Skip to main content

Bioactive Lipids in Age-Related Disorders

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1260))

Abstract

Our own studies and those of others have shown that defects in essential fatty acid (EFA) metabolism occurs in age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, immune dysfunction and cancer. It has been noted that in all these disorders there could occur a defect in the activities of desaturases, cyclo-oxygenase (COX), and lipoxygenase (LOX) enzymes leading to a decrease in the formation of their long-chain products gamma-linolenic acid (GLA), arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). This leads to an increase in the production of pro-inflammatory prostaglandin E2 (PGE2), thromboxanes (TXs), and leukotrienes (LTs) and a decrease in anti-inflammatory lipoxin A4, resolvins, protectins and maresins. All these bioactive molecules are termed as bioactive lipids (BALs). This imbalance in the metabolites of EFAs leads to low-grade systemic inflammation and at times acute inflammatory events at specific local sites that trigger the development of various age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, coronary heart disease, atherosclerosis, and immune dysfunction as seen in rheumatoid arthritis, lupus, nephritis and other localized inflammatory conditions. This evidence implies that methods designed to restore BALs to normal can prevent age-related disorders and enhance longevity and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Gall JY, Ardaillou R (2009) The biology of aging. Bull Acad Natl Med 193:365–402

    PubMed  Google Scholar 

  2. Poorani R, Bhatt AN, Dwarakanath BS, Das UN (2016) COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol 785:116–132

    Article  CAS  PubMed  Google Scholar 

  3. Das UN (1985) Minerals, trace elements and vitamins interact with essential fatty acids and prostaglandins to prevent hypertension, thrombosis, hypercholesterolemia and atherosclerosis and their attendant complications. IRCS J Med Sci 13:684–687

    CAS  Google Scholar 

  4. Das UN (1987) Magnesium, essential fatty acids and cardiovascular diseases. J Assoc Physicians India 35:171

    CAS  PubMed  Google Scholar 

  5. Das UN, Ramadevi G, Rao KP, Rao MS (1989) Prostaglandins can modify gamma-radiation and chemical induced cytotoxicity and genetic damage in vitro and in vivo. Prostaglandins 38:689–716

    Article  CAS  PubMed  Google Scholar 

  6. Das UN (1989) Nutrients, essential fatty acids and prostaglandins interact to augment immune responses and prevent genetic damage and cancer. Nutrition 5:106–110

    CAS  PubMed  Google Scholar 

  7. Das UN (2000) Interaction(s) between nutrients, essential fatty acids, eicosanoids, free radicals, nitric oxide, anti-oxidants and endothelium and their relationship to human essential hypertension. Med Sci Res 28:75–83

    Google Scholar 

  8. Das UN (2006) Essential fatty acids: biochemistry, physiology, and pathology. Biotechnol J 1:420–439

    Article  CAS  PubMed  Google Scholar 

  9. Das UN (2006) Biological significance of essential fatty acids. J Assoc Physicians India 54:309–319

    CAS  PubMed  Google Scholar 

  10. Das UN (2008) Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 7:37. https://doi.org/10.1186/1476-511X-7-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Das UN (2011) Molecular basis of health and disease. Springer, New York. ISBN-10: 9400704941

    Google Scholar 

  12. Das UN (1991) Interaction(s) between essential fatty acids, eicosanoids, cytokines, growth factors and free radicals: relevance to new therapeutic strategies in rheumatoid arthritis and other collagen vascular diseases. Prostaglandins Leukot Essent Fatty Acids 44:201–210

    Article  CAS  PubMed  Google Scholar 

  13. Kumar GS, Das UN (1994) Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukins. Prostaglandins Leukot Essent Fatty Acids 50:331–334

    Article  CAS  PubMed  Google Scholar 

  14. Rotondo D, Earl CR, Laing KJ, Kaimakamis D (1994) Inhibition of cytokine-stimulated thymic lymphocyte proliferation by fatty acids: the role of eicosanoids. Biochim Biophys Acta 1223:185–194

    Article  CAS  PubMed  Google Scholar 

  15. Santoli D, Zurier RB (1989) Prostaglandin E precursor fatty acids inhibit human IL-2 production by a prostaglandin E-independent mechanism. J Immunol 143:1303–1309

    CAS  PubMed  Google Scholar 

  16. Miles EA, Allen E, Calder PC (2002) In vitro effects of eicosanoids derived from different 20-carbon fatty acids on production of monocyte-derived cytokines in human whole blood cultures. Cytokine 20:215–223

    Article  CAS  PubMed  Google Scholar 

  17. Khalfoun B, Thibault F, Watier H, Bardos P, Lebranchu Y (1997) Docosahexaenoic and eicosapentaenoic acids inhibit in vitro human endothelial cell production of interleukin-6. Adv Exp Med Biol 400B:589–597

    CAS  PubMed  Google Scholar 

  18. Czeslick EG, Simm A, Grond S, Silber RE, Sablotzki A (2003) Inhibition of intracellular tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 production in human monocytes by iloprost. Eur J Clin Investig 33:1013–1017

    Article  CAS  Google Scholar 

  19. Chen X, Wu S, Chen C, Xie B, Fang Z, Hu W et al (2017) Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation 14:143. https://doi.org/10.1186/s12974-017-0917-3

  20. Chen X, Chen C, Fan S, Wu S, Yang F, Fang Z et al (2018) Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation 15:116. https://doi.org/10.1186/s12974-018-1151-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang CS, Sun HL, Lii CK, Chen HW, Chen PY, Liu KL (2010) Gamma-linolenic acid inhibits inflammatory responses by regulating NF-kappaB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation 33:46–57

    Article  CAS  PubMed  Google Scholar 

  22. Dooper MM, van Riel B, Graus YM, M’Rabet L (2003) Dihomo-gamma-linolenic acid inhibits tumour necrosis factor-alpha production by human leucocytes independently of cyclooxygenase activity. Immunology 110:348–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Das UN (2010) Current and emerging strategies for the treatment and management of systemic lupus erythematosus based on molecular signatures of acute and chronic inflammation. J Inflammation Res 3:143–170

    Article  CAS  Google Scholar 

  24. Menezes-de-Lima O Jr, Kassuya CA, Nascimento AF, Md H, Calixto JB (2006) Lipoxin A4 inhibits acute edema in mice: implications for the anti-edematogenic mechanism induced by aspirin. Prostaglandins Other Lipid Mediat 80:123–135

    Article  CAS  PubMed  Google Scholar 

  25. Benabdoun HA, Kulbay M, Rondon EP, Vallières F, Shi Q, Fernandes J et al (2019) In vitro and in vivo assessment of the proresolutive and antiresorptive actions of resolvin D1: relevance to arthritis. Arthritis Res Ther 21:72

    Article  PubMed  PubMed Central  Google Scholar 

  26. Herrera BS, Ohira T, Gao L, Omori K, Yang R, Zhu M et al (2008) An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption. Br J Pharmacol 155:1214–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu L, Miao S, Zou LB, Wu P, Hao H, Tang K et al (2012) Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J Mol Neurosci 48:185–200

    Article  CAS  PubMed  Google Scholar 

  28. Lee TH, Lympany P, Crea AE, Spur BW (1991) Inhibition of leukotriene B4-induced neutrophil migration by lipoxin A4: structure-function relationships. Biochem Biophys Res Commun 180:1416–1421

    Article  CAS  PubMed  Google Scholar 

  29. McMahon B, Mitchell D, Shattock R, Martin F, Brady HR, Godson C (2002) Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 16:1817–1819

    CAS  PubMed  Google Scholar 

  30. Hudert CA, Weylandt KH, Lu Y, Wang J, Hong S, Dignass A et al (2006) Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc Natl Acad Sci U S A 103:11276–11281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serhan CN, Dalli J, Karamnov S, Choi A, Park CK, Xu ZZ et al (2012) Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J 26:1755–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naveen KVG, Naidu VGM, Das UN (2017) Arachidonic acid and lipoxin A4 attenuate alloxan-induced cytotoxicity to RIN5F cells in vitro and type 1 diabetes mellitus in vivo. Biofactors 43:251–271

    Article  CAS  Google Scholar 

  33. Naveen KVG, Naidu VGM, Das UN (2017) Arachidonic acid and lipoxin A4 attenuate streptozotocin-induced cytotoxicity to RIN5F cells in vitro and type 1 and type 2 diabetes mellitus in vivo. Nutrition 35:61–80

    Article  CAS  Google Scholar 

  34. Das UN, Ells G, Begin ME, Horrobin DF (1986) Free radicals as possible mediators of the actions of interferon. J Free Rad Biol Med 2:183–188

    Article  CAS  Google Scholar 

  35. Das UN, Padma M, Sangeetha P, Ramesh G, Koratkar R (1990) Stimulation of free radical generation in human leukocytes by various stimulants including tumor necrosis factor is a calmodulin dependent process. Biochem Biophys Res Commun 167:1030–1036

    Article  CAS  PubMed  Google Scholar 

  36. Tsujimoto M, Yokota S, Vilcek J, Weissman G (1986) Tumor necrosis factor provokes superoxide anion generation from neutrophils. Biochem Biophys Res Commun 137:1094–1100

    Article  CAS  PubMed  Google Scholar 

  37. Beton G, Zeni L, Casaatella MA, Rossi F (1986) Gamma-interferon is able to enhance the oxidative metabolism of human neutrophils. Biochem Biophys Res Commun 138:1276–1282

    Article  Google Scholar 

  38. Das UN, Huang YS, Begin ME, Horrobin DF (1986) Interferons, phospholipid metabolism, immune responses and cancer. IRCS Med Sci 14:1069–1074

    CAS  Google Scholar 

  39. Bordoni A, Hrelia S, Lorenzini A, Bergami R, Cabrini L, Biagi PL et al (1998) Dual influence of aging and vitamin B6 deficiency on delta-6-desaturation of essential fatty acids in rat liver microsomes. Prostaglandins Leukot Essent Fatty Acids 58:417–420

    Google Scholar 

  40. Bordoni A, Biagi PL, Turchetto E, Hrelia S (1988) Aging influence on delta-6-desaturase activity and fatty acid composition of rat liver microsomes. Biochem Int 17:1001–1009

    CAS  PubMed  Google Scholar 

  41. Biagi PL, Bordoni A, Hrelia S, Celadon M, Horrobin DF (1991) Gamma-linolenic acid dietary supplementation can reverse the aging influence on rat liver microsome delta 6-desaturase activity. Biochim Biophys Acta 1083:187–192

    Article  CAS  PubMed  Google Scholar 

  42. Lopez Jimenez JA, Bordoni A, Lorenzini A, Rossi CA, Biagi PL, Hrelia S (1997) Linoleic acid metabolism in primary cultures of adult rat cardiomyocytes is impaired by aging. Biochem Biophys Res Commun 237:142–145

    Article  CAS  PubMed  Google Scholar 

  43. Lorenzini A, Bordoni A, Spanò C, Turchetto E, Biagi PL, Hrelia S (1997) Age-related changes in essential fatty acid metabolism in cultured rat heart myocytes. Prostaglandins Leukot Essent Fatty Acids 57:143–147

    Article  CAS  PubMed  Google Scholar 

  44. Bourre JM, Piciotti M, Dumont O (1990) Delta 6 desaturase in brain and liver during development and aging. Lipids 25:354–356

    Article  CAS  PubMed  Google Scholar 

  45. Horrobin DF (1981) Loss of delta-6-desaturase activity as a key factor in aging. Med Hypotheses 7:1211–1220

    Article  CAS  PubMed  Google Scholar 

  46. Das UN (2007) A defect in the activity of Delta6 and Delta5 desaturases may be a factor in the initiation and progression of atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 76:251–268

    Article  CAS  PubMed  Google Scholar 

  47. Das UN (2018) Ageing: is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res 11:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shim JH (2019) Prostaglandin E2 induces skin aging via E-prostanoid 1 in normal human dermal fibroblasts. Int J Mol Sci 20(22). pii: E5555. https://doi.org/10.3390/ijms20225555

  49. Young MK, Bocek RM, Herrington PT, Beatty CH (1981) Ageing: effects on the prostaglandin production by skeletal muscle of male rhesus monkeys (Macaca mulatta). Mech Ageing Dev 16:345–353

    Article  CAS  PubMed  Google Scholar 

  50. Fraifeld V, Kaplanski J, Kukulansky T, Globerson A (1995) Increased prostaglandin E2 production by concanavalin A-stimulated splenocytes of old mice. Gerontology 41:129–133

    Article  CAS  PubMed  Google Scholar 

  51. Hayek MG, Meydani SN, Meydani M, Blumberg JB (1994) Age differences in eicosanoid production of mouse splenocytes: effects on mitogen-induced T-cell proliferation. J Gerontol 49:B197–B207

    Article  CAS  PubMed  Google Scholar 

  52. Wu D, Mura C, Beharka AA, Han SN, Paulson KE, Hwang D et al (1998) Age-associated increase in PGE2 synthesis and COX activity in murine macrophages is reversed by vitamin E. Am J Phys 275:C661–C668

    Article  CAS  Google Scholar 

  53. Baek BS, Kim JW, Lee JH, Kwon HJ, Kim ND, Kang HS et al (2001) Age-related increase of brain cyclooxygenase activity and dietary modulation of oxidative status. J Gerontol A Biol Sci Med Sci 56:B426–B431

    Article  CAS  PubMed  Google Scholar 

  54. Gangemi S, Pescara L, D’Urbano E, Basile G, Nicita-Mauro V, Davì G et al (2005) Aging is characterized by a profound reduction in anti-inflammatory lipoxin A4 levels. Exp Gerontol 40:612–614

    Article  CAS  PubMed  Google Scholar 

  55. Das UN (2020) Molecular pathobiology of scleritis and its therapeutic implications. Int J Ophthalmol 13(1):163–175

    Google Scholar 

  56. Das UN (2019) Beneficial role of bioactive lipids in the pathobiology, prevention, and management of HBV, HCV and alcoholic hepatitis, NAFLD, and liver cirrhosis: a review. J Adv Res 17:17–29

    Article  CAS  PubMed  Google Scholar 

  57. Das UN (2019) Polyunsaturated fatty acids and sepsis. Nutrition 65:39–43

    Article  PubMed  Google Scholar 

  58. Das UN (2019) Bioactive lipids in intervertebral disc (IVD) degeneration and its therapeutic implications. BioSci Rep 39(10). pii: BSR20192117. https://doi.org/10.1042/BSR20192117

  59. Das UN (2019) Bioactive lipids in shoulder tendon tears. Am J Pathol 189:2149–2153

    Article  PubMed  Google Scholar 

  60. Dakin SG, Colas RA, Wheway K, Watkins B, Appleton L, Rees J et al (2019) Proresolving mediators LXB4 and RvE1 regulate inflammation in stromal cells from patients with shoulder tendon tears. Am J Pathol 189:2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Das UN (2019) Can bioactive lipid(s) augment anti-cancer action of immunotherapy and prevent cytokine storm? Arch Med Res 50:342–349

    Article  CAS  PubMed  Google Scholar 

  62. Das UN (2020) Bioactive lipids as modulators of immune check point inhibitors. Med Hypotheses 135:109473. https://doi.org/10.1016/j.mehy.2019.109473

    Article  CAS  PubMed  Google Scholar 

  63. Das UN (2018) Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus. J Adv Res 11:43–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Das UN (2010) Essential fatty acids and their metabolites in the context of hypertension. Hypertens Res 33:782–785

    Article  PubMed  Google Scholar 

  65. Inoue K, Kishida K, Hirata A, Funahashi T, Shimomura I (2013) Low serum eicosapentaenoic acid/arachidonic acid ratio in male subjects with visceral obesity. Nutr Metab (Lond) 10:25. https://doi.org/10.1186/1743-7075-10-25

    Article  CAS  Google Scholar 

  66. Yagi S, Aihara K, Fukuda D, Takashima A, Bando M, Hara T et al (2015) Reduced ratio of eicosapentaenoic acid and docosahexaenoic acid to arachidonic acid is associated with early onset of acute coronary syndrome. Nutr J 14:111. https://doi.org/10.1186/s12937-015-0102-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yagi S, Hara T, Ueno R, Aihara K, Fukuda D, Takashima A et al (2014) Serum concentration of eicosapentaenoic acid is associated with cognitive function in patients with coronary artery disease. Nutr J 13:112. https://doi.org/10.1186/1475-2891-13-112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Das UN (2013) Arachidonic acid and lipoxin A4 as possible endogenous anti-diabetic molecules. Prostaglandins Leukot Essent Fatty Acids 88:201–210

    Article  CAS  PubMed  Google Scholar 

  69. Das UN (2007) Vagus nerve stimulation, depression and inflammation. Neuropsychopharmacology 32:2053–2054

    Article  PubMed  Google Scholar 

  70. Das UN (2017) Is there a role for bioactive lipids in the pathobiology of diabetes mellitus? Front Endocrinol (Lausanne) 8:182. https://doi.org/10.3389/fendo.2017.00182

    Article  Google Scholar 

  71. Börgeson E, McGillicuddy FC, Harford KA, Corrigan N, Higgins DF et al (2012) Lipoxin A4 attenuates adipose inflammation. FASEB J 26:4287–4294

    Article  PubMed  CAS  Google Scholar 

  72. Das UN (2011) Lipoxins as biomarkers of lupus and other inflammatory conditions. Lipids Health Dis 10:76. https://doi.org/10.1186/1476-511X-10-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Das UN (2016) Renin-angiotensin-aldosterone system in insulin resistance and metabolic syndrome. J Transl Int Med 4:66–72

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kain V, Ingle KA, Colas RA, Dalli J, Prabhu SD, Serhan CN et al (2015) Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J Mol Cell Cardiol 84:24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mai J, Liu W, Fang Y, Zhang S, Qiu Q, Yang Y et al (2018) The atheroprotective role of lipoxin A4 prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway. Atherosclerosis 278:259–268

    Article  CAS  PubMed  Google Scholar 

  76. Kain V, Liu F, Kozlovskaya V, Ingle KA, Bolisetty S, Agarwal A et al (2017) Resolution agonist 15-epi-lipoxin A4 programs early activation of resolving phase in post-myocardial infarction healing. Sci Rep 7:9999. https://doi.org/10.1038/s41598-017-10441-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schnittert J, Heinrich MA, Kuninty PR, Storm G, Prakash J (2018) Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer. Cancer Lett 420:247–258

    Article  CAS  PubMed  Google Scholar 

  78. Simões RL, De-Brito NM, Cunha-Costa H, Morandi V, Fierro IM, Roitt IM et al (2017) Lipoxin A4 selectively programs the profile of M2 tumor-associated macrophages which favour control of tumor progression. Int J Cancer 140:346–357

    Article  PubMed  CAS  Google Scholar 

  79. Wang Z, Cheng Q, Tang K, Sun Y, Zhang K, Zhang Y et al (2015) Lipid mediator lipoxin A4 inhibits tumor growth by targeting IL-10-producing regulatory B (Breg) cells. Cancer Lett 364:118–124

    Article  CAS  PubMed  Google Scholar 

  80. Xu F, Zhou X, Hao J, Dai H, Zhang J, He Y et al (2018) Lipoxin A4 and its analog suppress hepatocarcinoma cell epithelial-mesenchymal transition, migration and metastasis via regulating integrin-linked kinase axis. Prostaglandins Other Lipid Mediat 137:9–19

    Article  CAS  PubMed  Google Scholar 

  81. Liu C, Guan H, Cai C, Li F, Xiao J (2017) Lipoxin A4 suppresses osteoclastogenesis in RAW264.7 cells and prevents ovariectomy-induced bone loss. Exp Cell Res 352:293–303

    Article  CAS  PubMed  Google Scholar 

  82. Banu J, Bhattacharya A, Rahman M, Kang JX, Fernandes G (2010) Endogenously produced n-3 fatty acids protect against ovariectomy induced bone loss in fat-1 transgenic mice. J Bone Miner Metab 28:617–626

    Article  CAS  PubMed  Google Scholar 

  83. Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G (2003) Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 18:1206–1216

    Article  CAS  PubMed  Google Scholar 

  84. Wei J, Chen S, Guo W, Feng B, Yang S, Huang C, Chu J (2018) Leukotriene D4 induces cellular senescence in osteoblasts. Int Immunopharmacol 58:154–159

    Article  CAS  PubMed  Google Scholar 

  85. Bhattacharya A, Rahman M, Banu J, Lawrence RA, McGuff HS, Garrett IR et al (2005) Inhibition of osteoporosis in autoimmune disease prone MRL/Mpj-Fas(lpr) mice by N-3 fatty acids. J Am Coll Nutr 24:200–209

    Google Scholar 

  86. Bhavsar PK, Levy BD, Hew MJ, Pfeffer MA, Kazani S, Israel E et al (2010) Corticosteroid suppression of lipoxin A4 and leukotriene B4 from alveolar macrophages in severe asthma. Respir Res 11:71. https://doi.org/10.1186/1465-9921-11-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tateishi N, Kakutani S, Kawashima H, Shibata H, Morita I (2014) Dietary supplementation of arachidonic acid increases arachidonic acid and lipoxin A4 contents in colon but does not affect severity or prostaglandin E2 content in murine colitis model. Lipids Health Dis 13:30. https://doi.org/10.1186/1476-511X-13-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tateishi N, Kaneda Y, Kakutani S, Kawashima H, Shibata H, Morita I (2015) Dietary supplementation with arachidonic acid increases arachidonic acid content in paw, but does not affect arthritis severity or prostaglandin E2 content in rat adjuvant-induced arthritis model. Lipids Health Dis 14:3. https://doi.org/10.1186/1476-511X-14-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Das UN (2019) Circulating microparticles in septic shock and sepsis-related complications. Minerva Anestesiol. (in press)

    Google Scholar 

  90. Dakin SG, Ly L, Colas RA, Oppermann U, Wheway K, Watkins B et al (2017) Increased 15-PGDH expression leads to dysregulated resolution responses in stromal cells from patients with chronic tendinopathy. Sci Rep 7:11009. https://doi.org/10.1038/s41598-017-11188-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP et al (2015) Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 348:aaa2340. https://doi.org/10.1126/science.aaa2340

  92. FitzGerald GA (2015) Bringing PGE2 in from the cold. Science 348:1208–1209

    Article  CAS  PubMed  Google Scholar 

  93. Duffin R, O’Connor RA, Crittenden S, Forster T, Yu C, Zheng X et al (2016) Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell–IL-22 axis. Science 351:1333–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ueda T, Fukunaga K, Seki H, Miyata J, Arita M, Miyasho T et al (2014) Combination therapy of 15-epi-lipoxin A4 with antibiotics protects mice from Escherichia coli-induced sepsis. Crit Care Med 42:e288–e295

    Article  CAS  PubMed  Google Scholar 

  95. Walker J, Dichter E, Lacorte G, Kerner D, Spur B, Rodriguez A et al (2011) Lipoxin a4 increases survival by decreasing systemic inflammation and bacterial load in sepsis. Shock 36:410–416

    Article  CAS  PubMed  Google Scholar 

  96. Wu B, Walker J, Spur B, Rodriguez A, Yin K (2015) Effects of Lipoxin A4 on antimicrobial actions of neutrophils in sepsis. Prostaglandins Leukot Essent Fatty Acids 94:55–64

    Article  CAS  PubMed  Google Scholar 

  97. Wu B, Capilato J, Pham MP, Walker J, Spur B, Rodriguez A et al (2016) Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing inhibition. FASEB J 30:2400–2410

    Article  CAS  PubMed  Google Scholar 

  98. Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA et al (2009) Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461:1287–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Desbois AP, Lawlor KC (2013) Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs 11:4544–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Das UN (2018) Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review. J Adv Res 11:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG (2005) Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579:5157–5162

    Article  CAS  PubMed  Google Scholar 

  102. Le PNT, Desbois AP (2017) Antibacterial effect of eicosapentaenoic acid against Bacillus cereus and Staphylococcus aureus: killing kinetics, selection for resistance, and potential cellular target. Mar Drugs 15: pii: E334. https://doi.org/10.3390/md15110334

  103. Giamarellos-Bourboulis EJ, Grecka P, Dionyssiou-Asteriou A, Giamarellou H (1998) In vitro activity of polyunsaturated fatty acids on Pseudomonas aeruginosa: relationship to lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids 58:283–287

    Article  CAS  PubMed  Google Scholar 

  104. Das UN (1985) Antibiotic-like action of essential fatty acids. Can Med Assoc J 132:1350

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee KA, Shin KS, Kim GY, Song YC, Bae EA, Kim IK et al (2016) Characterization of age-associated exhausted CD8+ T cells defined by increased expression of Tim-3 and PD-1. Aging Cell 15:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lages CS, Lewkowich I, Sproles A, Wills-Karp M, Chougnet C (2010) Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/ PD-L1 pathway. Aging Cell 9:785–798

    Article  CAS  PubMed  Google Scholar 

  107. Shimada Y, Hayashi M, Nagasaka Y, Ohno-Iwashita Y, Inomata M (2009) Age-associated up-regulation of a negative co-stimulatory receptor PD-1 in mouse CD4+ T cells. Exp Gerontol 44:517–522

