shuppan, Tokyo

    Google Scholar 

  • Peng J, Jones LG, Watson K (2000) Stress proteins as biomarkers of oxidative stress: effects of antioxidant supplements. Free Radic Biol Med 28:1598–1606

    Article  CAS  PubMed  Google Scholar 

  • Penglas S, Edvardsen RB, Furmanek T, Ronnestad I, Karisen O, van der Meeren T, Hamre K (2015) Diet affects the redox system in developing Atlantic cod (Gadus morhua) larvae. Redox Biol (Official J Soc Free Radic Biol Med and Soc Free Radic Res Eur published by Elsevier) 5:308–318

    Google Scholar 

  • Perera, N. C. N., Godahewa, G. I. and Lee, J. (2016): Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein. Fish Shellfish Immunol 57:386–399

    Google Scholar 

  • Perera NCN, Godahewa GI, Lee S, Kim M, Hwang JY, Kwon MG, Hwang SD, Lee J (2017) Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defence system and adaptive immune system. Fish Shellfish Immunol 68:435–442

    Article  CAS  PubMed  Google Scholar 

  • Pickering AD, Pottinger TG (1995) Biochemical effects of stress. In: Hochachka PW, Mommsen TP, Amsterdam BV (eds) Biochemistry and molecular biology of fishes, vol 5. Elsevier Science, Amsterdam, pp 349–379

    Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  • Poly WJ (1997) Nongenetic variation, genetic-environmental interactions and altered gene expressin. II. Disease, parasite and pollution effects. Comp Biochem Physiol 117B:61–74

    Article  CAS  Google Scholar 

  • Prunet P, Overli O, Douxfils J, Bernardini G, Kestemont P, Baron D (2012) Fish welfare and genomics. Fish Physiol Biochem 38:43–60

    Article  CAS  PubMed  Google Scholar 

  • Qadri I, Iwahashi M, Capasso JM, Hopken MW, Flores S, Schaack J, Simon FR (2004) Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieger AM, Barreda DR (2011) Antimicrobial mechanisms of fish leukocytes. Develop Compar Immunol 35:1238–1245

    Article  CAS  Google Scholar 

  • Robert J (2003) Evolution of heat shock protein and immunity. Dev Comp Immunol 27:449–464

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33:789–801

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Novoa B, Figueras A (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hyfrophila. Fish Shellfish Immunol 25:239–249

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert J, Pasmans F, Tobback E, Duchateau L, Decostere A, Haesebrouck F, Sorgeloos P, Bossier P (2010) Heat shock proteins protect plathfish (Xiphophorus maculatus) from Yersinia ruckeri induced mortality. Fish Shellfish Immunol 28:228–231

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Kanai K, Osatomi K, Yoshikoshi K (2004) Identification and characterization of fimbrial gene cluster of Edwardsiella tarda expressing mannose-resistant hemagglutination. Fish Pathology 39:87–93

    Article  CAS  Google Scholar 

  • Sasada M (1988) Microbial killing by oxygen radicals from phagocytes. Tanpakushitsu Kakusan Koso 33:372–378

    Google Scholar 

  • Schoor WP, Plumb JA (1994) Induction of nitric oxide synthase in channel catfish Ictalurus punctatus by Edwardsiella ictaluri. Dis Aquat Org 19:153–155

    Article  Google Scholar 

  • Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21:641–649

    Article  CAS  PubMed  Google Scholar 

  • Secombes CJ (1996) The nonspecific immune system: cellular defences. In: Iwama GK, Nakanishi T (eds) The fish immune system. Academic Press, San Diego, pp 63–103

    Google Scholar 

  • Song L, Li C, Xie Y, Liu S, Zhang J, Yao J, Jiang C, Li Y, Liu Z (2016) Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection. Fish Shellfish Immunol 49:154–162

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H (2000) NADPH oxidase and ROS generation. In: Taniguchi N, Yodoi J (eds) Biochemistry in oxidative stress and redox. Kyoritsu Shuppan, Tokyo, pp 35–43

    Google Scholar 

  • Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272:2613–2627

    Article  CAS  PubMed  Google Scholar 

  • Sung YY, Van Damme EJM, Sorgeloos P, Bossier P (2007) Non-lethal heat shock protects gnotobiotic Artemia franciscana larvae against virulent Vibrios. Fish Shellfish Immunol 22:318–326

    Article  CAS  Google Scholar 

  • Sung YY, Robert RJ, Bossier P (2012) Enhancement of Hsp70 synthesis protects common carp, Cyprinus carpio L., against lethal ammonia toxicity. J Fish Dis 35:563–568

    Article  CAS  PubMed  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Ushijima T, Ozaki Y (1988) Changes in hepatic superoxide dismutase and xanthine oxidase activity in mice infected with Salmonella typhimurium and Pseudomonas aeruginosa. J Med Microbiol 26:281–284

    Article  CAS  PubMed  Google Scholar 

  • Takeshige K, Mizukami S (1987) Microbial killing. In: Niki E, Shimazaki H (eds) Reactive oxygen. Ishiyaku Shuppan, Tokyo, pp 302–317

    Google Scholar 

  • Taniguchi N, Endo T (2000) Cross talk of SOD, NO, and glutathione metabolism. In: Taniguchi N, Yodoi J (eds) Biochemistry in oxidative stress and redox. Kyoritsu Shuppan, Tokyo, pp 1–11

    Google Scholar 

  • Todgham AE, Schulte PM, Iwama GK (2005) Cross-tolerance in the tidepool sculpin: the role of heat shock proteins. Physiol Biochem Zool 78:133–144

