Skip to main content

Ultrasound Molecular Imaging of Cancer: Design and Formulation Strategies of Targeted Contrast Agents

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

Gas-filled particles (microbubbles) can be prepared and stabilized for intravascular use as contrast agents in ultrasound imaging. Microbubbles are used in clinics as blood pool contrast materials for the past two decades. Shell of these bubbles is made of biocompatible and biodegradable lipids, proteins, and/or polymers. Gas core is air, or, lately, a perfluorinated gas, poorly soluble in water and blood. Making them useful for molecular targeting and molecular imaging in oncology is accomplished by decorating the shell of these particles with targeting ligands, that will selectively bind to the specific markers of tumor vasculature. In this review we discuss the formulation strategy for microbubble preparation, the logic of bubble shell selection, coupling tools that are used for the attachment of targeting ligands, and examples of the application of gas-filled bubbles for molecular imaging in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL (2010) scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol 45(10):579–585. https://doi.org/10.1097/RLI.0b013e3181efd581

    Article  CAS  PubMed  Google Scholar 

  2. Averkiou M, Powers J, Skyba D, Bruce M, Jensen S (2003) Ultrasound contrast imaging research. Ultrasound Q 19(1):27–37

    Article  PubMed  Google Scholar 

  3. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  4. Bogdanov AA Jr, Klibanov AL, Torchilin VP (1988) Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide. FEBS Lett 231(2):381–384

    Article  CAS  PubMed  Google Scholar 

  5. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97(26):14608–14613. https://doi.org/10.1073/pnas.97.26.14608

    Article  CAS  PubMed  Google Scholar 

  6. Cheng KT (2004) Perflexane-lipid microspheres. In: Molecular imaging and contrast agent database (MICAD). Bethesda, MD

    Google Scholar 

  7. Chlon C, Guedon C, Verhaagen B, Shi WT, Hall CS, Lub J, Bohmer MR (2009) Effect of molecular weight, crystallinity, and hydrophobicity on the acoustic activation of polymer-shelled ultrasound contrast agents. Biomacromol 10(5):1025–1031. https://doi.org/10.1021/bm801243u

    Article  CAS  Google Scholar 

  8. Ellegala DB, Leong-Poi H, Carpenter JE, Klibanov AL, Kaul S, Shaffrey ME, Sklenar J, Lindner JR (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108(3):336–341. https://doi.org/10.1161/01.CIR.0000080326.15367.0C

    Article  PubMed  Google Scholar 

  9. Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527(7579):499–502. https://doi.org/10.1038/nature16066

    Article  CAS  PubMed  Google Scholar 

  10. Fan X, Wang L, Guo Y, Tu Z, Li L, Tong H, Xu Y, Li R, Fang K (2015) Ultrasonic nanobubbles carrying anti-PSMA nanobody: construction and application in prostate cancer-targeted imaging. PLoS One 10(6):e0127419. https://doi.org/10.1371/journal.pone.0127419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fisher NG, Christiansen JP, Klibanov A, Taylor RP, Kaul S, Lindner JR (2002) Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol 40(4):811–819

    Article  CAS  PubMed  Google Scholar 

  12. Fokong S, Theek B, Wu Z, Koczera P, Appold L, Jorge S, Resch-Genger U, van Zandvoort M, Storm G, Kiessling F, Lammers T (2012) Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J Control Release 163(1):75–81. https://doi.org/10.1016/j.jconrel.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Forsberg F, Piccoli CW, Liu JB, Rawool NM, Merton DA, Mitchell DG, Goldberg BB (2002) Hepatic tumor detection: MR imaging and conventional US versus pulse-inversion harmonic US of NC100100 during its reticuloendothelial system-specific phase. Radiology 222(3):824–829. https://doi.org/10.1148/radiol.2223001786

    Article  PubMed  Google Scholar 

  14. Fritz TA, Unger EC, Sutherland G, Sahn D (1997) Phase I clinical trials of MRX-115. A new ultrasound contrast agent. Invest Radiol 32(12):735–740

