Skip to main content

Conventional Oxygen Therapy: Technical and Physiological Issues

  • Chapter
  • First Online:
High Flow Nasal Cannula

Abstract

Dioxygen was discovered more than two centuries ago but the large-scale clinical utilization began during the twentieth century. The slowness of the introduction of oxygen as a therapy is explained by the initial caution linked to potential toxicity, technical administration problems and the first mixed results. Modern conventional oxygen therapy with continuous oxygen flow below 15 L/min is now one of the most used drugs in hospitals and in the prehospital setting. The first aim of oxygen therapy is to treat hypoxemia, and the second is to avoid hyperoxemia, a frequently overlooked complication. Hyperoxemia leads to induced hypercapnia in several clinical situations, especially in severe COPD patients; retinopathy in premature infants; arterial vasoconstriction; and cellular damage. The multi-organ and systemic toxicity of oxygen is responsible for increased mortality when this gas is administered liberally in acutely ill patients. The most recent recommendations favor a restrictive use of oxygen and oblige clinicians to consider hyperoxemia detrimental to patients such as hypoxemia. SpO2 between 88% and 92% should be targeted for patients at risk of hypercapnia (beyond COPD) and SpO2 between 90 and 94% should be targeted in other populations. New devices that accurately titrate O2 flow rate based on SpO2 target may help to achieve these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papazian L, et al. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med. 2016;42(9):1336–49.

    Article  CAS  PubMed  Google Scholar 

  2. O'Driscoll BR, et al. British Thoracic Society emergency oxygen audits. Thorax. 2011;66(8):734–5.

    Article  CAS  PubMed  Google Scholar 

  3. Hale KE, Gavin C, O'Driscoll BR. Audit of oxygen use in emergency ambulances and in a hospital emergency department. Emerg Med J. 2008;25(11):773–6.

    Article  CAS  PubMed  Google Scholar 

  4. The National Confidential Enquiry into Patient Outcome and Death. Inspiring Change. 2017. London 2017.

    Google Scholar 

  5. Austin MA, et al. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010;341:c5462.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chu DK, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391(10131):1693–705.

    Article  PubMed  Google Scholar 

  7. Girardis M, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–9.

    Article  CAS  PubMed  Google Scholar 

  8. Beasley R, et al. High-concentration oxygen therapy in COPD. Lancet. 2011;378(9795):969–70.

    Article  PubMed  Google Scholar 

  9. McEvoy JW. Excess oxygen in acute illness: adding fuel to the fire. Lancet. 2018;391(10131):1640–2.

    Article  PubMed  Google Scholar 

  10. Lellouche F. Oxygen for myocardial infarction: not an open Bar! JACC Cardiovasc Interv. 2018;11(16):1598–600.

    Article  PubMed  Google Scholar 

  11. O'Driscoll BR, et al. A study of attitudes, beliefs and organisational barriers related to safe emergency oxygen therapy for patients with COPD (chronic obstructive pulmonary disease) in clinical practice and research. BMJ Open Respir Res. 2016;3(1):e000102.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Burls A, et al. Oxygen use in acute myocardial infarction: an online survey of health professionals' practice and beliefs. Emerg Med J. 2010;27:283–6.

    Article  PubMed  Google Scholar 

  13. O'Driscoll BR, et al. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017;72(Suppl 1):ii1–ii90.

    Article  CAS  PubMed  Google Scholar 

  14. Siemieniuk RAC, et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ. 2018;363:k4169.

    Article  PubMed  Google Scholar 

  15. Sjoberg F, Singer M. The medical use of oxygen: a time for critical reappraisal. J Intern Med. 2013;274(6):505–28.

    Article  CAS  PubMed  Google Scholar 

  16. Davies CE, Mackinnon J. Neurological effects of oxygen in chronic cor pulmonale. Lancet. 1949;2(6585):883–5. illust

    Article  CAS  PubMed  Google Scholar 

  17. Terry TL. Extreme prematurity and fibroblastic overgrowth of persistent vascular sheath behind each crystalline lens. Am J Ophthalmol. 1942;25:203–4.

    Article  Google Scholar 

  18. Patz A, Hoeck LE, De La Cruz E. Studies on the effect of high oxygen administration in retrolental fibroplasia. I. Nursery observations. Am J Ophthalmol. 1952;35(9):1248–53.

    Article  CAS  PubMed  Google Scholar 

  19. Cousins JL, Wark PA, McDonald VM. Acute oxygen therapy: a review of prescribing and delivery practices. Int J Chron Obstruct Pulmon Dis. 2016;11:1067–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ringbaek TJ, Terkelsen J, Lange P. Outcomes of acute exacerbations in COPD in relation to pre-hospital oxygen therapy. Eur Clin Respir J. 2015;2

    Google Scholar 

  21. Foregger R. The rotameter and the waterwheel. Anaesthesist. 2001;50:701–8.

    Article  CAS  PubMed  Google Scholar 

  22. Cirio S, Nava S. Pilot study of a new device to titrate oxygen flow in hypoxic patients on long-term oxygen therapy. Respir Care. 2011;56(4):429–34.

    Article  PubMed  Google Scholar 

  23. Claure N, Bancalari E. Automated closed loop control of inspired oxygen concentration. Respir Care. 2013;58(1):151–61.

    Article  PubMed  Google Scholar 

  24. Lellouche F, L'Her E. Automated oxygen flow titration to maintain constant oxygenation. Respir Care. 2012;57(8):1254–62.