    Article  CAS  PubMed  Google Scholar 

  • Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Umasuthan N, Revathy KS, Bathige SDNK, Lim B, Park M, Whang I, Lee J (2013) A manganese superoxide dismutase with potent antioxidant activity identified from Oplegnathus fasciatus: Genomic structure and transcriptional characterization. Fish Shellfish Immunol 34:23–37

    Article  CAS  PubMed  Google Scholar 

  • Umasuthan N, Bathige SDNK, Thulasitha WS, Qiang W, Lim B, Lee J (2014) Characterization of rock bream (Oplegnathus fasciatus) cytosolic Cu/Zn superoxide dismutase in terms of molecular structure, genomic arrangement, stress-induced mRNA expression and antioxidant function. Comp Biochem Physiol 176B:18–33

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  PubMed  Google Scholar 

  • Villamil L, Figueras A, Aranguren R, Novoa B (2003) Non-specific immune response of turbot, Scophthalmus maximus (L.), experimentally infected with a pathogenic Vibrio pelagius. J Fish Dis 26:321–329

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Osatomi K, Yoshida A, Liang X, Kanai K, Oda T, Hara K (2010) Extracellular products from virulent strain of Edwardsiella tarda stimulate mouse macrophages (RAW264.7) to produce nitric oxide (NO) and tumor necrosis factor (TNF)-α. Fish Shellfish Immunol 29:778–785

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Osatomi K, Nagatomo Y, Yoshida A, Hara K (2011) Purification, molecular cloning, and some properties of a manganese-containing superoxide dismutase from Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol 158B:289–296

    Article  CAS  Google Scholar 

  • Wu H, Aoki A, Arimoto T, Nakano T, Ohnuki H, Murata M, Ren H, Endo H (2015) Fish stress become visible: a new attempt to use biosensor for real-time monitoring fish stress. Biosens Bioelectron 67:503–510

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Fujii Y, Nakano T, Arimoto T, Murata M, Matsumoto H, Yoshiura Y, Ohnuki H, Endo H (2019) Development of a novel enhanced biosensor system for real-time monitoring of fish stress using a self-assembled monolayer. Biosensors 19:1585. https://doi.org/10.3390/s19071518

    Article  CAS  Google Scholar 

  • Xie Y, Song L, Weng Z, Liu S, Liu Z (2015) Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. Fish Shellfish Immunol 44:642–651

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Zhang X-H (2014) Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture 431:129–135

    Article  Google Scholar 

  • Xu X, Shen Y, Fu J, Liu F, Guo S, Yang X, Li J (2011) Molecular cloning, characterization and expression patterns of HSP60 in the grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 31:864–870

    Article  CAS  PubMed  Google Scholar 

  • Yamakura F (1988) Reaction mechanism and physiological function of superoxide dismutase. Tanpakushitsu Kakusan Koso 33:223–230

    Google Scholar 

  • Yamashita M, Yabu T, Ojima N (2010) Stress protein HSP70 in fish. Aqua-BioSci Monogr 3:111–141

    Article  Google Scholar 

  • Yano T (1996) The nonspecific immune system: humoral defence. In: Iwama GK, Nakanishi T (eds) The fish immune system. Academic, San Diego, pp 105–157

    Google Scholar 

  • Yuan K, Yuan F-H, He H-H, Bi H-T, Weng S-P, He J-G, Chen Y-H (2017) Heat shock 70 kDa protein cognate 5 involved in WSSV toleration of Litopenaeus vannamei. Dev Comp Immunol 72:9–20

    Article  CAS  PubMed  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn–SOD (SOD1), Mn–SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Zhou X, Wang X, Zhou H (2011a) Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): Evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comp Biochem Physiol 159B:109–114

    Article  CAS  Google Scholar 

  • Zhang Z-W, Li Z, Liang H-W, Li L, Luo X-Z, Zou G-W (2011b) Molecular cloning and differential expression patterns of copper/zinc superoxide dismutase and manganese superoxide dismutase in Hypophthalmichthys molitrix. Fish Shellfish Immunol 30:473–479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. M. Sato at Tohoku University, Japan; Drs. T. Ishihara and K. Hara at Nagasaki University, Japan; Dr. G. K. Iwama at University of British Columbia/Quest University, Canada, for valuable discussion and suggestions. TN is also grateful to Dr. H.-J. Ceccaldi, Prof. Emeritus, at Ecole Pratique des Hautes Etudes, France, and Dr. Patrick Prouzet, IFREMER/Societe Franco-Japonaise d’Oceanographie, France, for giving an opportunity to present our research topics during 17th CFJO symposium (Coast Bordeaux 2017). Some researches performed by TN and KO were financially supported in part by a Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS). TN was also supported in part by a fund to Core-to-Core Program (A. Advanced Research Networks) entitled “Establishment of international agricultural immunology research-core for a quantum improvement in food safety” from JSPS. Each author of this study further declares no relationships with the companies or manufacturers who may benefit from the results of the present study. The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakano, T. et al. (2020). Effect of Bacterial Infection on the Expression of Stress Proteins and Antioxidative Enzymes in Japanese Flounder. In: Ceccaldi, HJ., Hénocque, Y., Komatsu, T., Prouzet, P., Sautour, B., Yoshida, J. (eds) Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes. Springer, Cham. https://doi.org/10.1007/978-3-030-43484-7_8

Download citation

Publish with us

Policies and ethics