    Google Scholar 

  15. Gao Y, Hernandez C, Yuan HX, Lilly J, Kota P, Zhou H, Wu H, Exner AA (2017) Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents. Nanomedicine 13(7):2159–2168. https://doi.org/10.1016/j.nano.2017.06.001

    Article  CAS  Google Scholar 

  16. Garg S, Thomas AA, Borden MA (2013) The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials 34(28):6862–6870. https://doi.org/10.1016/j.biomaterials.2013.05.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hauff P, Fritzsch T, Reinhardt M, Weitschies W, Luders F, Uhlendorf V, Heldmann D (1997) Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission. Invest Radiol 32(2):94–99

    Article  CAS  PubMed  Google Scholar 

  18. Helfield BL, Huo X, Williams R, Goertz DE (2012) The effect of preactivation vial temperature on the acoustic properties of definity. Ultrasound Med Biol 38(7):1298–1305. https://doi.org/10.1016/j.ultrasmedbio.2012.03.005

    Article  PubMed  Google Scholar 

  19. Hernot S, Unnikrishnan S, Du Z, Shevchenko T, Cosyns B, Broisat A, Toczek J, Caveliers V, Muyldermans S, Lahoutte T, Klibanov AL, Devoogdt N (2012) Nanobody-coupled microbubbles as novel molecular tracer. J Control Release 158(2):346–353. https://doi.org/10.1016/j.jconrel.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  20. Hughes MS, McCarthy JE, Marsh JN, Arbeit JM, Neumann RG, Fuhrhop RW, Wallace KD, Znidersic DR, Maurizi BN, Baldwin SL, Lanza GM, Wickline SA (2007) Properties of an entropy-based signal receiver with an application to ultrasonic molecular imaging. J Acoust Soc Am 121(6):3542–3557. https://doi.org/10.1121/1.2722050

    Article  CAS  PubMed  Google Scholar 

  21. Hvattum E, Uran S, Sandbaek AG, Karlsson AA, Skotland T (2006) Quantification of phosphatidylserine, phosphatidic acid and free fatty acids in an ultrasound contrast agent by normal-phase high-performance liquid chromatography with evaporative light scattering detection. J Pharm Biomed Anal 42(4):506–512. https://doi.org/10.1016/j.jpba.2006.04.027

    Article  CAS  PubMed  Google Scholar 

  22. Kallinowski F, Schlenger KH, Runkel S, Kloes M, Stohrer M, Okunieff P, Vaupel P (1989) Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res 49(14):3759–3764

    CAS  PubMed  Google Scholar 

  23. Keller MW, Glasheen W, Kaul S (1989) Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J Am Soc Echocardiogr 2(1):48–52

    Article  CAS  PubMed  Google Scholar 

  24. Klibanov AL, Hughes MS, Marsh JN, Hall CS, Miller JG, Wible JH, Brandenburger GH (1997) Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Suppl 412:113–120

    CAS  PubMed  Google Scholar 

  25. Koczera P, Appold L, Shi Y, Liu M, Dasgupta A, Pathak V, Ojha T, Fokong S, Wu Z, van Zandvoort M, Iranzo O, Kuehne AJC, Pich A, Kiessling F, Lammers T (2017) PBCA-based polymeric microbubbles for molecular imaging and drug delivery. J Control Release 259:128–135. https://doi.org/10.1016/j.jconrel.2017.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krupka TM, Solorio L, Wilson RE, Wu H, Azar N, Exner AA (2010) Formulation and characterization of echogenic lipid-pluronic nanobubbles. Mol Pharm 7(1):49–59. https://doi.org/10.1021/mp9001816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leighton TG (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  28. Leong-Poi H, Song J, Rim SJ, Christiansen J, Kaul S, Lindner JR (2002) Influence of microbubble shell properties on ultrasound signal: implications for low-power perfusion imaging. J Am Soc Echocardiogr 15(10 Pt 2):1269–1276

    Article  PubMed  Google Scholar 

  29. Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K (2001) Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104(17):2107–2112