    Article  CAS  PubMed  Google Scholar 

  108. Fukushima Y, Minato N, Hattori M (2018) The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm Regen 38:24. https://doi.org/10.1186/s41232-018-0082-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23:144–150

    Article  CAS  PubMed  Google Scholar 

  110. Kalinski P (2012) Regulation of immune responses by prostaglandin e2. J Immunol 188:21–28

    Article  CAS  PubMed  Google Scholar 

  111. Das UN, Padma MC (1978) Prostaglandins in lymphocyte transformation. J Assoc Physicians India 26:503–506

    CAS  PubMed  Google Scholar 

  112. Das UN (1980) Prostaglandins and immune response in cancer. Int J Tiss Reac 2:233–236

    Google Scholar 

  113. Das UN (1981) Inhibition of sensitized lymphocyte response to sperm antigen(s) by prostaglandins. IRCS Med Sci 9:1087

    CAS  Google Scholar 

  114. Kumar GS, Das UN, Kumar KV, Madhavi DNP, Tan BKH (1992) Effect of n-6 and n-3 fatty acids on the proliferation and secretion of TNF and IL-2 by human lymphocytes in vitro. Nutr Res 12:815–823

    Article  CAS  Google Scholar 

  115. Das UN (2014) HLA-DR expression, cytokines and bioactive lipids in sepsis. Arch Med Sci 10:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Narumiya S (2007) Physiology and pathophysiology of prostanoid receptors. Proc Jpn Acad Ser B 83:296–319

    Article  CAS  Google Scholar 

  117. Goodwin JS, Ceuppens J (1983) Regulation of the immune response by prostaglandins. J Clin Immunol 3:295–315

    Article  CAS  PubMed  Google Scholar 

  118. Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of TH1 lymphokines but not of Th2 lymphokines. J Immunol 146:108–113

    CAS  PubMed  Google Scholar 

  119. Gold KN, Weyand CM, Goronzy JJ (1994) Modulation of helper T cell function by prostaglandins. Arthritis Rheum 37:925–933

    Article  CAS  PubMed  Google Scholar 

  120. Hilkens CM, Vermeulen H, van Neerven RJ, Snijdewint FG, Wierenga EA, Kapsenberg ML (1995) Differential modulation of T helper type 1 (TH1) and T helper type 2 (TH2) cytokine secretion by prostaglandin E2 critically depends on interleukin-2. Eur J Immunol 25:59–63

    Article  CAS  PubMed  Google Scholar 

  121. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K et al (2009) Prostaglandin E2–EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nat Med 15:633–640

    Article  CAS  PubMed  Google Scholar 

  122. Linnemeyer PA, Pollack SB (1993) Prostaglandin E2-induced changes in the phenotype, morphology, and lytic activity of IL-2-activated natural killer cells. J Immunol 150:3747–3754

    CAS  PubMed  Google Scholar 

  123. Sreeramkumar V, Fresno M, Cuesta N (2012) Prostaglandin E2 and T cells: friends or foes? Immunol Cell Biol 90:579–586

    Article  CAS  PubMed  Google Scholar 

  124. Strassmann G, Patil-Koota V, Finkelman F, Fong M, Kambayashi T (1994) Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med 180:2365–2370

    Article  CAS  PubMed  Google Scholar 

  125. Demeure CE, Yang LP, Desjardins C, Raynauld P, Delespesse G (1997) Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines. Eur J Immunol 27:3526–3531

    Article  CAS  PubMed  Google Scholar 

  126. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Owen K, Gomolka D, Droller MJ (1980) Production of prostaglandin E2 by tumor cells in vitro. Cancer Res 40:3167–3171

    CAS  PubMed  Google Scholar 

  128. Young MR, Knies S (1984) Prostaglandin E production by Lewis lung carcinoma: mechanism for tumor establishment in vivo. J Natl Cancer Inst 72:919–922

    CAS  PubMed  Google Scholar 

  129. Balch CM, Dougherty PA, Cloud GA, Tilden AB (1984) Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patients. Surgery 95:71–77

    CAS  PubMed  Google Scholar 

  130. Murray JL, Kollmorgen GM (1983) Inhibition of lymphocyte response by prostaglandin-producing suppressor cells in patients with melanoma. J Clin Immunol 3:268–276

    Article  CAS  PubMed  Google Scholar 

  131. Passwell J, Levanon M, Davidsohn J, Ramot B (1983) Monocyte PGE2 secretion in Hodgkin’s disease and its relation to decreased cellular immunity. Clin Exp Immunol 51:61–68

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chiabrando C, Broggini M, Castagnoli MN, Donelli MG, Noseda A, Visintainer M et al (1985) Prostaglandin and thromboxane synthesis by Lewis lung carcinoma during growth. Cancer Res 45:3605–3608

    CAS  PubMed  Google Scholar 

  133. McLemore TL, Hubbard WC, Litterst CL, Liu MC, Miller S, McMahon NA et al (1988) Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Res 48:3140–3247

    CAS  PubMed  Google Scholar 

  134. Fulton AM (1988) Inhibition of experimental metastasis with indomethacin: role of macrophages and natural killer cells. Prostaglandins 35:413–425

    Article  CAS  PubMed  Google Scholar 

  135. Maxwell WJ, Kelleher D, Keating JJ, Hogan FP, Bloomfield FJ, MacDonald GS et al (1990) Enhanced secretion of prostaglandin E2 by tissue-fixed macrophages in colonic carcinoma. Digestion 47:160–166

    Article  CAS  PubMed  Google Scholar 

  136. Baxevanis CN, Reclos GJ, Gritzapis AD, Dedousis GV, Missitzis I, Papamichail M (1993) Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. Cancer 72:491–501

    Article  CAS  PubMed  Google Scholar 

  137. Alleva DG, Burger CJ, Elgert KD (1994) Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol 153:1674–1686

    CAS  PubMed  Google Scholar 

  138. Liu XH, Connolly JM, Rose DP (1996) Eicosanoids as mediators of linoleic acid-stimulated invasion and type IV collagenase production by a metastatic human breast cancer cell line. Clin Exp Metastasis 14:145–152

    Article  CAS  PubMed  Google Scholar 

  139. Li S, Xu X, Jiang M, Bi Y, Xu J, Han M (2015) Lipopolysaccharide induces inflammation and facilitates lung metastasis in a breast cancer model via the prostaglandin E2-EP2 pathway. Mol Med Rep 11:4454–4462

    Article  CAS  PubMed  Google Scholar 

  140. Kim MJ, Kim HS, Lee SH, Yang Y, Lee MS, Lim JS (2014) NDRG2 controls COX-2/PGE2-mediated breast cancer cell migration and invasion. Mol Cells 37:759–765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Zhang M, Zhang H, Cheng S, Zhang D, Xu Y, Bai X et al (2006) Prostaglandin E2 accelerates invasion by upregulating Snail in hepatocellular carcinoma cells. Tumour Biol 35:7135–7145

    Article  CAS  Google Scholar 

  142. Han C, Michalopoulos GK, Wu T (2006) Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol 207:261–270

    Article  CAS  PubMed  Google Scholar 

  143. Han C, Wu T (2005) Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem 280:24053–24063

    Article  CAS  PubMed  Google Scholar 

  144. Xu L, Han C, Wu T (2006) A novel positive feedback loop between peroxisome proliferator-activated receptor-delta and prostaglandin E2 signaling pathways for human cholangiocarcinoma cell growth. J Biol Chem 281:33982–33996

    Article  CAS  PubMed  Google Scholar 

  145. Misra UK, Pizzo SV (2013) Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways. PLoS One 8:e63150. https://doi.org/10.1371/journal.pone

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Evans DB, Thavarajah M, Kanis JA (1990) Involvement of prostaglandin E2 in the inhibition of osteocalcin synthesis by human osteoblast-like cells in response to cytokines and systemic hormones. Biochem Biophys Res Commun 167:194–202

    Article  CAS  PubMed  Google Scholar 

  147. Hori T, Yamanaka Y, Hayakawa M, Shibamoto S, Tsujimoto M, Oku N et al (1991) Prostaglandins antagonize fibroblast proliferation stimulated by tumor necrosis factor. Biochem Biophys Res Commun 174:758–766

    Article  CAS  PubMed  Google Scholar 

  148. Kambayashi T, Alexander HR, Fong M, Strassmann G (1995) Potential involvement of IL-10 in suppressing tumor-associated macrophages. Colon-26-derived prostaglandin E2 inhibits TNF-alpha release via a mechanism involving IL-10. J Immunol 154:3383–3390

    CAS  PubMed  Google Scholar 

  149. Takigawa M, Takashiba S, Takahashi K, Arai H, Kurihara H, Murayama Y (1994) Prostaglandin E2 inhibits interleukin-6 release but not its transcription in human gingival fibroblasts stimulated with interleukin-1 beta or tumor necrosis factor-alpha. J Periodontol 65:1122–1127

    Article  CAS  PubMed  Google Scholar 

  150. Fieren MW, van den Bemd GJ, Ben-Efraim S, Bonta IL (1992) Prostaglandin E2 inhibits the release of tumor necrosis factor-alpha, rather than interleukin 1 beta, from human macrophages. Immunol Lett 31:85–90

    Article  CAS  PubMed  Google Scholar 

  151. Vassiliou E, Jing H, Ganea D (2003) Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell Immunol 223:120–132

    Article  CAS  PubMed  Google Scholar 

  152. Stafford JB, Marnett LJ (2008) Prostaglandin E2 inhibits tumor necrosis factor-alpha RNA through PKA type I. Biochem Biophys Res Commun 366:104–109

    Article  CAS  PubMed  Google Scholar 

  153. Xu XJ, Reichner JS, Mastrofrancesco B, Henry WL Jr, Albina JE (2008) Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-beta production. J Immunol 180:2125–2131

    Article  CAS  PubMed  Google Scholar 

  154. Huang CN, Liu KL, Cheng CH, Lin YS, Lin MJ, Lin TH (2005) PGE2 enhances cytokine-elicited nitric oxide production in mouse cortical collecting duct cells. Nitric Oxide 12:150–158

    Article  CAS  PubMed  Google Scholar 

  155. Gaillard T, Mülsch A, Klein H, Decker K (1992) Regulation by prostaglandin E2 of cytokine-elicited nitric oxide synthesis in rat liver macrophages. Biol Chem Hoppe Seyler 373:897–902

    Article  CAS  PubMed  Google Scholar 

  156. Stadler J, Harbrecht BG, Di Silvio M, Curran RD, Jordan ML, Simmons RL et al (1993) Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol 53:165–172

    Google Scholar 

  157. Tetsuka T, Daphna-Iken D, Miller BW, Guan Z, Baier LD, Morrison AR (1996) Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells. J Clin Invest 97:2051–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wilson KT, Vaandrager AB, De Vente J, Musch MW, De Jonge HR, Chang EB (1996) Production and localization of cGMP and PGE2 in nitroprusside-stimulated rat colonic ion transport. Am J Phys 270(3 Pt 1):C832–C840

    Article  CAS  Google Scholar 

  159. Sautebin L, Ialenti A, Ianaro A, Di Rosa M (1995) Endogenous nitric oxide increases prostaglandin biosynthesis in carrageenin rat paw oedema. Eur J Pharmacol 286:219–222

    Article  CAS  PubMed  Google Scholar 

  160. Biondi C, Fiorini S, Pavan B, Ferretti ME, Barion P, Vesce F (2003) Interactions between the nitric oxide and prostaglandin E2 biosynthetic pathways in human amnion-like WISH cells. J Reprod Immunol 60:35–52

    Article  CAS  PubMed  Google Scholar 

  161. Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Physiol Regul Integr Comp Physiol 287:R735–R741

    Article  CAS  PubMed  Google Scholar 

  162. Chien CC, Shen SC, Yang LY, Chen YC (2012) Prostaglandins as negative regulators against lipopolysaccharide, lipoteichoic acid, and peptidoglycan-induced inducible nitric oxide synthase/nitric oxide production through reactive oxygen species-dependent heme oxygenase 1 expression in macrophages. Shock 38:549–558

    Article  CAS  PubMed  Google Scholar 

  163. Stæhr M, Hansen PB, Madsen K, Vanhoutte PM, Nüsing RM, Jensen BL (2013) Deletion of cyclooxygenase-2 in the mouse increases arterial blood pressure with no impairment in renal NO production in response to chronic high salt intake. Am J Physiol Regul Integr Comp Physiol 304:R899–R907

    Article  PubMed  CAS  Google Scholar 

  164. Harizi H, Norbert G (2004) Inhibition of IL-6, TNF-alpha, and cyclooxygenase-2 protein expression by prostaglandin E2-induced IL-10 in bone marrow-derived dendritic cells. Cell Immunol 228:99–109

    Article  PubMed  CAS  Google Scholar 

  165. Harizi H, Juzan M, Pitard V, Moreau JF, Gualde N (2002) Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 168:2255–2263

    Article  CAS  PubMed  Google Scholar 

  166. Kanda N, Koike S, Watanabe S (2005) IL-17 suppresses TNF-alpha-induced CCL27 production through induction of COX-2 in human keratinocytes. J Allergy Clin Immunol 116:1144–1150

    Article  CAS  PubMed  Google Scholar 

  167. Khayrullina T, Yen JH, Jing H, Ganea D (2008) In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J Immunol 181:721–735

    Article  CAS  PubMed  Google Scholar 

  168. Chen H, Qin J, Wei P, Zhang J, Li Q, Fu L et al (2009) Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and Th17 cells. Prostaglandins Leukot Essent Fatty Acids 80:195–200

    Article  CAS  PubMed  Google Scholar 

  169. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 90:7240–7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR (1995) Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol 114:1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mollace V, Colasanti M, Muscoli C, Lauro GM, Iannone M, Rotiroti D et al (1998) The effect of nitric oxide on cytokine-induced release of PGE2 by human cultured astroglial cells. Br J Pharmacol 124:742–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Marcinkiewicz J (1997) Regulation of cytokine production by eicosanoids and nitric oxide. Arch Immunol Ther Exp 45:163–167

    CAS  Google Scholar 

  173. Tanaka M, Ishibashi H, Hirata Y, Miki K, Kudo J, Niho Y (1996) Tumor necrosis factor production by rat Kupffer cells-regulation by lipopolysaccharide, macrophage activating factor and prostaglandin E2. J Clin Lab Immunol 48:17–31

    CAS  PubMed  Google Scholar 

  174. Liu XH, Kirschenbaum A, Lu M, Yao S, Klausner A, Preston C et al (2002) Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Commun 290:249–255

    Article  CAS  PubMed  Google Scholar 

  175. Reznikov LL, Kim SH, Westcott JY, Frishman J, Fantuzzi G, Novick D et al (2000) IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-gamma. Proc Natl Acad Sci U S A 97:2174–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Perkins DJ, Kniss DA (1999) Blockade of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 65:792–799

    Article  CAS  PubMed  Google Scholar 

  177. Sakurai T, Tamura K, Kogo H (2004) Vascular endothelial growth factor increases messenger RNAs encoding cyclooxygenase-II and membrane-associated prostaglandin E synthase in rat luteal cells. J Endocrinol 183:527–533

    Article  CAS  PubMed  Google Scholar 

  178. Yao M, Kargman S, Lam EC, Kelly CR, Zheng Y, Luk P et al (2003) Inhibition of cyclooxygenase-2 by rofecoxib attenuates the growth and metastatic potential of colorectal carcinoma in mice. Cancer Res 63:586–592

    CAS  PubMed  Google Scholar 

  179. Sailaja P, Mani AM, Naveen KVG, Anasuya DH, Siresha B, Das UN (2014) Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro. PLoS One 9:e114766. https://doi.org/10.1371/journal.pone.0114766

    Article  CAS  Google Scholar 

  180. Booyens J, Englebrecht P, Le Roux S, Louwrens CC, Van der Merwe CF, Katzeff IE (1984) Some effects of the essential fatty acids linoleic acid, alpha-linolenic acid, and of their metabolites gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid and of prostaglandins A and E on the proliferation of human osteogenic sarcoma cells in culture. Prostaglandins Leukot Med 15:15–33

    Article  CAS  PubMed  Google Scholar 

  181. Begin ME, Das UN, Ells G, Horrobin DF (1985) Selective killing of human cancer cells by polyunsaturated fatty acids. Prostaglandins Leukot Med 19:177–186

    Article  CAS  PubMed  Google Scholar 

  182. Begin ME, Ells G, Das UN, Horrobin DF (1986) Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 77:1053–1062

    CAS  PubMed  Google Scholar 

  183. Das UN (1991) Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett 56:235–243

    Article  CAS  PubMed  Google Scholar 

  184. Sagar PS, Das UN, Koratkar R, Ramesh G, Padma M, Kumar GS (1992) Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells: relationship to free radicals and lipid peroxidation and its modulation by calmodulin antagonists. Cancer Lett 63:189–198

    Article  CAS  PubMed  Google Scholar 

  185. Kumar GS, Das UN (1995) Free radical-dependent suppression of growth of mouse myeloma cells by α-linolenic and eicosapentaenoic acids in vitro. Cancer Lett 92:27–38

    Article  CAS  PubMed  Google Scholar 

  186. Padma M, Das UN (1996) Effect of cis-unsaturated fatty acids on cellular oxidant stress in macrophage tumor (AK-5) cells in vitro. Cancer Lett 109:63–75

    Article  CAS  PubMed  Google Scholar 

  187. Seigel I, Liu TL, Yaghoubzadeh E, Kaskey TS, Gleicher N (1987) Cytotoxic effects of free fatty acids on ascites tumor cells. J Natl Cancer Inst 78:271–277

    Google Scholar 

  188. Tolnai S, Morgan JF (1962) Studies on the in vitro anti-tumor activity of fatty acids. V. Unsaturated fatty acids. Can J Biochem Physiol 40:869–875

    Article  CAS  Google Scholar 

  189. Monjazeb AM, High KP, Connoy A, Hart LS, Koumenis C, Chilton FH (2006) Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis 27:1950–1960

    Article  CAS  PubMed  Google Scholar 

  190. Monjazeb AM, High KP, Koumenis C, Chilton FH (2005) Inhibitors of arachidonic acid metabolism act synergistically to signal apoptosis in neoplastic cells. Prostaglandins Leukot Essent Fatty Acids 73:463–474

    Article  CAS  PubMed  Google Scholar 

  191. Canuto RA, Muzio G, Bassi AM, Maggiora M, Leonarduzzi G, Lindahl R et al (1995) Enrichment with arachidonic acid increases the sensitivity of hepatoma cells to the cytotoxic effects of oxidative stress. Free Radic Biol Med 18:287–293

    Article  CAS  PubMed  Google Scholar 

  192. Piazzi G, D’Argenio G, Prossomariti A, Lembo V, Mazzone G, Candela M et al (2014) Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis-associated colorectal cancer acting on Notch signaling and gut microbiota. Int J Cancer 135:2004–2013

    Article  CAS  PubMed  Google Scholar 

  193. Sauer LA, Dauchy RT, Blask DE, Krause JA, Davidson LK, Dauchy EM (2005) Eicosapentaenoic acid suppresses cell proliferation in MCF-7 human breast cancer xenografts in nude rats via a pertussis toxin-sensitive signal transduction pathway. J Nutr 135:2124–2129

    Article  CAS  PubMed  Google Scholar 

  194. Gu Z, Wu J, Wang S, Suburu J, Chen H, Thomas MJ et al (2013) Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells. Carcinogenesis 34:1968–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang S, Wu J, Suburu J, Gu Z, Cai J, Axanova LS et al (2012) Effect of dietary polyunsaturated fatty acids on castration-resistant Pten-null prostate cancer. Carcinogenesis 33:404–412

    Article  PubMed  CAS  Google Scholar 

  196. Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chénais B (2010) Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int J Oncol 36:737–742

    Article  CAS  PubMed  Google Scholar 

  197. Collett ED, Davidson LA, Fan YY, Lupton JR, Chapkin RS (2001) n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am J Physiol Cell Physiol 280:C1066–C1075

    Article  CAS  PubMed  Google Scholar 

  198. Havemose-Poulsen A, Sørensen LK, Stoltze K, Bendtzen K, Holmstrup P (2005) Cytokine profiles in peripheral blood and whole blood cell cultures associated with aggressive periodontitis, juvenile idiopathic arthritis, and rheumatoid arthritis. J Periodontol 76:2276–2285

    Article  CAS  PubMed  Google Scholar 

  199. Guimarães PM, Scavuzzi BM, Stadtlober NP, Franchi Santos LFDR, Lozovoy MAB, Iriyoda TMV et al (2017) Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles. Immunol Cell Biol 95:824–831

    Article  PubMed  CAS  Google Scholar 

  200. Yoshida T, Ichikawa Y, Tojo T, Homma M (1996) Abnormal prostanoid metabolism in lupus nephritis and the effects of a thromboxane A2 synthetase inhibitor, DP-1904. Lupus 5:129–138

    Article  CAS  PubMed  Google Scholar 

  201. Navarro E, Esteve M, Olivé A, Klaassen J, Cabré E, Tena X et al (2000) Abnormal fatty acid pattern in rheumatoid arthritis. A rationale for treatment with marine and botanical lipids. J Rheumatol 27:298–303

    CAS  PubMed  Google Scholar 

  202. Suryaprabha P, Das UN, Ramesh G, Kumar KV, Kumar GS (1991) Reactive oxygen species, lipid peroxides and essential fatty acids in patients with rheumatoid arthritis and systemic lupus erythematosus. Prostaglandins Leukot Essent Fatty Acids 43:251–255

    Article  CAS  PubMed  Google Scholar 

  203. Mohan IK, Das UN (1997) Oxidant stress, anti-oxidants and essential fatty acids in systemic lupus erythematosus. Prostaglandins Leukot Essent Fatty Acids 56:193–198

    Article  CAS  PubMed  Google Scholar 

  204. Horrobin DF (1987) Low prevalences of coronary heart disease (CHD), psoriasis, asthma and rheumatoid arthritis in Eskimos: are they caused by high dietary intake of eicosapentaenoic acid (EPA), a genetic variation of essential fatty acid (EFA) metabolism or a combination of both? Med Hypotheses 22:421–428

    Article  CAS  PubMed  Google Scholar 

  205. Horrobin DF (1984) Essential fatty acid metabolism in diseases of connective tissue with special reference to scleroderma and to Sjogren’s syndrome. Med Hypotheses 14:233–247

    Article  CAS  PubMed  Google Scholar 

  206. Laitinen O, Seppalä E, Nissilä M, Vapaatalo H (1983) Plasma levels and urinary excretion of prostaglandins in patients with rheumatoid arthritis. Clin Rheumatol 2:401–406

    Article  CAS  PubMed  Google Scholar 

  207. Trang LE, Granström E, Lövgren O (1977) Levels of prostaglandins F2 alpha and E2 and thromboxane B2 in joint fluid in rheumatoid arthritis. Scand J Rheumatol 6:151–154

    Article  CAS  PubMed  Google Scholar 

  208. Egg D (1984) Concentrations of prostaglandins D2, E2, F2 alpha, 6-keto-F1 alpha and thromboxane B2 in synovial fluid from patients with inflammatory joint disorders and osteoarthritis. Z Rheumatol 43:89–96

    CAS  PubMed  Google Scholar 

  209. Egg D, Günther R, Herold M, Kerschbaumer F (1980) Prostaglandins E2 and F2 alpha concentrations in the synovial fluid in rheumatoid and traumatic knee joint diseases. Z Rheumatol 39:170–175

    CAS  PubMed  Google Scholar 

  210. Das UN (2012) Is multiple sclerosis a proresolution deficiency disorder? Nutrition 28:951–958

    Article  CAS  PubMed  Google Scholar 

  211. Conte FP, Menezes-de-Lima O Jr, Verri WA Jr, Cunha FQ, Penido C, Henriques MG (2010) Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. Br J Pharmacol 161:911–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chan MM, Moore AR (2010) Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J Immunol 184:6418–6426

    Article  CAS  PubMed  Google Scholar 

  213. Hashimoto A, Hayashi I, Murakami Y, Sato Y, Kitasato H, Matsushita R et al (2007) Antiinflammatory mediator lipoxin A4 and its receptor in synovitis of patients with rheumatoid arthritis. J Rheumatol 34:2144–2153

    CAS  PubMed  Google Scholar 

  214. Thomas E, Leroux JL, Blotman F, Chavis C (1995) Conversion of endogenous arachidonic acid to 5,15-diHETE and lipoxins by polymorphonuclear cells from patients with rheumatoid arthritis. Inflamm Res 44:121–124

    Article  CAS  PubMed  Google Scholar 

  215. Katoh T, Lakkis FG, Makita N, Badr KF (1994) Co-regulated expression of glomerular 12/15-lipoxygenase and interleukin-4 mRNAs in rat nephrotoxic nephritis. Kidney Int 46:341–349

    Article  CAS  PubMed  Google Scholar 

  216. Jiang C, Wang H, Xue M, Lin L, Wang J, Cai G et al (2019) Reprograming of peripheral Foxp3+ regulatory T cell towards Th17-like cell in patients with active systemic lupus erythematosus. Clin Immunol 108267. https://doi.org/10.1016/j.clim.2019.108267

  217. Mohammadi S, Sedighi S, Memarian A (2019) IL-17 is aberrantly overexpressed among under-treatment Systemic Lupus Erythematosus patients. Iran J Pathol 14:236–242

    Article  PubMed  PubMed Central  Google Scholar 

  218. Nordin F, Shaharir SS, Abdul Wahab A, Mustafar R, Abdul Gafor AH, Mohamed Said MS et al (2019) Serum and urine interleukin-17A levels as biomarkers of disease activity in systemic lupus erythematosus. Int J Rheum Dis 22:1419–1426

    CAS  PubMed  Google Scholar 

  219. Zhang Q, Liu S, Ge D, Cunningham DM, Huang F, Ma L et al (2017) Targeting Th17-IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model. Prostate 77:888–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhang Q, Liu S, Parajuli KR, Zhang W, Zhang K, Mo Z et al (2017) Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene 36:687–699

    Article  CAS  PubMed  Google Scholar 

  221. Wang B, Zhao CH, Sun G, Zhang ZW, Qian BM, Zhu YF et al (2019) IL-17 induces the proliferation and migration of glioma cells through the activation of PI3K/Akt1/NF-κB-p65. Cancer Lett 447:93–104

    Article  CAS  PubMed  Google Scholar 

  222. Zhang Y, Wang ZC, Zhang ZS, Chen F (2018) MicroRNA-155 regulates cervical cancer via inducing Th17/Treg imbalance. Eur Rev Med Pharmacol Sci 22:3719–3726

    CAS  PubMed  Google Scholar 

  223. Changchun K, Pengchao H, Ke S, Ying W, Lei W (2017) Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett 13:3253–3260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Akbay EA, Koyama S, Liu Y, Dries R, Bufe LE, Silkes M et al (2017) Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol 12:1268–1279

    Article  PubMed  PubMed Central  Google Scholar 

  225. Borbiro I, Badheka D, Rohacs T (2015) Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal 8:ra15. https://doi.org/10.1126/scisignal.2005667

  226. Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF et al (2019) Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun 10(1):1200. https://doi.org/10.1038/s41467-019-09055-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Accardi A (2015) Lipids link ion channels and cancer. Science 349:789–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Liu CSC, Raychaudhuri D, Paul B, Chakrabarty Y, Ghosh AR, Rahaman O et al (2018) Piezo1 mechanosensors optimize human T cell activation. J Immunol 200:1255–1260

    Article  CAS  PubMed  Google Scholar 

  229. Chandy KG, Norton RS (2016) Channelling potassium to fight cancer. Nature 537:497–498

    Article  CAS  PubMed  Google Scholar 

  230. Ordway R, Walsh JV Jr, Singer JJ (1989) Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science 244:1176–1179

    Article  CAS  PubMed  Google Scholar 

  231. Kim D, Clapham DE (1989) Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 244:1174–1176

    Article  CAS  PubMed  Google Scholar 

  232. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunskit M (1990) Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247:852–854

    Article  CAS  PubMed  Google Scholar 

  233. Isaacs JT (2013) Prostate cancer takes nerve. Science 341:134–135

    Article  CAS  PubMed  Google Scholar 

  234. Hayakawa Y, Wang TC (2017) Nerves switch on angiogenic metabolism. Science 358:305–306

    Article  PubMed  Google Scholar 

  235. Barria A (2019) Dangerous liaisons as tumours form synapses. Nature 573:1–2

    Article  CAS  Google Scholar 

  236. Walev I, Klein J, Husmann M, Valeva A, Strauch S, Wirtz H et al (2000) Potassium regulates IL-1β processing via calcium-independent phospholipase A2. J Immunol 164:5120–5124

    Article  CAS  PubMed  Google Scholar 

  237. Walev I, Reske K, Palmer M, Valeva A, Bhakdi S (1995) Potassium-inhibited processing of IL-1β in human monocytes. EMBO J 14:1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576

    Article  CAS  PubMed  Google Scholar 

  239. McGowan SE, Jackson SK, Doro MM, Olson PJ (1997) Peroxisome proliferators alter lipid acquisition and elastin gene expression in neonatal rat lung fibroblasts. Am J Physiol 273:L1249–L1257

    CAS  PubMed  Google Scholar 

  240. Das UN (1993) Oxy radicals and their clinical implications. Curr Sci 65:964–968

    CAS  Google Scholar 

  241. Lin HL, Liu TY, Chau GY, Lui WY, Chi CW (2000) Comparison of 2-methoxyestradiol-induced, docetaxel-induced, and paclitaxel-induced apoptosis in hepatoma cells and its correlation with reactive oxygen species. Cancer 89:983–994

    Article  CAS  PubMed  Google Scholar 

  242. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390–395

    Article  CAS  PubMed  Google Scholar 

  243. Das UN (2002) A radical approach to cancer. Med Sci Monit 8:RA79–RA92

    PubMed  Google Scholar 

  244. Ge Y, Byun JS, De Luca P, Gueron G, Yabe IM, Sadiq-Ali SG et al (2008) Combinatorial antileukemic disruption of oxidative homeostasis and mitochondrial stability by the redox reactive thalidomide 2-(2,4-difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) and flavopiridol. Mol Pharmacol 74:872–883

    Article  CAS  PubMed  Google Scholar 

  245. Colquhoun A (2009) Mechanisms of action of eicosapentaenoic acid in bladder cancer cells in vitro: alterations in mitochondrial metabolism, reactive oxygen species generation and apoptosis induction. J Urol 181:1885–1893

    Article  CAS  PubMed  Google Scholar 

  246. Naidu MR, Das UN, Kishan A (1992) Intratumoral gamma-linoleic acid therapy of human gliomas. Prostaglandins Leukot Essent Fatty Acids 45:181–184

    Article  CAS  PubMed  Google Scholar 

  247. Das UN, Prasad VV, Reddy DR (1995) Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett 94:147–155

    Article  CAS  PubMed  Google Scholar 

  248. Bakshi A, Mukherjee D, Bakshi A, Banerji AK, Das UN (2003) Gamma-linolenic acid therapy of human gliomas. Nutrition 19:305–309

    Article  CAS  PubMed  Google Scholar 

  249. Das UN (2007) Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies. Med Sci Monit 13:RA119–RRA31

    CAS  PubMed  Google Scholar 

  250. Reddy DR, Prasad VS, Das UN (1998) Intratumoural injection of gamma linolenic acid in malignant gliomas. J Clin Neurosci 5:36–39

    Article  CAS  PubMed  Google Scholar 

  251. Smith DL, Willis AL, Mahmud I (1984) Eicosanoid effects on cell proliferation in vitro: relevance to atherosclerosis. Prostaglandins Leukot Med 16:1–10

    Article  CAS  PubMed  Google Scholar 

  252. Sakai T, Yamaguchi N, Shiroko Y, Sekiguchi M, Fujii G, Nishino H (1984) Prostaglandin D2 inhibits the proliferation of human malignant tumor cells. Prostaglandins 27:17–26

    Article  CAS  PubMed  Google Scholar 

  253. Rohrbach S (2009) Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm Des 15:4103–4116

    Article  CAS  PubMed  Google Scholar 

  254. Tuo Y, Wang D, Li S, Chen C (2011) Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine 39:128–138

    Article  CAS  PubMed  Google Scholar 

  255. Zeghichi-Hamri S, de Lorgeril M, Salen P, Chibane M, de Leiris J, Boucher F et al (2010) Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats. Nutr Res 30:849–857

    Article  CAS  PubMed  Google Scholar 

  256. Hagopian K, Weber KL, Hwee DT, Van Eenennaam AL, López-Lluch G, Villalba JM et al (2010) Complex I-associated hydrogen peroxide production is decreased and electron transport chain enzyme activities are altered in n-3 enriched fat-1 mice. PLoS One 5:e12696. https://doi.org/10.1371/journal.pone.0012696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kansal S, Negi AK, Kaur R, Sarotra P, Sharma G, Aggarwal R et al (2011) Evaluation of the role of oxidative stress in chemopreventive action of fish oil and celecoxib in the initiation phase of 7,12-dimethyl benz(α)anthracene-induced mammary carcinogenesis. Tumour Biol 32:167–177

    Article  CAS  PubMed  Google Scholar 

  258. Virgili F, Santini MP, Canali R, Polakowska RR, Haake A, Perozzi G (1998) Bcl-2 overexpression in the HaCaT cell line is associated with a different membrane fatty acid composition and sensitivity to oxidative stress. Free Radic Biol Med 24:93–101

    Article  CAS  PubMed  Google Scholar 

  259. Sailaja P, Dwarakanath BS, Das UN (2018) Arachidonic acid activates extrinsic apoptotic pathway to enhance tumoricidal action of bleomycin against IMR-32 cells. Prostaglandins Leukot Essen Fatty Acids 132:16–22

    Article  CAS  Google Scholar 

  260. Dymkowska D, Wojtczak L (2009) Arachidonic acid-induced apoptosis in rat hepatoma AS-30D cells is mediated by reactive oxygen species. Acta Biochim Pol 56:711–715

    Article  CAS  PubMed  Google Scholar 

  261. Ribeiro G, Benadiba M, de Oliveira SD, Colquhoun A (2010) The novel ruthenium-gamma-linolenic complex [Ru(2)(aGLA)(4)Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosis in vitro. Cell Biochem Funct 28:15–23

    Article  CAS  PubMed  Google Scholar 

  262. Giros A, Grzybowski M, Sohn VR, Pons E, Fernandez-Morales J, Xicola RM et al (2009) Regulation of colorectal cancer cell apoptosis by the n-3 polyunsaturated fatty acids Docosahexaenoic and Eicosapentaenoic. Cancer Prev Res (Phila) 2:732–742

    Article  CAS  Google Scholar 

  263. Das UN (2011) Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells. Clin Lipidol 6:463–489

    Article  CAS  Google Scholar 

  264. Halliwell BA (2000) Superway to kill cancer cells? Nature Med 6:1105–1106

    Article  CAS  PubMed  Google Scholar 

  265. Ponnala S, Rao KP, Chaudhury JR, Ahmed J, Rama Rao B, Kanjilal S et al (2009) Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in vitro and in vivo. Prostaglandins Leukot Essent Fatty Acids 80:43–50

    Google Scholar 

  266. Das UN, Rao KP (2006) Effect of gamma-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins Leukot Essent Fatty Acids 74:165–173

    Article  CAS  PubMed  Google Scholar 

  267. Das UN, Ramadevi G, Rao KP, Rao MS (1985) Prostaglandins and their precursors can modify genetic damage-induced by gamma-radiation and benzo(a)pyrene. Prostaglandins 29:911–920

    Article  CAS  PubMed  Google Scholar 

  268. Das UN (2006) Tumoricidal and anti-angiogenic actions of gamma-linolenic acid and its derivatives. Curr Pharm Biotechnol 7:457–466

    Article  CAS  PubMed  Google Scholar 

  269. Dhayal S, Morgan NG (2011) Pharmacological characterization of the cytoprotective effects of polyunsaturated fatty acids in insulin-secreting BRIN-BD11 cells. Br J Pharmacol 162:1340–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of omega-6 fatty acids. Nutrition 19:93–114

    Article  CAS  PubMed  Google Scholar 

  271. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Effect of omega-3 fatty acids. Nutrition 19:213–228

    Article  CAS  PubMed  Google Scholar 

  272. Bazan NG (2007) Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 10:136–141

    Article  CAS  PubMed  Google Scholar 

  273. Sangeetha PS, Das UN (1993) Gamma-linolenic acid and eicosapentaenoic acid potentiate the cytotoxicity of anti-cancer drugs on human cervical carcinoma (HeLa) cells in vitro. Med Sci Res 21:457–459

    Google Scholar 

  274. Madhavi N, Das UN (1994) Reversal of KB-3-1 and KB-Ch-8-5 tumor cell drug-resistance by cis-unsaturated fatty acids in vitro. Med Sci Res 22:689–692

    Google Scholar 

  275. Madhavi N, Das UN (1994) Effect of n-6 and n-3 fatty acids on the survival of vincristine sensitive and resistant human cervical carcinoma cells in vitro. Cancer Lett 84:31–41

    Article  CAS  PubMed  Google Scholar 

  276. Das UN, Madhavi N, Sravan Kumar G, Padma M, Sangeetha P (1998) Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids 58:39–54

    Google Scholar 

  277. Germain E, Chajès V, Cognault S, Lhuillery C, Bougnoux P (1998) Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. Int J Cancer 75:578–583

    Article  CAS  PubMed  Google Scholar 

  278. Mahéo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P et al (2005) Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radic Biol Med 39:742–751

    Article  PubMed  CAS  Google Scholar 

  279. Ilc K, Ferrero JM, Fischel JL, Formento P, Bryce R, Etienne MC et al (1999) Cytotoxic effects of two gamma linoleic salts (lithium gammalinolenate or meglumine gammalinolenate) alone or associated with a nitrosourea: an experimental study on human glioblastoma cell lines. Anticancer Drugs 10:413–417

    Article  CAS  PubMed  Google Scholar 

  280. Menendez JA, Ropero S, Lupu R, Colomer R (2004) Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: Relationship to lipid peroxidation and HER-2/neu expression. Oncol Rep 11:1241–1252

    CAS  PubMed  Google Scholar 

  281. Menéndez JA, Ropero S, del Barbacid MM, Montero S, Solanas M, Escrich E et al (2002) Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Res Treat 72:203–219

    Article  PubMed  Google Scholar 

  282. Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R (2004) Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol 24:1369–1383

    CAS  PubMed  Google Scholar 

  283. Kong X, Ge H, Chen L, Liu Z, Yin Z, Li P et al (2009) Gamma-linolenic acid modulates the response of multidrug-resistant K562 leukemic cells to anticancer drugs. Toxicol In Vitro 23:634–639

    Article  CAS  PubMed  Google Scholar 

  284. Buckingham LE, Balasubramanian M, Safa AR, Shah H, Komarov P, Emanuele RM et al (1998) Reversal of multi-drug resistance in vitro by fatty acid-PEG-fatty acid diesters. Int J Cancer 65:74–79

    Article  Google Scholar 

  285. Ramesh G, Das UN, Koratkar R, Padma M, Sagar PS (1992) Effect of essential fatty acids on tumor cells. Nutrition 8:343–347

    CAS  PubMed  Google Scholar 

  286. Huang ZH, Hii CS, Rathjen DA, Poulos A, Murray AW, Ferrante A (1997) N-6 and N-3 polyunsaturated fatty acids stimulate translocation of protein kinase C alpha, beta I, beta II and –epsilon and enhance agonist-induced NADPH oxidase in macrophages. Biochem J 325:553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Peterson DA, Mehta N, Butterfield J, Husak M, Christopher MM, Jagarlapudi S et al (1988) Polyunsaturated fatty acids stimulate superoxide formation in tumor cells: a mechanism for specific cytotoxicity and a model for tumor necrosis factor? Biochem Biophys Res Commun 155:1033–1037

    Article  CAS  PubMed  Google Scholar 

  288. Chiu LC, Wan JM (1999) Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett 145:17–27

    Article  CAS  PubMed  Google Scholar 

  289. Albino AP, Juan G, Traganos F, Reinhart L, Connolly J, Rose DP et al (2000) Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation. Cancer Res 60:4139–4145

    CAS  PubMed  Google Scholar 

  290. Chen ZY, Istfan NW (2001) Docosahexaenoic acid, a major constituent of fish oil diets, prevents activation of cyclin-dependent kinases and S-phase entry by serum stimulation in HT-29 cells. Prostaglandins Leukot Essen Fatty Acids 64:67–73

    Article  CAS  Google Scholar 

  291. Anasuya HD, Naidu VGM, Das UN (2018) n-6 and n-3 Fatty acids and their metabolites augment inhibitory action of doxorubicin on the proliferation of human neuroblastoma (IMR-32) cells by enhancing lipid peroxidation and suppressing Ras, Myc, and Fos. Biofactors 44:387–401

    Article  CAS  Google Scholar 

  292. Palakurthi SS, Fluckiger R, Aktas H, Changolkar AK, Shahsafaei A, Harneit S et al (2006) Inhibition of translation initiation mediates the anticancer effect of the n-3 polyunsaturated fatty acid eicosapentaenoic acid. Cancer Res 60:2919–2925

    Google Scholar 

  293. Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H (2000) Gαi and Gαo are target proteins of reactive oxygen species. Nature 408:492–495

    Article  CAS  PubMed  Google Scholar 

  294. Bai Y, Wang J, He Z, Yang M, Li L, Jiang H (2019) Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-inflammatory cytokines. Med Sci Monit 25:3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Wada K, Arita M, Nakajima A, Katayama K, Kudo C, Kamisaki Y et al (2006) FASEB J 2:1785–1792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, U.N. (2020). Bioactive Lipids in Age-Related Disorders. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_3

Download citation

Publish with us

Policies and ethics