    Article  PubMed  Google Scholar 

  25. Rice KL, et al. A portable, closed-loop oxygen conserving device for stable COPD patients: comparison with fixed dose delivery systems. Respir Care. 2011;

    Google Scholar 

  26. Hansen EF, et al. Automated oxygen control with O2matic® during admission with exacerbation of COPD. Int J COPD. 2018;13:3997–4003.

    Article  CAS  Google Scholar 

  27. Heffner JE. The story of oxygen. Respir Care. 2013;58(1):18–31.

    Article  PubMed  Google Scholar 

  28. Prinke RT. New light on the alchemical writings of Michael Sendivogius (1566–1636). Ambix. 2016;63(3):217–43.

    Article  PubMed  Google Scholar 

  29. Lavoisier A-L. Mémoire sur la combustion en général. Mémoires de l'Académie des Sciences, 1777: p. 593.

    Google Scholar 

  30. Holmes Frédéric L. The boundaries of Lavoisier's chemical revolution /Les limites de la révolution chimique de Lavoisier. Débats et chantiers actuels autour de Lavoisier et de la révolution chimique. Revue d'histoire des Sciences. 1995;48(1–2):9–48.

    Article  Google Scholar 

  31. Priestley J. Experiments and observations on different kinds of air, vol. 101. 2nd ed. London: J. Johnson; 1775.

    Google Scholar 

  32. Caillens, Observations sur un nouveau moyen de remedier à la phtisie pulmonaire. Gazette de Santé, 1783: p. 38.

    Google Scholar 

  33. Beddoes T, Watt J. Considerations on the medicinal use, and on the production of factitious airs. Ann Med. 1796:245–65.

    Google Scholar 

  34. Leigh JM. Early treatment with oxygen. The pneumatic institute and the panaceal literature of the nineteenth century. Anaesthesia. 1974;29(2):194–208.

    Article  CAS  PubMed  Google Scholar 

  35. Grainge C. Breath of life: the evolution of oxygen therapy. J R Soc Med. 2004;97(10):489–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Smith AH. Oxygen gas as a remedy in disease. New York: D. Appleton & Company; 1870.

    Google Scholar 

  37. Haldane JS. Respiration. London: Oxford University Press; 1922.

    Book  Google Scholar 

  38. Barcroft JR. Supply of oxygen to the tissues. The scientific monthly, vol. 11. New York: The Science Press; 1920.

    Google Scholar 

  39. Christiansen J, Douglas CG, Haldane JS. The absorption and dissociation of carbon dioxide by human blood. J Physiol. 1914;48(4):244–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jobling MA. The unexpected always happens. Investig Genet. 2012;3:5.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Clark R. The life and work of JBS Haldane Oxford: Oxford University Press; 1968.

    Google Scholar 

  42. Barach AL. The therapeutic use of oxygen. JAMA. 1922;79(9):693–8.

    Article  Google Scholar 

  43. Blodgett AN. The continuous inhalation of oxygen in cases of pneumonia otherwise fatal, and in other diseases. Boston Med Surg J. 1890;123:481–4.

    Article  Google Scholar 

  44. Haldane JS. The therapeutic administration of oxygen. Br Med J. 1917;1(2928):181–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Haldane JS. A lecture on the symptoms, causes, and prevention of Anoxaemia (insufficient supply of oxygen to the tissues), and the value of oxygen in its treatment. Br Med J. 1919;2(3055):65–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Campbell EJ. Respiratory failure: the relation between oxygen concentrations of inspired air and arterial blood. Lancet. 1960;2(7140):10–1.

    Article  CAS  PubMed  Google Scholar 

  47. Massaro DJ, Katz S, Luchsinger PC. Effect of various modes of oxygen administration on the arterial gas values in patients with respiratory acidosis. Br Med J. 1962;2(5305):627–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Leigh JM. Oxygen therapy techniques after 200 years. A survey of present practice and current trends. Anaesthesia. 1973;28(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  49. Jouneau S, et al. Management of acute exacerbations of chronic obstructive pulmonary disease (COPD). Guidelines from the Societe de pneumologie de langue francaise (summary). Rev Mal Respir. 2017;34(4):282–322.

    Article  CAS  PubMed  Google Scholar 

  50. Beasley R, et al. Thoracic Society of Australia and new Zealand oxygen guidelines for acute oxygen use in adults: 'Swimming between the flags'. Respirology. 2015;20(8):1182–91.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Group, B.I.U.K.C, et al. Oxygen saturation and outcomes in preterm infants. N Engl J Med. 2013;368(22):2094–104.

    Article  CAS  Google Scholar 

  52. Thein OS, et al. Oxygen prescription: improving compliance using methods from BMJ open quality journal. BMJ Open Qual. 2018;7(2):e000288.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Choudhury A, et al. Can we improve the prescribing and delivery of oxygen on a respiratory ward in accordance with new British Thoracic Society oxygen guidelines? BMJ Open Qual. 2018;7(4):e000371.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Myers H, et al. Doctors learn new tricks, but do they remember them? Lack of effect of an educational intervention in improving oxygen prescribing. Respirology. 2015;20(8):1229–32.

    Article  PubMed  Google Scholar 

  55. Wilson DF. Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. J Physiol. 2017;595(23):7023–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Bender DA, Mayes PA. In: DA BKB, Weil PA, Kennelly PJ, Murray RK, Rodwell VW, editors. Glycolysis & the Oxidation of Pyruvate, in Harper’s Illustrated Biochemistry. New York: McGraw-Hill; 2011.

    Google Scholar 

  57. Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7(8):504–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Investig. 1982;47(5):412–26.

    CAS  PubMed  Google Scholar 

  59. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Valko M, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1–37.