    Article  CAS  Google Scholar 

  30. Liu X, Gong P, Song P, Xie F, Miller Ii AL, Chen S, Lu L (2018) Fast functionalization of ultrasound microbubbles using strain promoted click chemistry. Biomater Sci 6(3):623–632. https://doi.org/10.1039/c8bm00004b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu E, Wagner WR, Schellenberger U, Abraham JA, Klibanov AL, Woulfe SR, Csikari MM, Fischer D, Schreiner GF, Brandenburger GH, Villanueva FS (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108(1):97–103. https://doi.org/10.1161/01.CIR.0000079100.38176.83

    Article  CAS  PubMed  Google Scholar 

  32. Palmowski M, Morgenstern B, Hauff P, Reinhardt M, Huppert J, Maurer M, Woenne EC, Doerk S, Ladewig G, Jenne JW, Delorme S, Grenacher L, Hallscheidt P, Kauffmann GW, Semmler W, Kiessling F (2008) Pharmacodynamics of streptavidin-coated cyanoacrylate microbubbles designed for molecular ultrasound imaging. Invest Radiol 43(3):162–169. https://doi.org/10.1097/RLI.0b013e31815a251b

    Article  CAS  PubMed  Google Scholar 

  33. Perera R, de Leon A, Wang X, Wang Y, Ramamurthy G, Peiris P, Abenojar E, Basilion JP, Exner AA (2019) Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles. bioRxiv. https://doi.org/10.1101/634444

  34. Perflutren (2001) http://www.definityimaging.com. Accessed 05 June 2019

  35. Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Passantino L, Schneider M (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45(2):89–95. https://doi.org/10.1097/RLI.0b013e3181c5927c

    Article  CAS  PubMed  Google Scholar 

  36. Rychak JJ, Graba J, Cheung AM, Mystry BS, Lindner JR, Kerbel RS, Foster FS (2007) Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6(5):289–296

    Article  PubMed  Google Scholar 

  37. Schneider M, Arditi M, Barrau MB, Brochot J, Broillet A, Ventrone R, Yan F (1995) BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 30(8):451–457

    Article  CAS  PubMed  Google Scholar 

  38. Schneider M, Brochot J, Puginier J, Yan F (1993) Stable microbubble suspensions comprising saturated phospholipids for ultrasound echography. USA Patent US5686060A

    Google Scholar 

  39. Senior R, Monaghan M, Main ML, Zamorano JL, Tiemann K, Agati L, Weissman NJ, Klein AL, Marwick TH, Ahmad M, DeMaria AN, Zabalgoitia M, Becher H, Kaul S, Udelson JE, Wackers FJ, Walovitch RC, Picard MH, Ramp-1 and Ramp-2 Investigators (2009) Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging. Eur J Echocardiogr 10(1):26–35. https://doi.org/10.1093/ejechocard/jen321

  40. Shen Y, Lv W, Yang H, Cai W, Zhao P, Zhang L, Zhang J, Yuan L, Duan Y (2019) FA-NBs-IR780: Novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett 455:14–25. https://doi.org/10.1016/j.canlet.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  41. Slagle CJ, Thamm DH, Randall EK, Borden MA (2018) Click conjugation of cloaked peptide ligands to microbubbles. Bioconjug Chem 29(5):1534–1543. https://doi.org/10.1021/acs.bioconjchem.8b00084

    Article  CAS  PubMed  Google Scholar 

  42. Smeenge M, Tranquart F, Mannaerts CK, de Reijke TM, van de Vijver MJ, Laguna MP, Pochon S, de la Rosette J, Wijkstra H (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol 52(7):419–427. https://doi.org/10.1097/RLI.0000000000000362

    Article  CAS  Google Scholar 

  43. Smith MD, Elion JL, McClure RR, Kwan OL, DeMaria AN (1989) Left heart opacification with peripheral venous injection of a new saccharide echo contrast agent in dogs. J Am Coll Cardiol 13(7):1622–1628

    Article  CAS  PubMed  Google Scholar 

  44. Spivak I, Rix A, Schmitz G, Fokong S, Iranzo O, Lederle W, Kiessling F (2016) Low-dose molecular ultrasound imaging with E-selectin-targeted PBCA microbubbles. Mol Imaging Biol 18(2):180–190. https://doi.org/10.1007/s11307-015-0894-9

    Article  CAS  PubMed  Google Scholar 

  45. Straub JA, Chickering DE, Church CC, Shah B, Hanlon T, Bernstein H (2005) Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography. J Control Release 108(1):21–32. https://doi.org/10.1016/j.jconrel.2005.07.020

    Article  CAS  PubMed  Google Scholar 

  46. Streeter JE, Gessner RC, Tsuruta J, Feingold S, Dayton PA (2011) Assessment of molecular imaging of angiogenesis with three-dimensional ultrasonography. Mol Imaging 10(6):460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szabo TL (2014) Diagnostic ultrasound imaging: inside out, 2nd edn. Academic Press, Oxford., p 25

    Google Scholar 

  48. Unnikrishnan S, Du Z, Diakova G, Klibanov AL (2018) Formation of microbubbles for targeted ultrasound contrast imaging: practical translation considerations. Langmuir. https://doi.org/10.1021/acs.langmuir.8b03551

    Article  Google Scholar 

  49. Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, Brandenburger GH, Wagner WR (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98(1):1–5

    Article  CAS  PubMed  Google Scholar 

  50. Villanueva FS, Lu E, Bowry S, Kilic S, Tom E, Wang J, Gretton J, Pacella JJ, Wagner WR (2007) Myocardial ischemic memory imaging with molecular echocardiography. Circulation 115(3):345–352. https://doi.org/10.1161/CIRCULATIONAHA.106.633917

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang S, Herbst EB, Mauldin FW Jr, Diakova GB, Klibanov AL, Hossack JA (2016) Ultra-low-dose ultrasound molecular imaging for the detection of angiogenesis in a mouse murine tumor model: how little can we see? Invest Radiol 51(12):758–766. https://doi.org/10.1097/RLI.0000000000000310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Willmann JK, Bonomo L, Testa AC, Rinaldi P, Rindi G, Valluru KS, Petrone G, Martini M, Lutz AM, Gambhir SS (2017) Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol 35(19):2133–2140. https://doi.org/10.1200/JCO.2016.70.8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS (2010) Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 51(3):433–440. https://doi.org/10.2967/jnumed.109.068007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu H, Rognin NG, Krupka TM, Solorio L, Yoshiara H, Guenette G, Sanders C, Kamiyama N, Exner AA (2013) Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med Biol 39(11):2137–2146. https://doi.org/10.1016/j.ultrasmedbio.2013.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yeh JS, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P (2015) A targeting microbubble for ultrasound molecular imaging. PLoS One 10(7):e0129681. https://doi.org/10.1371/journal.pone.0129681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756

    CAS  PubMed  Google Scholar 

  57. Zhang H, Tam S, Ingham ES, Mahakian LM, Lai CY, Tumbale SK, Teesalu T, Hubbard NE, Borowsky AD, Ferrara KW (2015) Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble. Biomaterials 56:104–113. https://doi.org/10.1016/j.biomaterials.2015.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zlitni A, Janzen N, Foster FS, Valliant JF (2014) Catching bubbles: targeting ultrasound microbubbles using bioorthogonal inverse-electron-demand Diels-Alder reactions. Angew Chem Int Ed Engl 53(25):6459–6463. https://doi.org/10.1002/anie.201402473

    Article  CAS  PubMed  Google Scholar 

  59. Zlitni A, Yin M, Janzen N, Chatterjee S, Lisok A, Gabrielson KL, Nimmagadda S, Pomper MG, Foster FS, Valliant JF (2017) Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry. PLoS One 12(5):e0176958. https://doi.org/10.1371/journal.pone.0176958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.L. Klibanov is supported in part via NIH R01 EB023055, awarded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health. The content of this publication is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Klibanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klibanov, A.L. (2020). Ultrasound Molecular Imaging of Cancer: Design and Formulation Strategies of Targeted Contrast Agents. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics