Skip to main content

Recent Developments and Challenges in Nanoformulations Targeting Various Ailments of the Colon

  • Chapter
  • First Online:
Nanoformulations in Human Health

Abstract

The oral route of drug administration is the most preferred and patient-compliant route. When a drug is required to be delivered to the colon, special attention is required as the colon is the distal-most part of the gastrointestinal system. Also, a drug has to face a wide range of pH conditions before reaching the colon as it varies significantly, starting from 1.2 to 2.0 (acidic) in the stomach, 4.5–6.8 in the small intestine and 7–7.4 (basic) in the colon. Therefore, targeted approaches are required to protect a drug from the variations it has to face/deal with in the gastric milieu in order to reach the colon. Though targeting to the colon is tedious, it has its own advantages as the enzymatic activity in the colon is less, the residence time is more and bioavailability of drugs enhances significantly. Targeting of proteins and peptides can also be done easily to the colon as their structure remains integrated due to minimum enzymatic activity.

In recent years, the advancement in nanotechnology has tremendously helped target drugs to the colon. The nanoformulations target the drugs to the colon by using simple approaches that may be based on size, pH sensitivity, surface charges, polymers used, ligand-receptor interactions, etc., and are thus useful in enhancing the cell specificity.

The nanoparticles conjugated with ligands like peptides, carbohydrates, antibodies, aptamers, etc. act as new-generation therapies for various colon-associated diseases. These conjugated nanoparticles are beneficial in recognizing and targeting the desired site at cellular as well as molecular levels.

The upcoming outlook of the targeted nanoparticles stands dazzling as many promising nanoformulations targeting various colon-associated ailments are under preclinical and clinical trials and will soon be available in the market.

In this chapter, we will discuss the anatomy of the colon and the associated diseases, the factors that influence the delivery of a drug to the colon, the various strategies for colon targeting, types of nanoformulations used for colon targeting and the role and mechanism of nanoformulations in colon targeting, as well as existing nanoformulations for colon targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrezak A, Bourassa P, Mandeville J-S, Sedaghat-Herati R, Tajmir-Riahi H-A (2012) Dendrimers bind antioxidant polyphenols and cisplatin drug. PLoS One 7(3):e33102–e33102. https://doi.org/10.1371/journal.pone.0033102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdullah O, Usman Minhas M, Ahmad M, Ahmad S, Ahmad A (2019) Synthesis of hydrogels for combinatorial delivery of 5-fluorouracil and leucovorin calcium in colon cancer: optimization, in vitro characterization and its toxicological evaluation. Polym Bull 76(6):3017–3037. https://doi.org/10.1007/s00289-018-2509-5

    Article  CAS  Google Scholar 

  • Aburahma MH (2016) Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 23(6):1847–1867. https://doi.org/10.3109/10717544.2014.976892

    Article  CAS  PubMed  Google Scholar 

  • Achim M, Tomuță I, Muntean D, Porfire A, Tefas LR, Patras, Licarete E, Costel M (2017) Optimization and in vitro evaluation of 5-fluorouracil – loaded long – circulating liposomes. Farmacia 65(1):82–91

    CAS  Google Scholar 

  • Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper T (2016) Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater 2016:7372306

    Google Scholar 

  • Ahmadi E, Zarghami N, Asghari Jafarabadi M, Alizadeh L, Khojastehfard M, Rahmati Yamchi M, Salehi R (2019) Enhanced anticancer potency by combination chemotherapy of HT-29 cells with biodegradable, pH-sensitive nanoparticles for co-delivery of hydroxytyrosol and doxorubicin. J Drug Deliv Sci Technol 51. https://doi.org/10.1016/j.jddst.2019.03.003

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    PubMed  PubMed Central  Google Scholar 

  • Akhgari A, Heshmati Z, Makhmalzadeh BS (2013) Indomethacin electrospun nanofibers for colonic drug delivery: preparation and characterization. Adv Pharm Bullet 3(1):85

    Google Scholar 

  • Akl MA, Kartal-Hodzic A, Oksanen T, Ismael HR, Afouna MM, Yliperttula M et al (2016) Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Technol 32:10–20. https://doi.org/10.1016/j.jddst.2016.01.007

    Article  CAS  Google Scholar 

  • Alange VV, Birajdar RP, Kulkarni RV (2017) Novel spray dried pH-sensitive polyacrylamide-grafted-carboxymethylcellulose sodium copolymer microspheres for colon targeted delivery of an anti-cancer drug. J Biomater Sci Polym Ed 28(2):139–161. https://doi.org/10.1080/09205063.2016.1257083

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Karimi N, Safaei M (2017) Application of various types of liposomes in drug delivery systems. Adv Pharm Bullet 7(1):3

    CAS  Google Scholar 

  • Ali H, Weigmann B, Collnot EM, Khan SA, Windbergs M, Lehr CM (2016) Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa--pharmaceutical characterization and fluorescence imaging. Pharm Res 33(5):1085–1092. https://doi.org/10.1007/s11095-015-1852-6

    Article  CAS  PubMed  Google Scholar 

  • Alibolandi M, Rezvani R, Farzad SA, Taghdisi SM, Abnous K, Ramezani M (2017a) Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 532(1):581–594. https://doi.org/10.1016/j.ijpharm.2017.09.039

    Article  CAS  PubMed  Google Scholar 

  • Alibolandi M, Taghdisi SM, Ramezani P, Hosseini Shamili F, Farzad SA, Abnous K, Ramezani M (2017b) Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 519(1–2):352–364. https://doi.org/10.1016/j.ijpharm.2017.01.044

    Article  CAS  PubMed  Google Scholar 

  • Alibolandi M, Amel Farzad S, Mohammadi M, Abnous K, Taghdisi SM, Kalalinia F, Ramezani M (2018) Tetrac-decorated chitosan-coated PLGA nanoparticles as a new platform for targeted delivery of SN38. Artif Cells Nanomed Biotechnol 46(sup2):1003–1014. https://doi.org/10.1080/21691401.2018.1477789

    Article  CAS  PubMed  Google Scholar 

  • Allémann E, Leroux J-C, Gurny R (1998) Polymeric nano-and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev 34(2–3):171–189

    PubMed  Google Scholar 

  • Al-Zheery WH, Kamal BA (2016) Formulation and evaluation of fluticasone propionate colon targeted tablet. Int J Pharm Sci Rev Res 41(2):322–329

    CAS  Google Scholar 

  • Amidon S, Brown JE, Dave VS (2015) Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 16(4):731–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amiri Darban S, Nikoofal-Sahlabadi S, Amiri N, Kiamanesh N, Mehrabian A, Zendehbad B et al (2018) Targeting the leptin receptor: to evaluate therapeutic efficacy and anti-tumor effects of Doxil, in vitro and in vivo in mice bearing C26 colon carcinoma tumor. Colloids Surf B: Biointerfaces 164:107–115. https://doi.org/10.1016/j.colsurfb.2018.01.035

    Article  CAS  PubMed  Google Scholar 

  • Anbarasan B, Rekha S, Elango K, Shriya B, Ramaprabhu S (2013) Optimization of the formulation and in-vitro evaluation of Capecitabine Niosomes for the treatment of Colon Cancer. Int J Pharm Sci Res 4(4):1504

    CAS  Google Scholar 

  • Ansari L, Jaafari MR, Bastami TR, Malaekeh-Nikouei B (2018) Improved anticancer efficacy of epirubicin by magnetic mesoporous silica nanoparticles: in vitro and in vivo studies. Artif Cells Nanomed Biotechnol 46(sup2):594–606. https://doi.org/10.1080/21691401.2018.1464461

    Article  CAS  PubMed  Google Scholar 

  • Arya M, Mishra N, Singh P, Tripathi CB, Parashar P, Singh M, ... & Saraf SA. (2019a) In vitro and in silico molecular interaction of multiphase nanoparticles containing inositol hexaphosphate and jacalin: Therapeutic potential against colon cancer cells (HCT‐15). J Cell Physiol 234(9):15527–15536

    Google Scholar 

  • Arya M, Singh P, Tripathi CB, Parashar P, Singh M, Kanoujia J et al (2019b) Pectin-encrusted gold nanocomposites containing phytic acid and jacalin: 1, 2-dimethylhydrazine-induced colon carcinogenesis in Wistar rats, PI3K/Akt, COX-2, and serum metabolomics as potential targets. Drug Deliv Transl Res 9(1):53–65

    CAS  PubMed  Google Scholar 

  • Ashwanikumar N, Kumar NA, Nair SA, Kumar GV (2012) Methacrylic-based nanogels for the pH-sensitive delivery of 5-fluorouracil in the colon. Int J Nanomedicine 7:5769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asnani GP, Kokare CR (2018) In vitro and in vivo evaluation of colon cancer targeted epichlorohydrin crosslinked Portulaca-alginate beads. Biomol Concepts 9(1):190–199. https://doi.org/10.1515/bmc-2018-0019

    Article  CAS  PubMed  Google Scholar 

  • Atlanta G (2015) Cancer facts and figures. name of press, pace of publication, page range ??

    Google Scholar 

  • Azeez NA, Deepa VS, Sivapriya V (2018) Phytosomes: emergent promising nano vesicular drug delivery system for targeted tumor therapy. Adv Nat Sci Nanosci Nanotechnol 9(3):033001

    Google Scholar 

  • Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M et al (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B: Biointerfaces 143:224–232

    CAS  PubMed  Google Scholar 

  • Bahreyni A, Alibolandi M, Ramezani M, Sarafan Sadeghi A, Abnous K, Taghdisi SM (2019) A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids Surf B: Biointerfaces 175:231–238. https://doi.org/10.1016/j.colsurfb.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  • Bai XY, Yan Y, Wang L, Zhao LG, Wang K (2016) Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice. Drug Deliv 23(6):1926–1932. https://doi.org/10.3109/10717544.2014.996924

    Article  CAS  PubMed  Google Scholar 

  • Bakalova R, Lazarova D, Nikolova B, Atanasova S, Zlateva G, Zhelev Z, Aoki I (2015) Delivery of size-controlled long-circulating polymersomes in solid tumours, visualized by quantum dots and optical imaging in vivo. Biotechnol Biotechnol Equip 29(1):175–180. https://doi.org/10.1080/13102818.2014.984894

    Article  CAS  PubMed  Google Scholar 

  • Barkat K, Ahmad M, Minhas MU, Khalid I (2017) Oxaliplatin-loaded crosslinked polymeric network of chondroitin sulfate-co-poly(methacrylic acid) for colorectal cancer: its toxicological evaluation. J Appl Polym Sci 134(38). https://doi.org/10.1002/app.45312

  • Basakran NS (2015) CD44 as a potential diagnostic tumor marker. Saudi Med J 36(3):273

    PubMed  PubMed Central  Google Scholar 

  • Behray M, Webster CA, Pereira S, Ghosh P, Krishnamurthy S, Al-Jamal WT, Chao Y (2016) Synthesis of diagnostic silicon nanoparticles for targeted delivery of Thiourea to epidermal growth factor receptor-expressing cancer cells. ACS Appl Mater Interfaces 8(14):8908–8917. https://doi.org/10.1021/acsami.5b12283

  • Beloqui A, Coco R, Alhouayek M, Solinís MÁ, Rodríguez-Gascón A, Muccioli GG, Préat V (2013) Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. Int J Pharm 454(2):775–783

    CAS  PubMed  Google Scholar 

  • Bharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133. https://doi.org/10.4103/2230-973X.160844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bratten J, Jones MP (2006) New directions in the assessment of gastric function: clinical applications of physiologic measurements. Dig Dis 24(3–4):252–259

    PubMed  Google Scholar 

  • Bzowska M, Karabasz A, Szczepanowicz K (2018) Encapsulation of camptothecin into pegylated polyelectrolyte nanocarriers. Colloids Surf A Physicochem Eng Asp 557:36–42. https://doi.org/10.1016/j.colsurfa.2018.05.070

    Article  CAS  Google Scholar 

  • Cao D, Liang L, Xu Y, Sun J, Lei M, Wang M et al (2018) Tumor associated macrophages and angiogenesis dual-recognizable nanoparticles for enhanced cancer chemotherapy. Nanomedicine 14(3):651–659. https://doi.org/10.1016/j.nano.2017.12.018

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Cheng J, Xi S, Qi X, Shen S, Ge Y (2019) Alginate/chitosan microcapsules for in-situ delivery of the protein, interleukin-1 receptor antagonist (IL-1Ra), for the treatment of dextran sulfate sodium (DSS)-induced colitis in a mouse model. Eur J Pharm Biopharm 137:112–121. https://doi.org/10.1016/j.ejpb.2019.02.011

    Article  CAS  PubMed  Google Scholar 

  • Cardoso MM, Peca IN, Roque ACA (2012) Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem 19(19):3103–3127

    CAS  PubMed  Google Scholar 

  • Castangia I, Nácher A, Caddeo C, Merino V, Díez-Sales O, Catalán-Latorre A et al (2015) Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater 13:216–227. https://doi.org/10.1016/j.actbio.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  • Cerroni B, Pasale SK, Mateescu A, Domenici F, Oddo L, Bordi F, Paradossi G (2015) Temperature-tunable nanoparticles for selective biointerface. Biomacromolecules 16(6):1753–1760. https://doi.org/10.1021/acs.biomac.5b00268

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Nachinmuthu KP, Natarajan SB, Inamdar MG, Shahimi MS (2018) Papain loaded solid lipid nanoparticles for colorectal cancer therapy. Curr Cancer Therapy Rev 14(1):75–87

    CAS  Google Scholar 

  • Chen C, Zhao S, Karnad A, Freeman JW (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11(1):64

    PubMed  PubMed Central  Google Scholar 

  • Chourasia M, Jain S (2004) Polysaccharides for colon targeted drug delivery. Drug Deliv 11(2):129–148

    CAS  PubMed  Google Scholar 

  • Collnot E-M, Ali H, Lehr C-M (2012) Nano-and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release 161(2):235–246

    CAS  PubMed  Google Scholar 

  • Cooper H, Farano P, Coapman R (1987) Peanut lectin binding sites in colons of patients with ulcerative colitis. Arch Pathol Lab Med 111(3):270–275

    CAS  PubMed  Google Scholar 

  • Das S, Deshmukh R, Jha A (2010) Role of natural polymers in the development of multiparticulate systems for colon drug targeting. Syst Rev Pharm 1(1):79

    Google Scholar 

  • Dianzani C, Foglietta F, Ferrara B, Rosa AC, Muntoni E, Gasco P et al (2017) Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: effects in an in vivo model. World J Gastroenterol 23(23):4200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinesen L, Travis S (2007) Targeting nanomedicines in the treatment of Crohn’s disease: focus on certolizumab pegol (CDP870). Int J Nanomedicine 2(1):39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dineshkumar B, Krishnakumar K, Bhatt AR, Paul D, Cherian J, John A, Suresh S (2015) Single-walled and multi-walled carbon nanotubes based drug delivery system: cancer therapy: a review. Indian J Cancer 52(3):262–264. https://doi.org/10.4103/0019-509x.176720

    Article  CAS  PubMed  Google Scholar 

  • Dong R, Wang M, Dong F (2015) The new progress and outlook of oral colon-specific drug delivery system for treating cancer. Int J Adv Med Sci 3:25–32

    Google Scholar 

  • Dou Y-X, Zhou J-T, Wang T-T, Huang Y-F, Chen VP, Xie Y-L et al (2018) Self-nanoemulsifying drug delivery system of bruceine D: a new approach for anti-ulcerative colitis. Int J Nanomedicine 13:5887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elnaggar YSR (2015) Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine. Int J Nanomedicine 10:3955–3971. https://doi.org/10.2147/IJN.S82558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzagheid A, Ålgars A, Bendardaf R, Lamlum H, Ristamaki R, Collan Y et al (2006) E-cadherin expression pattern in primary colorectal carcinomas and their metastases reflects disease outcome. World J Gastroenterol: WJG 12(27):4304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan F, Fan F, Wey JS, MF MC, Belcheva A, Liu W, Bauer TW, Somcio RJ, Wu Y, Hooper A, Hicklin DJ, Ellis LM (2005) Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24:2647–2653. https://doi.org/10.1038/sj.onc.1208246

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Kong S-S, Zhong L-K, Wang C-M, Liu Y-J, Ding H-Y et al (2019) Asiatic acid enhances intratumor delivery and the antitumor effect of pegylated liposomal doxorubicin by reducing tumor-stroma collagen. Acta Pharmacol Sin 40(4):539

    CAS  PubMed  Google Scholar 

  • Feng B, Zhou F, Wang D, Xu Z, Yu H, Li Y (2016a) Gold nanomaterials for treatment of metastatic cancer. Sci China Chem 59(8):984–990. https://doi.org/10.1007/s11426-016-5593-0

    Article  CAS  Google Scholar 

  • Feng M, Zhong L-X, Zhan Z-Y, Huang Z-H, Xiong J-P (2016b) Resveratrol treatment inhibits proliferation of and induces apoptosis in human colon cancer cells. Med Sci Monit 22:1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu K, Kobayashi A, Saito N, Sano Y, Kato S, Ikematsu H et al (2006) Alpha-fetoprotein-producing colon cancer with atypical bulky lymph node metastasis. World J Gastroenterol 12(47):7715–7716. https://doi.org/10.3748/wjg.v12.i47.7715

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaikwad NM, Shaikh KS, Chaudhari PD (2017) Development and evaluation of a system for colonic delivery of budesonide. Indian J Pharma Educ Res 51(4):551–561

    CAS  Google Scholar 

  • Gao F, Yuan Q, Gao L, Cai P, Zhu H, Liu R et al (2014) Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 35(31):8854–8866

    CAS  PubMed  Google Scholar 

  • García-Couce J, Bada-Rivero N, López Hernández OD, Nogueira A, Caracciolo PC, Abraham GA et al (2019) Dexamethasone-loaded chitosan beads coated with a pH-dependent interpolymer complex for colon-specific drug delivery. Int J Polym Sci 2019:4204375

    Google Scholar 

  • Garg A, Tisdale AW, Haidari E, Kokkoli E (2009) Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm 366(1–2):201–210

    CAS  PubMed  Google Scholar 

  • Gelberg HB (2014) Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine. Toxicol Pathol 42(1):54–66

    CAS  PubMed  Google Scholar 

  • Goodman SL, Picard M (2012) Integrins as therapeutic targets. Trends Pharmacol Sci 33(7):405–412

    CAS  PubMed  Google Scholar 

  • Gou M, Men K, Shi H, Xiang M, Zhang J, Song J et al (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3(4):1558–1567. https://doi.org/10.1039/C0NR00758G

    Article  CAS  PubMed  Google Scholar 

  • Goudanavar PS, Joshi VG (2012) Development and targeting efficiency of irinotecan engineered proniosomes. Trop J Pharm Res 11(1):1–8

    CAS  Google Scholar 

  • Grand RJ, Watkins JB, Torti FM (1976) Development of the human gastrointestinal tract: a review. Gastroenterology 70(5):790–810

    CAS  PubMed  Google Scholar 

  • Gupta AS, Kshirsagar SJ, Bhalekar MR, Saldanha T (2013) Design and development of liposomes for colon targeted drug delivery. J Drug Target 21(2):146–160

    CAS  PubMed  Google Scholar 

  • Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:117739280700200002

    Google Scholar 

  • Handali S, Moghimipour E, Kouchak M, Ramezani Z, Amini M, Angali KA et al (2019) New folate receptor targeted nano liposomes for delivery of 5-fluorouracil to cancer cells: strong implication for enhanced potency and safety. Life Sci 227:39–50

    CAS  PubMed  Google Scholar 

  • Hoving JC (2018) Targeting IL-13 as a host-directed therapy against ulcerative colitis. Front Cell Infect Microbiol 8:395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua S, Marks E, Schneider JJ, Keely S (2015) Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine 11(5):1117–1132. https://doi.org/10.1016/j.nano.2015.02.018

    Article  CAS  PubMed  Google Scholar 

  • Irving M, Catchpole B (1992) ABC of colorectal diseases. Anatomy and physiology of the colon, rectum, and anus. Br Med J 304(6834):1106

    CAS  Google Scholar 

  • Izham M, Nadiah M, Hussin Y, Aziz MNM, Yeap SK, Rahman HS et al (2019) Preparation and characterization of self nano-emulsifying drug delivery system loaded with Citraland its antiproliferative effect on colorectal cells in vitro. Nano 9(7):1028

    CAS  Google Scholar 

  • Jadhav SM, Morey P, Karpe M, Kadam V (2012) Novel vesicular system: an overview. J Appl Pharm Sci 2(1):193–202

    Google Scholar 

  • Jain A (2017) Colon targeting using pH sensitive materials. Adv Res Gastroenterol Hepatol 8:1–3

    Google Scholar 

  • Jayasekeran V, Holt B, Bourke M (2013) Normal adult colonic anatomy in colonoscopy. Video J Encycl GI Endosc 1(2):390–392

    Google Scholar 

  • Jodeleit H, Al-Amodi O, Caesar J, Villarroel Aguilera C, Holdt L, Gropp R et al (2018) Targeting ulcerative colitis by suppressing glucose uptake with ritonavir. Dis Model Mech 11(11):dmm036210. https://doi.org/10.1242/dmm.036210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamboj S, Saini V, Magon N, Bala S, Jhawat V (2013) Vesicular drug delivery systems: a novel approach for drug targeting. Brain 1:11

    Google Scholar 

  • Karn PR, Vanić Z, Pepić I, Škalko-Basnet N (2011) Mucoadhesive liposomal delivery systems: the choice of coating material. Drug Dev Ind Pharm 37(4):482–488

    CAS  PubMed  Google Scholar 

  • Kazi M, Al-Swairi M, Ahmad A, Raish M, Alanazi FK, Khan AA et al (2019) Evaluation of self-nanoemulsifying drug delivery system (SNEDDS) for poorly water-soluble talinolol: preparation, in vitro and in vivo assessment. Front Pharmacol 10:459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kou L, Yao Q, Sivaprakasam S, Luo Q, Sun Y, Fu Q et al (2017) Dual targeting of l-carnitine-conjugated nanoparticles to OCTN2 and ATB0,+ to deliver chemotherapeutic agents for colon cancer therapy. Drug Deliv 24(1):1338–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krasteva N, Keremidarska-Markova M, Hristova-Panusheva K, Andreeva T, Speranza G, Wang D et al (2019) Aminated graphene oxide as a potential new therapy for colorectal cancer. Oxidative Med Cell Longev 2019:3738980

    Google Scholar 

  • Krishna R, Garg A, Jin B, Keshavarz SS, Bieberdorf FA, Chodakewitz J, Wagner JA (2009) Assessment of a pharmacokinetic and pharmacodynamic interaction between simvastatin and anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Br J Clin Pharmacol 67(5):520–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kshirsagar SJ, Bhalekar MR, Patel JN, Mohapatra SK, Shewale NS (2012) Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharm Dev Technol 17(5):607–613

    CAS  PubMed  Google Scholar 

  • Kumar M, Ali A, Kaldhone P, Shirode A, Kadam V (2010) Report on pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Res 3(3):470–473

    CAS  Google Scholar 

  • Kumar B, Kulanthaivel S, Mondal A, Mishra S, Banerjee B, Bhaumik A et al (2017) Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B: Biointerfaces 150:352–361

    CAS  PubMed  Google Scholar 

  • Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y (2005) Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharmacol Exp Ther 315(1):196–202

    CAS  PubMed  Google Scholar 

  • Lankalapalli S, Damuluri M (2012) Sphingosomes: applications in targeted drug delivery. Int J Pharm Chem Biol Sci 2:507–516

    CAS  Google Scholar 

  • Lautenschläger C, Schmidt C, Fischer D, Stallmach A (2014) Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev 71:58–76

    PubMed  Google Scholar 

  • Lee C-M, Kim D-W, Lee H-C, Lee K-Y (2004) Pectin microspheres for oral colon delivery: preparation using spray drying method andin vitro release of indomethacin. Biotechnol Bioprocess Eng 9(3):191–195

    CAS  Google Scholar 

  • Leuva V, Patel B, Chaudhary D, Patel J, Modasiya M (2012) Oral colon-specific drug delivery system. J Pharm Res 5(4):2293–2297

    Google Scholar 

  • Li L, Xiang D, Shigdar S, Yang W, Li Q, Lin J et al (2014) Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine 9:1083

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang X, Chen M, Wang Y, Sun R, Qu H et al (2017) Effectiveness of C5a aptamers in a TNBS-induced colitis mouse model. Exp Ther Med 14(6):6119–6124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Tu Z, Feng F, Shi H, Chen K, Xu X (2015) Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment. Acta Pharma 65(2):105116. https://doi.org/10.1515/acph-2015-0019

    Article  CAS  Google Scholar 

  • Liu W, Zhu Y, Wang F, Li X, Liu X, Pang J, Pan W (2018) Galactosylated chitosan-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. R Soc Open Sci 5(12):181027–181027. https://doi.org/10.1098/rsos.181027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZL, Li LF, Xia SS, Tian HP, Yan ZH, Zhang GJ et al (2019) Chondroitin sulfate modification enhances the targeting and therapeutic effect of nanomedicine on AOM/DSS-induced mouse colon cancer. J Drug Deliv Sci Technol 52:1–7. https://doi.org/10.1016/j.jddst.2019.04.010

    Article  CAS  Google Scholar 

  • Lu L, Chen G, Qiu Y, Li M, Liu D, Hu D et al (2016) Nanoparticle-based oral delivery systems for colon targeting: principles and design strategies. Sci Bullet 61(9):670–681

    CAS  Google Scholar 

  • Ma ZG, Ma R, Xiao XL, Zhang YH, Zhang XZ, Hu N et al (2016) Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomater 44:323–331. https://doi.org/10.1016/j.actbio.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan V (2017) Anatomy of the caecum, appendix and colon. Surgery (Oxford) 35(3):15–120

    Google Scholar 

  • Mahmoudi A, Jaafari MR, Ramezanian N, Gholami L, Malaekeh-Nikouei B (2019) BR2 and CyLoP1 enhance in-vivo SN38 delivery using pegylated PAMAM dendrimers. Int J Pharm 564:77–89

    CAS  PubMed  Google Scholar 

  • Makhlof A, Tozuka Y, Takeuchi H (2009) pH-sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm 72(1):1–8

    CAS  PubMed  Google Scholar 

  • Melo-Júnior MR, Telles A, Albuquerque FE, Pontes-Filho NT, Carvalho LB Jr, Beltrão EI (2004) Altered lectin-binding sites in normal colon and ulcerative colitis. Jornal Brasileiro de Patologia e Medicina Laboratorial 40(2):123–125

    Google Scholar 

  • Mignani S, Majoral J-P (2013) Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. New J Chem 37(11):3337–3357. https://doi.org/10.1039/C3NJ00300K

    Article  CAS  Google Scholar 

  • Mike M, Kano N (2013) Reappraisal of the vascular anatomy of the colon and consequences for the definition of surgical resection. Dig Surg 30(4–6):383–392

    PubMed  Google Scholar 

  • Mishra N, Arya M, Gupta KP, Saraf SA (2019) Optimization of inositol hexaphosphate colon targeted formulation for anticarcinogenic marker modulation. AAPS PharmSciTech 20(8):319

    PubMed  Google Scholar 

  • Mohd AB, Sanka K, Bandi S, Diwan PV, Shastri N (2015) Solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of glimepiride: development and antidiabetic activity in albino rabbits. Drug Deliv 22(4):499–508

    CAS  PubMed  Google Scholar 

  • Moran E Jr (2006) Anatomy, microbes, and fiber: small versus large intestine. J Appl Poult Res 15(1):154–160

    Google Scholar 

  • Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T (2018) Aptamer therapeutics in cancer: current and future. Cancers 10(3):80. https://doi.org/10.3390/cancers10030080

    Article  CAS  PubMed Central  Google Scholar 

  • Moulari B, Béduneau A, Pellequer Y, Lamprecht A (2014) Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release 188:9–17

    CAS  PubMed  Google Scholar 

  • Naeem M, Bae J, Oshi MA, Kim M-S, Moon HR, Lee BL et al (2018) Colon-targeted delivery of cyclosporine a using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int J Nanomedicine 13:1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24(1):539–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pabla B, Bissonnette M, Konda VJ (2015) Colon cancer and the epidermal growth factor receptor: current treatment paradigms, the importance of diet, and the role of chemoprevention. World J Clin Oncol 6(5):133–141. https://doi.org/10.5306/wjco.v6.i5.133

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardo J, Peng Z, Leblanc R (2018) Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 23(2):378

    PubMed Central  Google Scholar 

  • Park Y, Ryu Y-M, Jung Y, Wang T, Baek Y, Yoon Y et al (2014) Spraying quantum dot conjugates in the colon of live animals enabled rapid and multiplex cancer diagnosis using endoscopy. ACS Nano 8(9):8896–8910

    CAS  PubMed  Google Scholar 

  • Philip AK, Philip B (2010) Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 25(2):79

    PubMed  PubMed Central  Google Scholar 

  • Phillips S (1984) Functions of the large bowel: an overview. Scand J Gastroenterol Suppl 93:1–12

    CAS  PubMed  Google Scholar 

  • Pichai MV, Ferguson LR (2012) Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases. World J Gastroenterol: WJG 18(23):2895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati SK, Jain A, Shrivastava C, Jain AK (2019) Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int J Biol Macromol 123:691–703. https://doi.org/10.1016/j.ijbiomac.2018.11.116

    Article  CAS  PubMed  Google Scholar 

  • Rangari Nalanda T, Puranik Prashant K (2015) Review on recent and novel approaches to colon targeted drug delivery systems. Int J Pharm Pharma Res 3(1):167–186

    Google Scholar 

  • Rao J, Khan A (2013) Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J Am Chem Soc 135(38):14056–14059. https://doi.org/10.1021/ja407514z

    Article  CAS  PubMed  Google Scholar 

  • Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, Pandit JK (2014) Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv 2014:670815

    Google Scholar 

  • Ratnaparkhi Mukesh P, Somvanshi Fattesingh U, Pawar Sham A, Chaudhari Shilpa P, Gupta Jyoti P, Budhavant Kalyani A (2013) Colon targeted drug delivery system. IJPRR 2(8):33–42

    Google Scholar 

  • Rodriguez-Nogales A, Algieri F, Laura de Matteis A, Perez JG-M, Vezza T, de la Fuente JM et al (2016) Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats. Int J Nanomedicine 11:5945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safaie Qamsari E, Safaei Ghaderi S, Zarei B, Dorostkar R, Bagheri S, Jadidi-Niaragh F et al (2017) The c-Met receptor: implication for targeted therapies in colorectal cancer. Tumor Biol 39(5):1010428317699118

    Google Scholar 

  • Saga K, Kaneda Y (2013) Virosome presents multimodel cancer therapy without viral replication. Biomed Res Int:764706–764706. https://doi.org/10.1155/2013/764706

  • Sahu KK, Kaurav M, Pandey RS (2019) Chylomicron mimicking solid lipid nanoemulsions encapsulated enteric minicapsules targeted to colon for immunization against hepatitis B. Int Immunopharmacol 66:317–329. https://doi.org/10.1016/j.intimp.2018.11.041

    Article  CAS  PubMed  Google Scholar 

  • Satapathy SR, Mohapatra P, Preet R, Das D, Sarkar B, Choudhuri T et al (2013) Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine 8(8):1307–1322

    CAS  PubMed  Google Scholar 

  • Sen K, Banerjee S, Mandal M (2019) Dual drug loaded liposome bearing apigenin and 5-fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B: Biointerfaces 180:9–22. https://doi.org/10.1016/j.colsurfb.2019.04.035

    Article  CAS  PubMed  Google Scholar 

  • Seo YG, Kim DH, Ramasamy T, Kim JH, Marasini N, Oh Y-K et al (2013) Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm 452(1–2):412–420

    CAS  PubMed  Google Scholar 

  • Seo J, Lee J, Lee CB, Bae SK, Na K (2019) Nonpolymeric pH-sensitive carbon dots for treatment of tumor. Bioconjug Chem 30(3):621–632. https://doi.org/10.1021/acs.bioconjchem.8b00813

    Article  CAS  PubMed  Google Scholar 

  • Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F (2019) A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 558:367–379. https://doi.org/10.1016/j.ijpharm.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Yu D, Zhu L, Branford-White C, White K, Chatterton NP (2011) Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. Int J Pharm 408(1–2):200–207

    CAS  PubMed  Google Scholar 

  • Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P (2018) Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 8(6):916–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivani S, Poladi KK (2015) Nanosponges-novel emerging drug delivery system: A review. Int J Pharm Sci Res 6(2):529

    CAS  Google Scholar 

  • Silindir-Gunay M, Karpuz M, Ozturk N, Ozer AY, Erdogan S, Tuncel M (2019) Radiolabeled, folate-conjugated liposomes as tumor imaging agents: formulation and in vitro evaluation. J Drug Deliv Sci Technol 50:321–328

    CAS  Google Scholar 

  • Simmonds NJ, Allen RE, Stevens TR, Niall R, Van Someren M, Blake DR, Rampton DS (1992) Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology 103(1):186–196

    CAS  PubMed  Google Scholar 

  • Singh CK, Saxena S, Yadav M, Samson AL (2018) A review on novel approaches for colon targeted drug delivery systems. PharmaTutor 6(7):11–22

    Google Scholar 

  • Širc J, Hobzová R, Kostina N, Munzarová M, Juklícková M., ... & Michálek, J. (2012) Morphological characterization of nanofibers: methods and application in practice. J Nanomater 1212:1–15

    Google Scholar 

  • Soleymani J, Hasanzadeh M, Somi MH, Shadjou N, Jouyban A (2019) Highly sensitive and specific cytosensing of HT 29 colorectal cancer cells using folic acid functionalized-KCC-1 nanoparticles. Biosens Bioelectron 132:122–131

    CAS  PubMed  Google Scholar 

  • Sousa AR, Oliveira MJ, Sarmento B (2019) Impact of CEA-targeting nanoparticles for drug delivery in colorectal cancer. J Pharmacol Exp Therap 118:254441

    Google Scholar 

  • Stanczyk M, Dziki A, Morawiec Z (2012) Dendrimers in therapy for breast and colorectal cancer. Curr Med Chem 19(29):4896–4902

    CAS  PubMed  Google Scholar 

  • Stefanich E, Danilenko D, Wang H, O'Byrne S, Erickson R, Gelzleichter T et al (2011) A humanized monoclonal antibody targeting the β7 integrin selectively blocks intestinal homing of T lymphocytes. Br J Pharmacol 162(8):1855–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeltzing O, Liu W, Reinmuth N, Fan F, Parry GC, Parikh AA et al (2003) Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer 104(4):496–503. https://doi.org/10.1002/ijc.10958

    Article  CAS  PubMed  Google Scholar 

  • Sugiura T, Kageyama S, Andou A, Miyazawa T, Ejima C, Nakayama A et al (2013) Oral treatment with a novel small molecule alpha 4 integrin antagonist, AJM300, prevents the development of experimental colitis in mice. J Crohns Colitis 7(11):e533–e542. https://doi.org/10.1016/j.crohns.2013.03.014

    Article  PubMed  Google Scholar 

  • Sun Q, Luan L, Arif M, Li J, Dong Q-J, Gao Y et al (2018) Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydr Polym 189:352–359

    CAS  PubMed  Google Scholar 

  • Talaei F, Atyabi F, Azhdarzadeh M, Dinarvand R, Saadatzadeh A (2013) Overcoming therapeutic obstacles in inflammatory bowel diseases: a comprehensive review on novel drug delivery strategies. Eur J Pharm Sci 49(4):712–722

    CAS  PubMed  Google Scholar 

  • Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55(3):315–328

    CAS  PubMed  Google Scholar 

  • Ukrainskaya VM, Stepanov AV, Glagoleva IS, Knorre VD, Belogurov AA Jr, Gabibov AG (2017) Death receptors: new opportunities in cancer therapy. Acta Nat 9(3):55–63

    CAS  Google Scholar 

  • Üner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2(3):289

    PubMed  PubMed Central  Google Scholar 

  • Urmann K, Modrejewski J, Scheper T, Walter JG (2017) Aptamer-modified nanomaterials: principles and applications. BioNanoMaterials 18:1–2

    Google Scholar 

  • Vagare RS (2015) Microbial triggered colon targeted compression coated tablets of tenoxicam: formulation and evaluation. J Drug Deliv Therap 5(1):75–81

    Google Scholar 

  • Vaidya A, Jain S, Agrawal RK, Jain SK (2015) Pectin–metronidazole prodrug bearing microspheres for colon targeting. J Saudi Chem Soc 19(3):257–264

    Google Scholar 

  • Varshosaz J, Riahi S, Ghassami E, Jahanian-Najafabadi A (2017) Transferrin-targeted poly(butylene adipate)/terephthalate nanoparticles for targeted delivery of 5-fluorouracil in HT29 colorectal cancer cell line. J Bioact Compat Polym 32(5):503–527. https://doi.org/10.1177/0883911517690756

    Article  CAS  Google Scholar 

  • Vdoviaková K, Petrovová E, Maloveská M, Krešáková L, Teleky J, Elias MZJ, Petrášová D (2016) Surgical anatomy of the gastrointestinal tract and its vasculature in the laboratory rat. Gastroenterol Res Pract 2016:1–12

    Google Scholar 

  • Velmurugan B, Gangar SC, Kaur M, Tyagi A, Deep G, Agarwal R (2010) Silibinin exerts sustained growth suppressive effect against human colon carcinoma SW480 xenograft by targeting multiple signaling molecules. Pharm Res 27(10):2085–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verghese M, Rao D, Chawan C, Walker L, Shackelford L (2006) Anticarcinogenic effect of phytic acid (IP6): apoptosis as a possible mechanism of action. LWT-Food Sci Technol 39(10):1093–1098

    CAS  Google Scholar 

  • Verma C, Negi P, Pathania D, Sethi V, Gupta B (2019) Preparation of pH-sensitive hydrogels by graft polymerization of itaconic acid on tragacanth gum. Polym Int 68(3):344–350. https://doi.org/10.1002/pi.5739

    Article  CAS  Google Scholar 

  • Vishwakarma A, Nikam P, Mogal R, Talele S (2014) Review on nanosponges: a benefication for novel drug delivery. Int J PharmTech Res 6:11–20

    CAS  Google Scholar 

  • Vong LB, Mo J, Abrahamsson B, Nagasaki Y (2015a) Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose–response efficacy. J Control Release 210:19–25

    CAS  PubMed  Google Scholar 

  • Vong LB, Yoshitomi T, Matsui H, Nagasaki Y (2015b) Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials 55:54–63

    CAS  PubMed  Google Scholar 

  • Vukobrat-Bijedic Z, Husic-Selimovic A, Sofic A, Bijedic N, Bjelogrlic I, Gogov B, Mehmedovic A (2013) Cancer antigens (CEA and CA 19-9) as markers of advanced stage of colorectal carcinoma. Med Arch (Sarajevo, Bosnia and Herzegovina) 67(6):397401. https://doi.org/10.5455/medarh.2013.67.397-401

    Article  Google Scholar 

  • Wang X, Yu D-G, Li X-Y, Bligh SA, Williams GR (2015) Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int J Pharm 490(12):384–390

    CAS  PubMed  Google Scholar 

  • Wilkhu JS, McNeil SE, Anderson DE, Perrie Y (2013) Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target 21(3):291–299. https://doi.org/10.3109/1061186X.2012.747528

    Article  CAS  PubMed  Google Scholar 

  • Wong TW, Colombo G, Sonvico F (2011) Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech 12(1):201–214

    CAS  PubMed  Google Scholar 

  • Xiao B, Merlin D (2012) Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv 9(11):1393–1407

    CAS  PubMed  Google Scholar 

  • Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, Merlin D (2015) Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7(42):17745–17755. https://doi.org/10.1039/c5nr04831a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Xu Z, Viennois E, Zhang Y, Zhang Z, Zhang M et al (2017) Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther 25(7):1628–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Wang J, Chen H, Shen W, Sinko PJ, Dong H et al (2015) Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells. Sci Rep 5:9445–9445. https://doi.org/10.1038/srep09445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H et al (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35

    CAS  PubMed  Google Scholar 

  • Xing L, Dawei C, Liping X, Rongqing Z (2003) Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J Control Release 93(3):293–300

    PubMed  Google Scholar 

  • Xu JS, Huang J, Qin R, Hinkle GH, Povoski SP, Martin EW, Xu RX (2010) Synthesizing and binding dual-mode poly (lactic-co-glycolic acid)(PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 31(7):1716–1722

    CAS  PubMed  Google Scholar 

  • Xu Y, Pang L, Wang H, Xu C, Shah H, Guo P et al (2019) Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-γ-linolenic acid for colon cancer suppression. Redox Biol 21. https://doi.org/10.1016/j.redox.2018.101085

  • Yachida S, Fukushima N, Nakanishi Y, Akasu T, Kitamura H, Sakamoto M, Shimoda T (2003) Alpha-fetoprotein-producing carcinoma of the colon: report of a case and review of the literature. Dis Colon Rectum 46(6):826–831. https://doi.org/10.1007/s10350-004-6663-5

    Article  PubMed  Google Scholar 

  • Yang X, Li Z, Wang N, Li L, Song L, He T et al (2015) Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci Rep 5:10322–10322. https://doi.org/10.1038/srep10322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y-Y, Liu Z-P, Yu D-G, Wang K, Liu P, Chen X (2018) Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites. Int J Nanomedicine 13:2395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdian-Robati R, Arab A, Ramezani M, Rafatpanah H, Bahreyni A, Nabavinia MS et al (2019) Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo. Drug Dev Ind Pharm 45(4):603–610. https://doi.org/10.1080/03639045.2019.1569029

    Article  CAS  PubMed  Google Scholar 

  • Yeo PL, Lim CL, Chye SM, Ling APK, Koh RY (2017) Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed 11(4):301–314

    Google Scholar 

  • Yu H, Son G-M, Joh Y-G (2013) The clinical significance of preoperative serum levels of carbohydrate antigen 19-9 in colorectal cancer. J Korean Surg Soc 84(4):231–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Chen Z, Wu J, Li Z, Wu Y (2017) Prognostic value of pretreatment serum carbohydrate antigen 19-9 level in patients with colorectal cancer: a meta-analysis. PLoS One 12(11):e0188139

    PubMed  PubMed Central  Google Scholar 

  • Yuan X, Wang Z, Li L, Yu J, Wang Y, Li H et al (2019) Novel fluorescent amphiphilic copolymer probes containing azo-tetraphenylethylene bridges for azoreductase-triggered release. Mater Chem Front 3(6):1097–1104

    CAS  Google Scholar 

  • Zhang P, Qiao Z-A, Dai S (2015) Recent advances in carbon nanospheres: synthetic routes and applications. Chem Commun 51(45):9246–9256

    CAS  Google Scholar 

  • Zhang B, Yan Y, Shen Q, Ma D, Huang L, Cai X, Tan S (2017a) A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater Sci Eng C Mater Biol Appl 79:185–190. https://doi.org/10.1016/j.msec.2017.05.054

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Colazo J, Berg D, Mugo SM, Serpe MJ (2017b) Multiresponsive nanogels for targeted anticancer drug delivery. Mol Pharm 14(8):2624–2628

    CAS  PubMed  Google Scholar 

  • Zhang Y, Kang C, Wang X l, Zhou M, Chen M t, Zhu X h et al (2018) Dietary factors modulate colonic tumorigenesis through the interaction of gut microbiota and host chloride channels. Mol Nutr Food Res 62(5):1700554

    Google Scholar 

  • Zhao M-X, Zhu B-J (2016) The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res Lett 11(1):207

    PubMed  PubMed Central  Google Scholar 

  • Zhao X, Pan J, Li W, Yang W, Qin L, Pan Y (2018) Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int J Nanomedicine 13:6207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Peng Z, Liao S, Li P, Li S (2014) Design of microencapsulated carbon nanotube-based microspheres and its application in colon targeted drug delivery. Drug Deliv 21(2):101–109. https://doi.org/10.3109/10717544.2013.834413

    Article  CAS  PubMed  Google Scholar 

  • Zu M, Ma L, Zhang X, Xie D, Kang Y, Xiao B (2019) Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids Surf B Biointerfaces 177:399–406. https://doi.org/10.1016/j.colsurfb.2019.02.031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, N., Singh, S., Maurya, P., Nisha, R., Saraf, S.A. (2020). Recent Developments and Challenges in Nanoformulations Targeting Various Ailments of the Colon. In: Talegaonkar, S., Rai, M. (eds) Nanoformulations in Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-41858-8_7

Download citation

Publish with us

Policies and ethics