    Article  CAS  PubMed  Google Scholar 

  61. Di Meo S, et al. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev. 2016;2016:1245049.

    Google Scholar 

  62. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006;312(5782):1882–3.

    Article  PubMed  Google Scholar 

  63. Lane N. Oxygen: the molecule that made the world. Oxford: OUP; 2002.

    Google Scholar 

  64. Carreau A, et al. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Hafner S, et al. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care. 2015;5(1):42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Jamieson D, et al. The relation of free radical production to hyperoxia. Annu Rev Physiol. 1986;48:703–19.

    Article  CAS  PubMed  Google Scholar 

  67. Severinghaus JW, Astrup PB. History of blood gas analysis. IV. Leland Clark's oxygen electrode. J Clin Monit. 1986;2(2):125–39.

    Article  CAS  PubMed  Google Scholar 

  68. Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct. 2008;3:29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Ouzounis CA, et al. A minimal estimate for the gene content of the last universal common ancestor--exobiology from a terrestrial perspective. Res Microbiol. 2006;157(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  70. Woese C. The universal ancestor. Proc Natl Acad Sci U S A. 1998;95(12):6854–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Klotz MG, Loewen PC. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota. Mol Biol Evol. 2003;20(7):1098–112.

    Article  CAS  PubMed  Google Scholar 

  72. Gerschman R, et al. Oxygen poisoning and x-irradiation: a mechanism in common. Science. 1954;119(3097):623–6.

    Article  CAS  PubMed  Google Scholar 

  73. Grocott MP, et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med. 2009;360(2):140–9.

    Article  CAS  PubMed  Google Scholar 

  74. Robson AG, Hartung TK, Innes JA. Laboratory assessment of fitness to fly in patients with lung disease: a practical approach. Eur Respir J. 2000;16(2):214–9.

    Article  CAS  PubMed  Google Scholar 

  75. Slutsky AS, Rebuck AS. Heart rate response to isocapnic hypoxia in conscious man. Am J Phys. 1978;234(2):H129–32.

    CAS  Google Scholar 

  76. Easton PA, Slykerman LJ, Anthonisen NR. Ventilatory response to sustained hypoxia in normal adults. J Appl Physiol (1985). 1986;61(3):906–11.

    Article  CAS  Google Scholar 

  77. Bradley CA, Fleetham JA, Anthonisen NR. Ventilatory control in patients with hypoxemia due to obstructive lung disease. Am Rev Respir Dis. 1979;120(1):21–30.

    CAS  PubMed  Google Scholar 

  78. Kogure K, et al. Mechanisms of cerebral vasodilatation in hypoxia. J Appl Physiol. 1970;29(2):223–9.

    Article  CAS  PubMed  Google Scholar 

  79. West JW, Guzman SV. Coronary dilatation and constriction visualized by selective arteriography. Circ Res. 1959;7(4):527–36.

    Article  CAS  PubMed  Google Scholar 

  80. Weir EK, et al. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353(19):2042–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Galatius-Jensen S, et al. Nocturnal hypoxaemia after myocardial infarction: association with nocturnal myocardial ischaemia and arrhythmias. Br Heart J. 1994;72(1):23–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Gill NP, Wright B, Reilly CS. Relationship between hypoxaemic and cardiac ischaemic events in the perioperative period. Br J Anaesth. 1992;68(5):471–3.

    Article  CAS  PubMed  Google Scholar 

  83. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.

    Article  CAS  PubMed  Google Scholar 

  84. Helmerhorst HJ, et al. Metrics of arterial Hyperoxia and associated outcomes in critical care. Crit Care Med. 2017;45(2):187–95.

    Article  PubMed  Google Scholar 

  85. Kilgannon JH, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.

    Article  CAS  PubMed  Google Scholar 

  86. Page D, et al. Emergency department hyperoxia is associated with increased mortality in mechanically ventilated patients: a cohort study. Crit Care. 2018;22(1):9.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Lorrain Smith J. The pathological effects due to increase of oxygen tension in the air breathed. J Physiol. 1899;24(1):19–35.

    Article  PubMed Central  Google Scholar 

  88. Clark JM, Lambertsen CJ. Pulmonary oxygen toxicity: a review. Pharmacol Rev. 1971;23(2):37–133.

    CAS  PubMed  Google Scholar 

  89. Kallet RH, Matthay MA. Hyperoxic acute lung injury. Respir Care. 2013;58(1):123–41.

    Article  PubMed  Google Scholar 

  90. Kim V, et al. Oxygen therapy in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5(4):513–8.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Selinger SR, et al. Effects of removing oxygen from patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1987;136(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  92. Barach AL. Therapeutic use of oxygen in heart disease. Ann Intern Med. 1931;5(10):428.

    Google Scholar 

  93. Donald K. Neurological effects of oxygen. Lancet. 1949;257:1056–7.

    Article  Google Scholar 

  94. Baldwin ED, Cournand A, Richards DW Jr. Pulmonary insufficiency; a study of 122 cases of chronic pulmonary emphysema. Medicine (Baltimore). 1949;28(2):201–37.

    Article  CAS  Google Scholar 

  95. Fishman AP, Samet P, Cournand A. Ventilatory drive in chronic pulmonary emphysema. Am J Med. 1955;19(4):533–48.

    Article  CAS  PubMed  Google Scholar 

  96. Aubier M, et al. Central respiratory drive in acute respiratory failure of patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1980;122(2):191–9.

