Skip to main content

Advanced Quantitative Genetics Technologies for Accelerating Plant Breeding

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 1

Abstract

Plant breeding is the science that deals with improving the genetic architecture of crop plants for benefit of human beings. Increasing food demand with rising world population, changing food habits and changing climate adversely affecting the plant growth requires accelerating plant breeding activities. Most of the traits in the different growth phases of a plant are quantitative and complex in nature. These traits show continuous distribution of phenotypes in segregating populations and are controlled by number of genes, environment and their interaction. The branch of quantitative genetics aims to understand and manipulate these traits for improving the crop plants. The classical methods to study quantitative traits include the partitioning of total phenotypic variation into environmental and different components of genetic variation. It was also possible to predict the number of genes controlling a quantitative trait in the form of “K-factors” and “effective factors”. Though these methods helped to decide appropriate plant breeding strategy and response to selection, the number, location and specific action of factors (genes) controlling quantitative traits remained obscure. With the advent of molecular markers, new avenues opened up to determine the location of such genes in the form of quantitative trait loci (QTL) by developing different kinds of mapping populations. However mapping and cloning of QTL was still an arduous task due to time involved in development of mapping populations and utilization of molecular markers in scanning the whole genome. The advancements in the field of sequencing, high-throughput genotyping and phenotyping accelerated the mapping and cloning of QTL and their utilization in plant breeding programme through marker-assisted and/or genomic selection. This chapter will discuss the various strategies that advanced the science of quantitative genetics in the past one and half decade and its role in accelerating crop improvement programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci 23(5):451–466. https://doi.org/10.1016/j.tplants.2018.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arikit S, Wanchana S, Khanthong S, Saensuk C, Thianthavon T, Vanavichit A, Toojinda T (2019) QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa). Sci Rep 9:8328. https://doi.org/10.1038/s41598-019-44856-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatia D, Wing RA, Singh K (2013) Genotyping by sequencing, its implications and benefits. Crop Improv 40:101–111

    Google Scholar 

  • Bhatia D, Wing RA, Yu Y, Chougule K, Kudrna D, Rang A, Singh K (2018) Genotyping by sequencing of rice interspecific backcross inbred lines identifies QTLs for grain weight and grain length. Euphytica 214:41. https://doi.org/10.1007/s10681-018-2119-1

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davism RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branham SE, Patrick Wechter W, Lambel S, Massey L, Ma M et al (2018) QTL-seq and marker development for resistance to Fusarium oxysporium f. sp. niveum race 1 in cultivated watermelon. Mol Breed 38:139. https://doi.org/10.1007/s11032-018-0896-9

    Article  CAS  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  CAS  PubMed  Google Scholar 

  • Chen H, He H, Zhou F, Yu H, Deng XW (2013) Development of genomics-based genotyping platform and their application in rice breeding. Curr Opin Plant Biol 16:247–254

    Article  CAS  PubMed  Google Scholar 

  • Chung YS, Choi SC, Jun T-H, Kim C (2017) Genotyping by sequencing: a promising tool for plant genetics research and breeding. Hortic Environ Biotechnol 58(5):425–431

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Das S, Singh M, Srivastava R, Bajaj D, Rana JC, Bansal KC, Tayagi AK, Parida SK (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    CAS  PubMed  Google Scholar 

  • East EM (1910) A Mendelian interpretation of variation that is apparently continuous. Am Nat 44:65–82

    Article  Google Scholar 

  • Eberhart SA (1970) Factors affecting efficiencies of breeding methods. Afr Soils 15:655–680

    Google Scholar 

  • Feikh R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi U, Terauchi R (2013) Mutmap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8(7):e68529. https://doi.org/10.1371/journal.pone.0068529

    Article  CAS  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Galton F (1889) Natural inheritance. MacMillan, London

    Book  Google Scholar 

  • Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theor Appl Genet 46:319–330

    Article  CAS  PubMed  Google Scholar 

  • Golicz AA, Bayer PE, Edward D (2015) Skim-based genotyping by sequencing. In: Batley J (ed) Plant genotyping: methods and protocols, methods in molecular biology, vol 1245. Springer, New York, pp 257–270

    Chapter  Google Scholar 

  • Hayes B (2013) Overview of statistical methods for genome-wide association studies (GWAS). In: Gondro C et al (eds) Genome-wide association studies and genomic prediction, methods in molecular biology, vol 1019. Springer, New York, pp 149–170

    Chapter  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Holland J (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156

    Article  CAS  PubMed  Google Scholar 

  • Johannsen W (1909) Elemente der exakten Erblichkeitslehre. [Elements of an Exact Theory of Heredity.]. Gustav Fischer, Jena

    Google Scholar 

  • Kadambari G, Vemireddy LR, Srividhya A, Nagireddy R, Jena SS, Gandikota Met al. (2018) QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.). Plant Cell Rep 37(4):677–687

    Article  CAS  PubMed  Google Scholar 

  • Kamolsukyeunyong W, Ruengphayak S, Chumwong P, Kusumawati L, Ekawat Chaichoompu E et al (2019) Identification of spontaneous mutation for broad-spectrum brown planthopper resistance in a large, long-term fast neutron mutagenized rice population. Rice 12:16. https://doi.org/10.1186/s12284-019-0274-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempthorne O (1957) An Introduction to Genetic Statistics. Iowa State University Press, Ames. p 545.

    Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29. http://www.plantmethods.com/content/9/1/29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahari Z, Ribeiro A, Talukdar P, Martin B, Heidari Z, Gheysen G, Price AH, Shrestha R (2019) QTL-seq reveals a major root-knot nematode resistance locus on chromosome 11 in rice (Oryza sativa L.). Euphytica 215:117. https://doi.org/10.1007/s10681-019-2427-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Li M-X, Juilian M, Yeung Y, Cherny SS, Sham PC (2012) Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131:747–756

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z (2018) Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J 6:236–243

    Article  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yeh C-T, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7:e36406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Janick J-L (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J et al (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127(7):1491–1499

    Article  PubMed  Google Scholar 

  • Lush JL (1935) Progeny test and individual performance as an indicator of an animal’s breeding value. J Dairy Sci 18:1–19

    Article  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Article  Google Scholar 

  • McCouch S, Wright M, Tung C-W, Maron L, McNally K, Fitzgerald M, Singh N, DeClerck G, Agosto Perez F, Korniliev P, Greenberg A, Nareda ME, Mercado SM, Harrington S, Shi Y, Branchini D, Kuser-Falçao Leung H, Ebana K, Yano M, EizengaG MCA, Mezey J (2016) Open access resources for genome wide association mapping in rice. Nat Commun 7:10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L). Mol Breed 27:37–58

    Article  Google Scholar 

  • Nguyen KL, Grondin A, Courtois B, Gantet P (2018) Next-generation sequencing accelerates crop genome discovery. Trends Plant Sci 24:263–274

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Ehle H (1909) Kreuzunguntersuchungen an Hafer und Weizen. Lund.

    Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y et al (2016) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J. https://doi.org/10.1111/pbi.12686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson K (1894) Contributions to the mathematical theory of evolution. Philos Trans R Soc Lond A 185:71–110

    Article  Google Scholar 

  • Poland J, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Ruangrak E, Su X, Huang Z, Wang X, Guo Y, Du Y, Gao J (2018) Fine mapping of a major QTL controlling early flowering in tomato using QTL-seq. Can J Plant Sci 98(3):672–682

    Article  CAS  Google Scholar 

  • Ruangrak E, Du Y, Htwe NMPS, Pimorat P, Gao J (2019) Identification of early tomato fruit ripening loci by QTL-seq. J Agric Sci 11(2):51–70

    Google Scholar 

  • Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol. 1: Genomics approaches and platforms. Springer, New York, pp 207–225

    Chapter  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448

    Article  CAS  PubMed  Google Scholar 

  • Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu J, Liu Y, Zhang L, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H (2018) QTL seq for rapid identification of candidate genes for flowering time in broccoli × cabbage. Theor Appl Genet 131(4):917–928

    Article  CAS  PubMed  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. J Hered 1:296–301

    Article  Google Scholar 

  • Singh RK, Pooni HS, Singh M, Bandopadhyaya A (2004) Mating designs and their implications for plant breeding. In: Jain HK, Kharkwal MC (eds) Plant breeding-Mendelian to molecular approaches. Narosa publishing house, New Delhi, pp 523–534

    Google Scholar 

  • Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Upadhyaya HD, Kumar R, Daware R, Basu U et al (2017) A multiple QTL-seq strategy delineates potential genomic loci governing flowering time in chickpea. Front Plant Sci 8:1105. https://doi.org/10.3389/fpls.2017.01105

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high -throughput sequencing. PLoS One 8(3):e58700. https://doi.org/10.1371/journal.pone.0058700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013a) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe Aet al. (2013b) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A et al (2015) MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol 33:445–449

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • The 3,000 rice genome project (2014) The 3,000 rice genomes project. Gigascience 3:7

    Article  CAS  Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Kumar V, Singh B, Rao A, Mithra SVA, Rai V, Singh AK, Singh NK, Sl K (2016) Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip. PLoS One 11:e0153610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Agric Genomics 2:1–6

    Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function and translation. Am J Hum Genet 101:5–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. https://statgen.ncsu.edu/qtlcart/WQTLCart.htm

    Google Scholar 

  • Wang Y, Zhang H, Xie J, Guo B, Yongxing Chen Y et al (2018) Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J 6:91–98

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Wei Q-Z, Fy W-Y, Wang Y-Z, Qin X-D, Wang J, Li J, Lou Q-F, Chen J-F (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Scientific Rep 6:27496. https://doi.org/10.1038/srep27496

    Article  CAS  Google Scholar 

  • Win KT, Zhang C, Silva RR, Lee JH, Kim YC, Lee S (2019) Identification of quantitative trait loci governing subgynoecy in cucumber. Theor Appl Genet 132(5):1505–1521

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10:359–374

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Sun X, Chen Y, Huang Y, Tong C, Bao J (2015a) Rapid identification of major QTLs associated with rice grain weight and their utilization. PLoS One 10:e0122206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X (2015b) QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep 5:15829. https://doi.org/10.1038/srep15829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu Z (2008) QTL-Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24(5):721–723

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Huang D, Tang W, Zheng Y, Liang K, Cutler AJ, Wu W (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high throughput sequencing of pooled extremes. PLoS One 8:e68433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Xiong F, Wu Y, Gao J, Deng G, Li D (2017) QTL mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice. Front Plant Sci 8:1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaobin Q, Cheng P, Cheng Y, Feng Y, Huang D, Huang T, Song X, Ying J (2018) QTL-Seq identified a major QTL for grain length and weight in rice using near isogenic F2 population. Ric Sci 25:121–131

    Article  Google Scholar 

  • Yoshitsu Y, Takakusagi M, Abe A, Takagi H, Uemura A, Yaegashi H, Terauchi R, Takahata Y, Hatakeyama K, Yokoi S (2017) QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P. Beauv. Breed Sci 67(5):518–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-M, Mao Y, Xie C, Smith H, Luo L, Xu S (2005) Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169:2267–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Li J, Compton RO, Goff VH, Epps E, Kong W, Kim C, Paterson AH (2015) Comparative genetics of seed size traits in divergent cereal lineages represented by sorghum (Panicoidae) and rice (Oryzoidae). G3 5:1117–1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhong K, Shahid QM, Tong H (2016) Association analysis in rice. Front Plant Sci 7:1202. https://doi.org/10.3389/fpls.2016.01202

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang W, Guo N, Zhang Y, Bu Y, Zhao J, Xing H (2018) Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 19:226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y-M, Jia Z, Dunwell JM (2019) Editorial: the applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00100

  • Zhao C, Zhang Y, Du J, Guo X, Wen W, Gu S, Wang J, Fan J (2019) Crop phenomics: current status and perspectives. Front Plant Sci 10:714. https://doi.org/10.3389/fpls.2019.00714

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Wang P, Xu Y (2016) Bulked segregants analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    Article  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharminder Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatia, D. (2020). Advanced Quantitative Genetics Technologies for Accelerating Plant Breeding. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41866-3_5

Download citation

Publish with us

Policies and ethics