    CAS  PubMed  Google Scholar 

  97. Mithoefer JC, Karetzky MS, Mead GD. Oxygen therapy in respiratory failure. N Engl J Med. 1967;277(18):947–9.

    Article  CAS  PubMed  Google Scholar 

  98. Robinson TD, et al. The role of hypoventilation and ventilation-perfusion redistribution in oxygen-induced hypercapnia during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161(5):1524–9.

    Article  CAS  PubMed  Google Scholar 

  99. Sassoon CS, Hassell KT, Mahutte CK. Hyperoxic-induced hypercapnia in stable chronic obstructive pulmonary disease. Am Rev Respir Dis. 1987;135(4):907–11.

    Article  CAS  PubMed  Google Scholar 

  100. Campbell EJ, The J. Burns Amberson lecture. The management of acute respiratory failure in chronic bronchitis and emphysema. Am Rev Respir Dis. 1967;96(4):626–39.

    CAS  PubMed  Google Scholar 

  101. Rudolf M, Banks RA, Semple SJ. Hypercapnia during oxygen therapy in acute exacerbations of chronic respiratory failure. Hypothesis revisited. Lancet. 1977;2(8036):483–6.

    Article  CAS  PubMed  Google Scholar 

  102. Ringbaek T, Martinez G, Lange P. The long-term effect of ambulatory oxygen in normoxaemic COPD patients: a randomised study. Chron Respir Dis. 2013;10(2):77–84.

    Article  PubMed  Google Scholar 

  103. Plywaczewski R, et al. Incidence of nocturnal desaturation while breathing oxygen in COPD patients undergoing long-term oxygen therapy. Chest. 2000;117(3):679–83.

    Article  CAS  PubMed  Google Scholar 

  104. Sliwinski P, et al. The adequacy of oxygenation in COPD patients undergoing long-term oxygen therapy assessed by pulse oximetry at home. Eur Respir J. 1994;7(2):274–8.

    Article  CAS  PubMed  Google Scholar 

  105. Soguel Schenkel N, et al. Oxygen saturation during daily activities in chronic obstructive pulmonary disease. Eur Respir J. 1996;9(12):2584–9.

    Article  CAS  PubMed  Google Scholar 

  106. Plant PK, Owen JL, Elliott MW. One year period prevalence study of respiratory acidosis in acute exacerbations of COPD: implications for the provision of non-invasive ventilation and oxygen administration. Thorax. 2000;55(7):550–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Cameron L, et al. The risk of serious adverse outcomes associated with hypoxaemia and hyperoxaemia in acute exacerbations of COPD. Postgrad Med J. 2012;88(1046):684–9.

    Article  PubMed  Google Scholar 

  108. Roberts CM, et al. Acidosis, non-invasive ventilation and mortality in hospitalised COPD exacerbations. Thorax. 2011;66(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  109. Gunawardena KA, et al. Oxygen as a driving gas for nebulisers: safe or dangerous? Br Med J (Clin Res Ed). 1984;288(6413):272–4.

    Article  CAS  Google Scholar 

  110. Edwards L, et al. Randomised controlled crossover trial of the effect on PtCO2 of oxygen-driven versus air-driven nebulisers in severe chronic obstructive pulmonary disease. Emerg Med J. 2012;29(11):894–8.

    Article  PubMed  Google Scholar 

  111. Bardsley G, et al. Oxygen versus air-driven nebulisers for exacerbations of chronic obstructive pulmonary disease: a randomised controlled trial. BMC Pulm Med. 2018;18(1):157.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Kohler E, et al. Lung deposition in cystic fibrosis patients using an ultrasonic or a jet nebulizer. J Aerosol Med. 2003;16(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  113. Sepehrvand N, Ezekowitz JA. Oxygen therapy in patients with acute heart failure: friend or foe? JACC Heart Fail. 2016;4(10):783–90.

    Article  PubMed  Google Scholar 

  114. McNulty PH, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol Heart Circ Physiol. 2005;288(3):H1057–62.

    Article  CAS  PubMed  Google Scholar 

  115. Farquhar H, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158(3):371–7.

    Article  CAS  PubMed  Google Scholar 

  116. Stub D, et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131(24):2143–50.

    Article  CAS  PubMed  Google Scholar 

  117. Fonnes S, et al. Perioperative hyperoxia - long-term impact on cardiovascular complications after abdominal surgery, a post hoc analysis of the PROXI trial. Int J Cardiol. 2016;215:238–43.

    Article  PubMed  Google Scholar 

  118. Meyhoff CS, et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302(14):1543–50.

    Article  CAS  PubMed  Google Scholar 

  119. Hofmann R, et al. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med. 2017;377(13):1240–49.

    Google Scholar 

  120. Winslow RM. Oxygen: the poison is in the dose. Transfusion. 2013;53(2):424–37.

    Article  CAS  PubMed  Google Scholar 

  121. Ihnken K, et al. Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult. J Thorac Cardiovasc Surg. 1998;116(2):327–34.

    Article  CAS  PubMed  Google Scholar 

  122. Inoue T, et al. Cardioprotective effects of lowering oxygen tension after aortic unclamping on cardiopulmonary bypass during coronary artery bypass grafting. Circ J. 2002;66(8):718–22.

    Article  PubMed  Google Scholar 

  123. Sparv D, et al. The analgesic effect of oxygen in suspected acute myocardial infarction: a substudy of the DETO2X-AMI trial. JACC Cardiovasc Interv. 2018;11(16):1590–7.

    Article  PubMed  Google Scholar 

  124. Kline KP, Conti CR, Winchester DE. Historical perspective and contemporary management of acute coronary syndromes: from MONA to THROMBINS2. Postgrad Med. 2015;127(8):855–62.

    Article  PubMed  Google Scholar 

  125. Ibanez B, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.

    Article  PubMed  Google Scholar 

  126. Bert, P., La Pression Barométrique. Recherches de Physiologie Expérimentale. 1878, Paris. 1168.

    Google Scholar 

  127. Haldane JBS. On being one's own rabbit, in Possible worlds and other essays. London: Chatto and Windus; 1927. p. 107–19.

    Google Scholar 

  128. Asfar P, et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respir Med. 2017;5(3):180–90.

    Article  CAS  PubMed  Google Scholar 

  129. Floyd TF, et al. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol. 2003;95(6):2453–61.

    Article  PubMed  Google Scholar 

  130. Floyd TF, et al. Integrity of the cerebral blood-flow response to hyperoxia after cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2007;21(2):212–7.

    Article  PubMed  Google Scholar 

  131. Ferguson ND. Oxygen in the ICU: too much of a good thing? JAMA. 2016;316(15):1553–4.

    Article  PubMed  Google Scholar 

  132. Damiani E, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18(6):711.

    Article  PubMed Central  PubMed  Google Scholar 

  133. Vincent JL, Taccone FS, He X. Harmful effects of hyperoxia in postcardiac arrest, sepsis, traumatic brain injury, or stroke: the importance of individualized oxygen therapy in critically ill patients. Can Respir J. 2017;2017:2834956.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Dery R, et al. Alveolar collapse induced by denitrogenation. Can Anaesth Soc J. 1965;12(6):531–57.

    Article  CAS  PubMed  Google Scholar 

  135. Rothen HU, et al. Prevention of atelectasis during general anaesthesia. Lancet. 1995;345(8962):1387–91.

    Article  CAS  PubMed  Google Scholar 

  136. Edmark L, et al. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  137. Aboab J, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32(12):1979–86.

    Article  PubMed  Google Scholar 

  138. Koksal GM, et al. Hyperoxic oxidative stress during abdominal surgery: a randomized trial. J Anesth. 2016;30(4):610–9.

    Article  PubMed  Google Scholar 

  139. de Jonge E, et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12(6):R156.

    Article  PubMed Central  PubMed  Google Scholar 

  140. Palmer E, et al. The association between supra-physiologic arterial oxygen levels and mortality in critically ill patients: a multi-centre observational cohort study. Am J Respir Crit Care Med. 2019;200:1373.

    Article  PubMed Central  PubMed  Google Scholar 

  141. Van den Boom W, et al. The search for optimal oxygen saturation targets in critically ill patients. Observational data from large ICU databases. Chest. 2020;157(3):566–73.

    Article  PubMed  Google Scholar 

  142. Investigators I-R, et al. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382(11):989–98.

    Article  Google Scholar 

  143. Schjorring OL, et al. Lower or higher oxygenation targets for acute hypoxemic respiratory failure. N Engl J Med. 2021;384(14):1301–11.

    Google Scholar 

  144. Barbateskovic M, et al. Higher vs lower oxygenation strategies in acutely ill adults: a systematic review with meta-analysis and trial sequential analysis. Chest. 2021;159(1):154–73.

    Article  CAS  PubMed  Google Scholar 

  145. Hellstrom A, Smith LE, Dammann O. Retinopathy of prematurity. Lancet. 2013;382(9902):1445–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Reich B, et al. Hyperoxia and the immature brain. Dev Neurosci. 2017;38:311.

    Article  CAS  Google Scholar 

  147. Ashton N. Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The XX Francis I. Proctor lecture. Am J Ophthalmol. 1966;62(3):412–35.

    Article  CAS  PubMed  Google Scholar 

  148. Leigh JM. The evolution of oxygen therapy apparatus. Anaesthesia. 1974;29(4):462–85.

    Article  CAS  PubMed  Google Scholar 

  149. Petty TL. Historical highlights of long-term oxygen therapy. Respir Care. 2000;45(1):29–36. discussion 36-8

    CAS  PubMed  Google Scholar 

  150. Stark RD, Bishop JM. New method for oxygen therapy in the home using an oxygen concentrator. Br Med J. 1973;2(5858):105–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Chanques G, et al. Discomfort associated with underhumidified high-flow oxygen therapy in critically ill patients. Intensive Care Med. 2009;35(6):996–1003.

    Article  CAS  PubMed  Google Scholar 

  152. Lellouche F, et al. Water content of delivered gases during non-invasive ventilation in healthy subjects. Intensive Care Med. 2009;35(6):987–95.

    Article  PubMed  Google Scholar 

  153. Dawson JA, et al. Quantifying temperature and relative humidity of medical gases used for newborn resuscitation. J Paediatr Child Health. 2014;50(1):24–6.

    Article  PubMed  Google Scholar 

  154. AARC Clinical Practice Guideline. Oxygen therapy for adults in the acute care facility—2002 revision & update. Respir Care. 2002;47(6):717–20.

    Google Scholar 

  155. AARC Clinical Practice Guideline. Oxygen therapy in the home or alternate site health care facility—2007 revision & update. Respir Care. 2007;52(1):1063–8.

    Google Scholar 

  156. L'Her E, et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005;172(9):1112–8.

    Article  PubMed  Google Scholar 

  157. Campbell EJ, Baker MD, Crites-Silver P. Subjective effects of humidification of oxygen for delivery by nasal cannula. A prospective study. Chest. 1988;93(2):289–93.

    Article  CAS  PubMed  Google Scholar 

  158. Franchini ML, et al. Oxygen with cold bubble humidification is no better than dry oxygen in preventing mucus dehydration, decreased mucociliary clearance, and decline in pulmonary function. Chest. 2016;150(2):407–14.

    Article  PubMed  Google Scholar 

  159. Poiroux L, et al. Effect on comfort of administering bubble-humidified or dry oxygen: the Oxyrea non-inferiority randomized study. Ann Intensive Care. 2018;8(1):126.

    Article  PubMed Central  PubMed  Google Scholar 

  160. Barach AL. The administration of oxygen by the nasal catheter. JAMA. 1929;93(20):1550–1.

    Article  Google Scholar 

  161. Lamb K, Piper D. Southmedic OxyMask(TM) compared with the Hudson RCI((R)) non-rebreather mask(TM): safety and performance comparison. Can J Respir Ther. 2016;52(1):13–5.

    PubMed Central  PubMed  Google Scholar 

  162. Campbell EJ. A method of controlled oxygen administration which reduces the risk of carbon-dioxide retention. Lancet. 1960;2(7140):12–4.

    Article  CAS  PubMed  Google Scholar 

  163. Kory RC, et al. Comparative evaluation of oxygen therapy techniques. JAMA. 1962;179:767–72.

    Article  CAS  PubMed  Google Scholar 

  164. Green ID. Choice of method for administration of oxygen. Br Med J. 1967;3(5565):593–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Poulton TJ, Comer PB, Gibson RL. Tracheal oxygen concentrations with a nasal cannula during oral and nasal breathing. Respir Care. 1980;25(7):739–41.

    Google Scholar 

  166. Dunlevy CL, Tyl SE. The effect of oral versus nasal breathing on oxygen concentrations received from nasal cannulas. Respir Care. 1992;37(4):357–60.

    Google Scholar 

  167. Wettstein RB, Shelledy DC, Peters JI. Delivered oxygen concentrations using low-flow and high-flow nasal cannulas. Respir Care. 2005;50(5):604–9.

    PubMed  Google Scholar 

  168. MacIntyre NR, Galvin WF, and Mishoe SC. Respiratory care: principles and practice. 2015: Jones & Bartlett Learning.

    Google Scholar 

  169. Excellence, N.I.o.H.a.C. Acutely ill patients in hospital: recognition of and response to acute illness in adults in hospital. In: National Institute of health and clinical excellence., N.C. Guideline, Editor. London, England; 2007.

    Google Scholar 

  170. Bickler PE, Feiner JR, Severinghaus JW. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology. 2005;102(4):715–9.

    Article  PubMed  Google Scholar 

  171. Feiner JR, Severinghaus JW, Bickler PE. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth Analg. 2007;105(6 Suppl):S18–23.

    Google Scholar 

  172. Louie A, et al. Four types of pulse oximeters accurately detect hypoxia during low perfusion and motion. Anesthesiology. 2018;128(3):520–30.

    Article  PubMed  Google Scholar 

  173. Foglia EE, et al. The effect of skin pigmentation on the accuracy of pulse oximetry in infants with hypoxemia. J Pediatr. 2017;182:375–7. e2

    Article  PubMed  Google Scholar 

  174. Richards NM, Giuliano KK, Jones PG. A prospective comparison of 3 new-generation pulse oximetry devices during ambulation after open heart surgery. Respir Care. 2006;51(1):29–35.

    PubMed  Google Scholar 

  175. Ross PA, Newth CJ, Khemani RG. Accuracy of pulse oximetry in children. Pediatrics. 2014;133(1):22–9.

    Article  PubMed  Google Scholar 

  176. Singh AK, et al. Comparative evaluation of accuracy of pulse oximeters and factors affecting their performance in a tertiary intensive care unit. J Clin Diagn Res. 2017;11(6):OC05–8.

    PubMed Central  PubMed  Google Scholar 

  177. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981;1(8222):681–6.

    Google Scholar 

  178. Dar K, et al. Arterial versus capillary sampling for analysing blood gas pressures. BMJ. 1995;310(6971):24–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Zavorsky GS, et al. Arterial versus capillary blood gases: a meta-analysis. Respir Physiol Neurobiol. 2007;155(3):268–79.

    Article  PubMed  Google Scholar 

  180. Jubran A. Pulse oximetry. Crit Care. 2015;19:272.

    Article  PubMed Central  PubMed  Google Scholar 

  181. Sauty A, et al. Differences in PO2 and PCO2 between arterial and arterialized earlobe samples. Eur Respir J. 1996;9(2):186–9.

    Article  CAS  PubMed  Google Scholar 

  182. Jubran A, Tobin MJ. Reliability of pulse oximetry in titrating supplemental oxygen therapy in ventilator-dependent patients. Chest. 1990;97(6):1420–5.

    Article  CAS  PubMed  Google Scholar 

  183. Yamamoto LG, et al. Nail polish does not significantly affect pulse oximetry measurements in mildly hypoxic subjects. Respir Care. 2008;53(11):1470–4.

    PubMed  Google Scholar 

  184. Sutcu Cicek H, et al. Effect of nail polish and henna on oxygen saturation determined by pulse oximetry in healthy young adult females. Emerg Med J. 2011;28(9):783–5.

    Article  PubMed  Google Scholar 

  185. Alam N, et al. The impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review. Resuscitation. 2014;85(5):587–94.

    Article  CAS  PubMed  Google Scholar 

  186. Churpek MM, et al. Derivation of a cardiac arrest prediction model using ward vital signs*. Crit Care Med. 2012;40(7):2102–8.

    Article  PubMed Central  PubMed  Google Scholar 

  187. Jo S, et al. Predictive value of the National Early Warning Score-Lactate for mortality and the need for critical care among general emergency department patients. J Crit Care. 2016;36:60–8.

    Article  PubMed  Google Scholar 

  188. Jansen JO, Cuthbertson BH. Detecting critical illness outside the ICU: the role of track and trigger systems. Curr Opin Crit Care. 2010;16(3):184–90.

    Article  PubMed  Google Scholar 

  189. Smith GB, et al. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation. 2013;84(4):465–70.

    Article  PubMed  Google Scholar 

  190. Churpek MM, Adhikari R, Edelson DP. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation. 2016;102:1–5.

    Article  PubMed Central  PubMed  Google Scholar 

  191. Gao H, et al. Systematic review and evaluation of physiological track and trigger warning systems for identifying at-risk patients on the ward. Intensive Care Med. 2007;33(4):667–79.

    Article  PubMed  Google Scholar 

  192. Smith ME, et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Ann Am Thorac Soc. 2014;11(9):1454–65.

    Article  PubMed  Google Scholar 

  193. Churpek MM, et al. Quick sepsis-related organ failure assessment, systemic inflammatory response syndrome, and early warning scores for detecting clinical deterioration in infected patients outside the intensive care unit. Am J Respir Crit Care Med. 2017;195(7):906–11.

    Article  PubMed Central  PubMed  Google Scholar 

  194. Usman OA, Usman AA, Ward MA. Comparison of SIRS, qSOFA, and NEWS for the early identification of sepsis in the Emergency Department. Am J Emerg Med. 2018;37:1490.

    Article  PubMed  Google Scholar 

  195. Sutherasan Y, et al. The impact of introducing the early warning scoring system and protocol on clinical outcomes in tertiary referral university hospital. Ther Clin Risk Manag. 2018;14:2089–95.

    Article  PubMed Central  PubMed  Google Scholar 

  196. McNeill G, Bryden D. Do either early warning systems or emergency response teams improve hospital patient survival? A systematic review. Resuscitation. 2013;84:1652–67.

    Article  CAS  PubMed  Google Scholar 

  197. Kivipuro M, et al. National early warning score (NEWS) in a Finnish multidisciplinary emergency department and direct vs. late admission to intensive care. Resuscitation. 2018;128:164–9.

    Article  PubMed  Google Scholar 

  198. Schein RM, et al. Clinical antecedents to in-hospital cardiopulmonary arrest. Chest. 1990;98(6):1388–92.

    Article  CAS  PubMed  Google Scholar 

  199. Churpek MM, et al. Predicting cardiac arrest on the wards: a nested case-control study. Chest. 2012;141(5):1170–6.

    Article  PubMed  Google Scholar 

  200. Ludikhuize J, et al. Identification of deteriorating patients on general wards; measurement of vital parameters and potential effectiveness of the Modified Early Warning Score. J Crit Care. 2012;27(4):424. e7-13

    Article  PubMed  Google Scholar 

  201. Galhotra S, et al. Mature rapid response system and potentially avoidable cardiopulmonary arrests in hospital. Qual Saf Health Care. 2007;16(4):260–5.

    Article  PubMed Central  PubMed  Google Scholar 

  202. Kwack WG, et al. Evaluation of the SpO2/FiO2 ratio as a predictor of intensive care unit transfers in respiratory ward patients for whom the rapid response system has been activated. PLoS One. 2018;13(7):e0201632.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. Lellouche F, L'Her E. Usual and advanced monitoring in patients receiving oxygen therapy. Respir Care. 2020;65(10):1591–600.

    Article  PubMed  Google Scholar 

  204. Viglino D, et al. Evaluation of a new respiratory monitoring tool "Early Warning ScoreO2" for patients admitted at the emergency department with dyspnea. Resuscitation. 2020;148:59–65.

    Article  PubMed  Google Scholar 

  205. Hess DR. et al. Respiratory care: principles and practice. 2012: Jones & Bartlett Learning.

    Google Scholar 

  206. Neu M. Ein Verfahren zur Stickoxydulsauerstoffnarkose. Munch Med Wochenschr. 1910;57:1873–5.

    Google Scholar 

  207. Lenfant C. Shattuck lecture—clinical research to clinical practice—lost in translation? N Engl J Med. 2003;349(9):868–74.

    Article  PubMed  Google Scholar 

  208. Scales DC, Adhikari NK. Lost in (knowledge) translation: "all breakthrough, no follow through"? Crit Care Med. 2008;36(5):1654–5.

    Article  PubMed  Google Scholar 

  209. BR., O.D. British Thoracic Society. Emergency oxygen audit 2013. . audit-and-quality-improvement/audit-reports/bts-emergency-oxygen-audit-report-2013 2013 January 15, 2019]; https://www.brit-thoracic.org.uk/document-library/audit-and-quality-improvement/audit-reports/bts-emergency-oxygen-audit-report-2013/.

  210. Pretto JJ, et al. Multicentre audit of inpatient management of acute exacerbations of chronic obstructive pulmonary disease: comparison with clinical guidelines. Intern Med J. 2012;42(4):380–7.

    Article  CAS  PubMed  Google Scholar 

  211. Roberts CM, et al. European hospital adherence to GOLD recommendations for chronic obstructive pulmonary disease (COPD) exacerbation admissions. Thorax. 2013;68(12):1169–71.

    Article  PubMed  Google Scholar 

  212. Dojat M, Brochard L. Knowledge-based systems for automatic ventilatory management. Respir Care Clin N Am. 2001;7(3):379–96. viii

    Article  CAS  PubMed  Google Scholar 

  213. Lellouche F, et al. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med. 2006;174(8):894–900.

    Article  PubMed  Google Scholar 

  214. Arnal JM, et al. Automatic selection of breathing pattern using adaptive support ventilation. Intensive Care Med. 2008;34(1):75–81.

    Article  PubMed  Google Scholar 

  215. Lellouche F, et al. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463–71.

    Article  PubMed  Google Scholar 

  216. Bouchard PA, et al. Closed-loop oxygen titration system (FreeO2) during NIV in healthy subjects with induced hypoxemia. Am J Respir Crit Care Med. 2012;185:A6492.

    Google Scholar 

  217. Lellouche F, et al. Automatic oxygen titration during walking in subjects with COPD: a randomized crossover controlled study. Respir Care. 2016;61(11):1456–64.

    PubMed  Google Scholar 

  218. Vivodtzev I, et al. Automated O2 titration improves exercise capacity in patients with hypercapnic chronic obstructive pulmonary disease: a randomised controlled cross-over trial. Thorax. 2019;74(3):298–301.

    Google Scholar 

  219. Lellouche F, et al. Automated oxygen titration and weaning with FreeO2 in patients with acute exacerbation of COPD: a pilot randomized trial. Int J Chron Obstruct Pulmon Dis. 2016;11:1983–90.

    Article  PubMed Central  PubMed  Google Scholar 

  220. L'Her E, et al. Automatic versus manual oxygen administration in the emergency department. Eur Respir J. 2017;50:1.

    Article  CAS  Google Scholar 

  221. Lellouche F, et al. Evaluation of automated oxygen flowrate titration (FreeO2) in a model of induced cyclic desaturations in healthy subjects reproducing desaturations during central Apneas. Am J Respir Crit Care Med. 2017;195:A2585.

    Google Scholar 

  222. Dupin C, et al. Automatic oxygen titration improves exercise tolerance in patients with idiopathic lung fibrosis. Am J Respir Crit Care Med. 2018;197:A4268.

    Google Scholar 

  223. Huynh-Ky M. et al. Closed-loop adjustment of oxygen flowrate with FreeO2 in patients with acute coronary syndrome: comparison of two SpO2 target and manual adjustment. A randomized controlled study. Annals of Intensive Care, 2017.

    Google Scholar 

  224. Roué JM. et al. Automatic oxygen flow titration in spontaneously breathing children: An open-label randomized controlled pilot study. Pediatric Pulmonol. 2020;55(11):3180–88.

    Google Scholar 

  225. Lellouche F, et al. Automated oxygen titration and weaning with FreeO2 during acute exacerbation of COPD. Am J Respir Crit Care Med. 2018;197:A4555.

    Google Scholar 

  226. L'Her E, et al. Automated oxygen administration versus conventional oxygen therapy after major abdominal or thoracic surgery: study protocol for an international multicentre randomised controlled study. BMJ Open. 2019;9(1):e023833.

    Article  PubMed Central  PubMed  Google Scholar 

  227. L’Her E, et al. Automated closed-loop versus standard manual oxygen administration after major abdominal or thoracic surgery: an international multicentre randomised controlled study. Eur Respir J. 2021;57(1):2000182.

    Google Scholar 

  228. Poder TG, et al. Cost-effectiveness of FreeO2 in patients with chronic obstructive pulmonary disease hospitalised for acute exacerbations: analysis of a pilot study in Quebec. BMJ Open. 2018;8(1):e018835.

    PubMed Central  PubMed  Google Scholar 

  229. Ouanes I, et al. Automatic oxygen administration and weaning in patients following mechanical ventilation. J Crit Care. 2020;61:45–51.

    Article  CAS  PubMed  Google Scholar 

  230. Bourassa S, et al. Oxygen conservation methods with automated titration. Respir Care. 2020;65:1433.

    Article  PubMed  Google Scholar 

  231. Denault MH, et al. Automatic versus manual oxygen titration in patients requiring supplemental oxygen in the hospital: a systematic review and meta-analysis. Respiration. 2019;98(2):178–188.

    Google Scholar 

  232. Hansen EF, et al. Automatic oxygen titration with O2matic(R) to patients admitted with COVID-19 and hypoxemic respiratory failure. Eur Clin Respir J. 2020;7(1):1833695.

    Article  PubMed Central  PubMed  Google Scholar 

  233. Dunne PJ, McCoy RW. Patient-centric LTOT: no room for complacency. Respir Care. 2011;56(4):536–7.

    Article  PubMed  Google Scholar 

  234. Winck JC. Intelligent oxygen delivery in the acute setting: "Don't think twice, it's all right". Eur Respir J. 2017;50:1.

    Article  CAS  Google Scholar 

  235. Lellouche F, Lipes J, L'Her E. Optimal oxygen titration in patients with chronic obstructive pulmonary disease: a role for automated oxygen delivery? Can Respir J. 2013;20(4):259–61.

    Article  PubMed Central  PubMed  Google Scholar 

  236. Vincent JL. No room for hyperoxia or hypertonic saline in septic shock. Lancet Respir Med. 2017;5(3):158–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Competing interests: François Lellouche and Erwan L’Her are co-founders, shareholders, and directors of OxyNov. This research and development company has designed and marketed the automated oxygen adjustment system (FreeO2) mentioned in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lellouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lellouche, F., L’Her, E. (2021). Conventional Oxygen Therapy: Technical and Physiological Issues. In: Carlucci, A., Maggiore, S.M. (eds) High Flow Nasal Cannula. Springer, Cham. https://doi.org/10.1007/978-3-030-42454-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42454-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42453-4

  • Online ISBN: 978-3-030-42454-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics