Skip to main content

Nanoformulations in Human Health Conditions: The Paradigm Shift

  • Chapter
  • First Online:
Nanoformulations in Human Health
  • 399 Accesses

Abstract

Salient features like strapping targeted drug delivery, improvisation in efficacy and safety profiles, extraordinary distinctiveness in physicochemical properties, etc. made nanopharmaceuticals immensely popular among formulators over the past few years. Nanoformulations, which are legacy of applications of nanotechnology, concern the use of specifically engineered materials to fabricate new therapeutic and diagnostic techniques. Exceptional physicochemical properties make nanoformulations more powerful in combating serious concerns that were associated with conventional formulation systems. Improved nanocarriers like nanoliposomes, nanoparticles, dendrimers, quantum dots, nanoemulsions and nanosuspensions came up with great control over controlled drug delivery, thus consistently emerging as most promising technology in this era. Nanotechnology presents a wide range of quality from diagnostic applications in early detection of diseases such as cancer to prolonged lowering of blood glucose levels in hyperglycaemia. Additionally, nanoformulation system has also gained success in the management of diseases by incorporating both imaging and therapeutic competence. A comprehensive assessment of each nanoformulation is necessary to enhance our current gamut in nanopharmaceuticals. With this aim, this chapter delivers a cursory detail on major nanopharmaceutical formulation systems and their roles in various medical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Koshki KN, Asl RP (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):247

    PubMed  PubMed Central  Google Scholar 

  • Abreu AS, Castanheira EMS, Queiroz M, Ferreira P, Silva L, Pinto E (2011) Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate. Nanoscale Res Lett 6(1):482

    PubMed  PubMed Central  Google Scholar 

  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99(20):12617–12621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar J, Siddiqui HH, Fareed S, Aqil M (2016) Nanoemulsion: for improved oral delivery of repaglinide. Drug Deliv 23(6):2026–2034

    CAS  PubMed  Google Scholar 

  • Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850

    CAS  PubMed  Google Scholar 

  • Alivisatos AP (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    CAS  PubMed  Google Scholar 

  • Aslan B, Ozpolat B, Sood AK, Berestein GL (2013) Nanotechnology in cancer therapy. J Drug Target 21(10):904–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babu A, Templeton AK, Munshi A, Ramesh R (2014) Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS Pharm Sci Tech 15(3):709–721

    CAS  Google Scholar 

  • Bahshi L, Freeman R, Gill R, Willner I (2009) Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. Small 5:676–680

    CAS  PubMed  Google Scholar 

  • Baloch J, Sohail MF, Sarwar HS, Kiani MH, Khan GM, Jahan S, Rafay M, Chaudhry MT, Yasinzai M, Shahnaz G (2019) Self-Nanoemulsifying Drug Delivery System (SNEDDS) for improved oral bioavailability of chlorpromazine: in vitro and in vivo evaluation. Medicina (Kaunas) 55(5):210

    Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    CAS  PubMed  Google Scholar 

  • Barenholz Y (2007) Amphipathic weak base loading into preformed liposomes having a transmembrane ammonium ion gradient: from the bench to approved DOXIL. In: Liposome technology: entrapment of drugs and other materials into liposomes, New York: Informa Healthcare. (3rd edn) vol 2, pp 1–25

    Google Scholar 

  • Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    CAS  PubMed  Google Scholar 

  • Barenholz Y, Amselem S, Goren D, Cohen R, Gelvan D, Samuni A, Golden EB, Gabizon A (1993) Stability of liposomal doxorubicin formulations: problems and prospects. Med Res Rev 13(4):449–491

    CAS  PubMed  Google Scholar 

  • Beaurepaire E, Buissette V, Sauviat MP, Giaume D, Lahlil K, Mercuri A (2004) Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level. Nano Lett 4(11):2079–2083

    CAS  Google Scholar 

  • Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36

    CAS  Google Scholar 

  • Bera D, Qian L, Tseng T, Holloway P (2010) Quantum dots and their multimodal applications: a review. Materials (Basel) 3(4):2260–2345

    CAS  Google Scholar 

  • Bernstein DI, Stanberry LR, Sacks S, Ayisi NK, Gong YH, Ireland J, Mumper RJ, Holan G, Matthews B, McCarthy T, Bourne N (2003) Evaluations of unformulated and formulated dendrimer-based microbicide candidates in mouse and guinea pig models of genital herpes. Antimicrob Agents Chemother 47(12):3784–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bielinska AU, Kukowska-Latallo JF, Baker JR Jr (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 24:2176–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bielinska AU, Kukowska-Latallo JF, Baker JR Jr (1997) The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim Biophys Acta 1353:180–190

    CAS  PubMed  Google Scholar 

  • Binnewies M, Edward W, Kersten RK, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Rosenberg SO, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99(7):1665–1688

    CAS  PubMed  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  PubMed  Google Scholar 

  • Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    CAS  PubMed  Google Scholar 

  • Chan WC and Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385): 2016–2018

    Google Scholar 

  • Chen W, Turro NJ, Tomalia DA (2000) Using ethidium bromide to probe the interactions between DNA and dendrimers. Langmuir 16:15–19

    Google Scholar 

  • Chingunpituk J (2007) Nanopsuspention technology for drug delivery. Walailak J Sci Technol 4(2):139–153

    Google Scholar 

  • Choi SH, Lee JH, Choi SM, Park TG (2006) Thermally reversible pluronic/heparin nanocapsules exhibiting 1000-fold volume transition. Langmuir 22(4):1758–1762

    CAS  PubMed  Google Scholar 

  • Choi SR, Britigan BE, Narayanasamy P (2019) Treatment of Virulent Mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine production. mSphere 24(4). pii: e00443–19

    Google Scholar 

  • Deng H, Liu Q, Wang X, Huang R, Liu H, Lin Q, Zhou X, Xing D (2017) Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosens Bioelectron 87:931–940

    CAS  PubMed  Google Scholar 

  • Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309

    PubMed  PubMed Central  Google Scholar 

  • Deoli M (2012) Nanosuspension technology for solubilizing poorly soluble drugs. International J. Drug Dev. and Research 4(4):40–49

    Google Scholar 

  • Espinoza LC, Silva-Abreu M, Calpena AC, RodrĂ­guez-Lagunas MJ, Fábrega MJ, Garduño-RamĂ­rez ML, Clares B (2019) Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomedicine 19:115–125

    CAS  PubMed  Google Scholar 

  • Fofaria NM, Qhattal HS, Liu X, Srivastava SK (2016) Nanoemulsion formulations for anti-cancer agent piplartine – characterization, toxicological, pharmacokinetics and efficacy studies. Int J Pharm 498(1–2):12–22

    CAS  PubMed  Google Scholar 

  • Forssen EA, Tökès ZA (1981) Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity. Proc Natl Acad Sci U S A 78(3):1873–1877

    Google Scholar 

  • Gabizon AA, Barenholz Y (2010) Method for drug loading in liposomes. Google Patents

    Google Scholar 

  • Ganta S, Singh A, Kulkarni P, Keeler AW, Piroyan A, Sawant RR, Patel NR, Davis B, Ferris C, O'Neal S, Zamboni W, Amiji MM, Coleman TP (2015) EGFR targeted theranostic nanoemulsion for image-guided ovarian cancer therapy. Pharm Res 32(8):2753–2763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung WK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    CAS  PubMed  Google Scholar 

  • Gao Y, Sun M, Guo C, Yu A, Xi Y, Cui J, Lou H, Zhai G (2011) Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 18(2):131–142

    CAS  PubMed  Google Scholar 

  • Ge W, Hu P, Huang Y, Wang XM, Zhang XM, Sun YJ, Li ZS, Si SY, Sui YF (2009) The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes. Oncol Rep 22(4):915–920

    CAS  PubMed  Google Scholar 

  • Gladwin MT, Plorde JT, Martin TR (1998) Clinical application of the Mycobacterium Tuberculosis direct test: case report, literature review and proposed clinical alogrothim. Chest 114(1):317–323

    CAS  PubMed  Google Scholar 

  • Goel S, Sachdeva M, Agarwal V (2019) Nanosuspension technology: recent patents on drug delivery and their characterizations. Recent Pat Drug Deliv Formul 13:91. https://doi.org/10.2174/1872211313666190614151615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Matthews B, Cheung D, Tam T, Gadawski I, Leung D, Holan G, Raff J, Sacks S (2002) Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication. Antivir Res 55(2):319–329

    CAS  PubMed  Google Scholar 

  • Gonzales J, Kossatz S, Roberts S, Pirovano G, Brand C, Medina CP, Donabedian P, de la Cruz MJ, Mulder WM, Reiner T (2018) Nanoemulsion-based delivery of fluorescent PARP inhibitors in mouse models of small cell lung cancer. Bioconjug Chem 29(11):3776–3782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gradishar WJ, Jjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, Shaughnessy JO (2005) Phase III trial of NP albumin bound paclitaxel compared with polyethylated castor oil based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    CAS  PubMed  Google Scholar 

  • Gupta D, Nguyen PYM (2014) Nanoparticles for superior pharmacokinestics and enhanced efficacy. J Dev Drug 3:2

    Google Scholar 

  • Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12(11):2826–2841

    CAS  PubMed  Google Scholar 

  • Huang Q, Li L, Li L, Chen H, Dang YY, Zhang JS, Shao NM, Chang H, Zhou ZJ, Liu CY, He BW, Wei HF, Xiao JR (2016) MDM2 knockdown mediated by a triazine-modified dendrimer in the treatment of non-small cell lung cancer. Oncotarget 7(28):44013–44022

    PubMed  PubMed Central  Google Scholar 

  • Iyisan B, Landfester K (2019) Modular approach for the design of smart polymeric nanocapsules. Macromol Rapid Commun 40(1):e1800577. https://doi.org/10.1002/marc.201800577

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51

    CAS  PubMed  Google Scholar 

  • Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. Biotech 5(2):123–127

    Google Scholar 

  • Janaszewska A, Lazniewska L, TrzepiĹ„ski P, Marcinkowska M, Maculewicz K (2019) Cytotoxicity of dendrimers. Biomolecules 9(8):330

    CAS  PubMed Central  Google Scholar 

  • Jin X, Yijing L, Yang L, Yueqin M, Pengfei Y, Ming Y (2019) Novel redispersible nanosuspensions stabilized by co-processed nanocrystalline cellulose–sodium carboxymethyl starch for enhancing dissolution and oral bioavailability of baicalin. Int J Nanomedicine 14:353–369

    Google Scholar 

  • Kaul G, Amiji MJ (2002) Long- circulating poly(ethyleneglycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 19:1062–1068

    Google Scholar 

  • Kayser O (2001) A new approach for targeting to cryptosporidium parvum using mucoadhesive nanosuspension: research and application. Int J Pharm 214:83–85

    CAS  PubMed  Google Scholar 

  • Kharia A, Singhai A, Verma R (2012) Formulation and evaluation of polymeric nanoparticles of an antiviral drug for gastroretention. Int J Pharm Sci Nanotechnol 4:1557–1562

    Google Scholar 

  • Kim JE, Park YJ (2017a) Improved antitumor efficacy of hyaluronic acid-complexed paclitaxel nanoemulsions in treating non-small cell lung cancer. Biomol Ther (Seoul) 25(4):411–416

    CAS  Google Scholar 

  • Kim JE, Park YJ (2017b) Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. Int J Nanomedicine 12:645–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer N, Pashkina E, Apartsin E (2019) Topological aspects of the design of nanocarriers for therapeutic peptides and proteins. Pharmaceutics 11(2):91

    CAS  PubMed Central  Google Scholar 

  • Kobayashi H, Saga T, Kawamoto S, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Dynamic micro – magnetic resonance iimaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)64. Cancer Res 61:4966–4970

    CAS  PubMed  Google Scholar 

  • Kohno S, Otuubo T, Tanaka E, Maruyaana K, Hara K (1997) Amphotericin B encapsulated in polyethylene glycol immunoliposomes for infectious disease. Adv Drug Del Rev 24:325–329

    CAS  Google Scholar 

  • Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J (2012) Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 9(5):585–598

    CAS  PubMed  Google Scholar 

  • Krittika S, Indhumathi P, VedhaHari BN, Devi DR, Yadav P (2019) Evidence of nanoemulsion as an effective control measure for fruit flies Drosophila melanogaster. Sci Rep 9:10578

    PubMed  PubMed Central  Google Scholar 

  • Kruk ME, Gage AD, Joseph NT, Danaei G, SaisĂł SG, Salomon JA (2018) Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. Lancet 392(10160):2203–2212

    PubMed  PubMed Central  Google Scholar 

  • Kuplennik N, Lang K, Steinfeld R, Sosnik A (2019) Folate receptor alpha-modified nanoparticles for the targeting of the central nervous system. ACS Appl Mater Interfaces 11:39633. https://doi.org/10.1021/acsami.9b14659

    Article  CAS  PubMed  Google Scholar 

  • Landers JJ, Cao Z, Lee I, Piehler LT, Myc PP, Myc A, Hamouda T, Galecki AT, Baker JR (2002) Prevention of influenza pneumonitis by sialic acid-conjugated dendritic polymers. Infect Dis 186:1222

    CAS  Google Scholar 

  • Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    CAS  PubMed  Google Scholar 

  • Leone F, Cavalli R (2015) Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opin Drug Deliv 12(10):1607–1625

    PubMed  Google Scholar 

  • Leong KW, Mao HQ, Truong LVL (1998) DNA- polycation nanospheres as non viral gene delivery vehicles. J Control Release 53:183–193

    CAS  PubMed  Google Scholar 

  • Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82(16):7008–7014

    CAS  PubMed  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    CAS  PubMed  Google Scholar 

  • Liu XX, Liu C, Catapano CV, Peng L, Zhou JH, Rocchi P (2014) Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAibased therapeutics. Biotechnol Adv 32(4):844–852

    PubMed  Google Scholar 

  • Luganini A, Nicoletto SF, Pizzuto L, Pirri G, Giuliani A, Landolfo S, Gribaudo G (2011) Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob Agents Chemother 55(7):3231–3239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahto R (2017) Nanoemulsion as targeted drug delivery system for cancer therapeutics. J Pharm Sci Pharmacol 3:83–97

    Google Scholar 

  • Marcinkowska M, Stanczyk M, Janaszewska A, Sobierajska E, Chworos A, Klajnert-Maculewicz B (2019) Multicomponent conjugates of anticancer drugs and monoclonal antibody with PAMAM dendrimers to increase efficacy of HER-2 positive breast cancer therapy. Pharm Res 36(11):154

    PubMed  PubMed Central  Google Scholar 

  • Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles – a new colloidal drug delivery system. Pharm Acta Helv 53(1):17–23

    CAS  PubMed  Google Scholar 

  • Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman E, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:437–446

    Google Scholar 

  • Migotto A, Carvalho VFM, Salata GC, da Silva FWM, Yan CYI, Ishida K, Costa-Lotufo LV, Steiner AA, Lopes LB (2018) Multifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Deliv 25(1):654–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal N, Kaur G (2019) Investigations on polymeric nanoparticles for ocular delivery. Adv Polym Technol 2019:1–14

    Google Scholar 

  • Monteagudom S, Perez-Martinez FC, Perez-Carrion MD, Guerra J, Merino S, Sanchez-Verdu MP, Cena V (2012) Inhibition of p42 MAPK using a nonviral vector-delivered siRNA potentiates the anti-tumor effect of metformin in prostate cancer cells. Nanomedicine 7(4):493–506

    Google Scholar 

  • Moss RL (2014) Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT). Appl Radiat Isot 88:2–11

    CAS  PubMed  Google Scholar 

  • Mozafari MR (2010) Nanoliposomes: preparation and analysis. Methods Mol Biol 605:29–50

    CAS  PubMed  Google Scholar 

  • Muhamad N, Plengsuriyakarn T, Bangchang KN (2018) Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 13:3921–3935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller RH, Gohla S, Dingler A, Schneppe T, Wise D (2000) Handbook of pharmaceutical controlled release technology. Marcel Dekker. Large-scale production of solid-lipid nanoparticles (SLN) and nanosuspension (Dissocubes), New York, pp 359–375

    Google Scholar 

  • Mustapha O, Kim KS, Shafique S, Kim DS, Jin SG, Seo YG, Youn YS, Oh KT, Lee BJ, Park YJ, Yong CS, Kim JO, Choi HG (2016) Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: physicochemical characterization and in vivo evaluation. Colloids Surf B Biointerfaces 150:216–222

    PubMed  Google Scholar 

  • Muzammil AS, Naidu VG, Harishankar N, Kishan V (2016) Albumin anchored docetaxel lipid nanoemulsion for improved targeting efficiency – preparation, characterization, cytotoxic, antitumor and in vivo imaging studies. Drug Deliv 23(4):1355–1363

    Google Scholar 

  • Nakhlband A, Eskandani M, Omidi Y, Saeedi N, Ghaffari S, Barar J, Garjani A (2018) Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective. Bioimpacts 8(1):59–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nasimi P, Haidari M (2013) Medical use of nanoparticles: drug delivery and diagnosis diseases. Int J Green Nanotechnol 1:194308921350697. https://doi.org/10.1177/1943089213506978

    Article  Google Scholar 

  • Nasiruddin M, Neyaz MK, Das S (2017) Nanotechnology based approaches in tuberculosis treatment. Tuberc Res Treat 4920209:12

    Google Scholar 

  • Nasr A, Gardouh A, Ghorab M (2016) Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics 8(3):20–29

    PubMed Central  Google Scholar 

  • Panda BP, Kirshnamoorthy R, Hawala NK, Gowda S, Patnaik S (2018) Influence of poloxamer 188 on design and development of second generation PLGA nanocrystals of metformin HCL. Nano Biomed Eng 10(4):334–343

    CAS  Google Scholar 

  • Pandey R, Sharma S, Khuller GK (2004) Nebulisation of liposomes encapsulated antitubercular drugsin guinea pigs. Int J Antimicrob Drugs 24(1):93–94

    CAS  Google Scholar 

  • Pandey R, Sharma S, Khuller GK (2005) Oral solid lipid nanoparticlesbased antitubercular chemotherapy. Tuberculosis 85(5–6):415–420

    CAS  PubMed  Google Scholar 

  • Pangeni R, Choi SW, Jeon OC, Byun Y, Park JW (2016) Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation. Int J Nanomedicine 11:6379–6399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastar I, Stojadinovic O, Yin NC, Raminez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Canic MT (2014) Epithilisation in wound healing: a comprehensive review. Adv Wound Care 3(7):445–464

    Google Scholar 

  • Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil JS, Sarasija S (2012) Pulmonary drug delivery strategies: a concise, systematic review. Lung India 29(1):44–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I (2003) Electron-transfer quenching of nucleic acid-functionalized CdSe/ZnS quantum dots by doxorubicin: a versatile system for the optical detection of DNA, aptamer–substrate complexes and telomerase activity. J Am Chem Soc 125:13918–13919

    CAS  PubMed  Google Scholar 

  • Prabhakaran D et al (2018) The changing patterns of cardiovascular diseases and their risk factors in the states of India: the global burden of disease study 1990–2016. Lancet Glob Health 6(12):e1339–e1351

    Google Scholar 

  • Qelliny MR, Aly UF, Elgarhy OH, Khaled KA (2019) Budesonide-loaded Eudragit S 100 nanocapsules for the treatment of acetic acid-induced colitis in animal model. AAPS PharmSciTech 20(6):237

    CAS  PubMed  Google Scholar 

  • Rahman MA, Mujahid M (2018) Development of self-nanoemulsifying tablet (SNET) for bioavailability enhancement of sertraline. Braz J Pharm Sci 54. https://doi.org/10.1590/s2175-97902018000117232

  • Rai R, Alwani S, Badea I (2019) Polymeric nanoparticles in gene therapy: new avenues of design and optimization for delivery applications. Polymers (Basel) 11(4):745

    CAS  Google Scholar 

  • Rajendran NK, Sundar S, Kumar D, Houreld NN, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 44:421–430

    CAS  Google Scholar 

  • Reuter JD, Myc A, Hayes MM, Gan Z, Roy R, Qin D, Yin R, Piehler LT, Esfand R, Tomalia DA, Baker JR Jr (1999) Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconjug Chem 10:271

    CAS  PubMed  Google Scholar 

  • Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z (2018) Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci 19(1):195

    PubMed Central  Google Scholar 

  • Roberts S, Andreou C, Choi C, Donabedian P, Jayaraman M, Edwinn C, Tang PB, Medina C, Cruz J, Mulder W, Grimm J, Kircher M, Reiner T (2018) Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chem Sci 9(25):5646–5657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu P, Das D, Mishra VK, Kashaw V, Kashaw SK (2017) Nanoemulsion: a novel eon in cancer chemotherapy. Mini Rev Med Chem 17(18):1778–1792

    CAS  PubMed  Google Scholar 

  • Schinazi RF, Brettreich M, Hirsch A (2003) In United States patent and trademark office; number 20030036562; www.uspto.gov

  • Shahba AW, Mohsin K, Alanazi FK (2012) Novel Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for oral delivery of cinnarizine: design, optimization, and in-vitro assessment. AAPS PharmSciTech 13(3):967–977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahba AA, Ahmed AR, Mohsin K, Abdel-Rahman SI, Alanazi FK (2017) Solidification of cinnarizine self-nanoemulsifying drug delivery systems by fluid bed coating: optimization of the process and formulation variables. Pharmazie 72(3):143–151

    PubMed  Google Scholar 

  • Shanmugapriya K, Kim H, Kang HW (2019) In vitro antitumor potential of astaxanthin nanoemulsion against cancer cells via mitochondrial mediated apoptosis. Int J Pharm 5(560):334–346

    Google Scholar 

  • Shi R, Hong L, Wu D, Ning X, Chen Y, Lin T, Fan D, Wu K (2005) Enhanced immune response to gastric cancer specific antigen peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion. Cancer Biol Ther 4(2):218–224

    CAS  PubMed  Google Scholar 

  • Shinde UA, Joshi PN, Jain DD, Singh K (2019) Preparation and evaluation of N-trimethyl chitosan nanoparticles of flurbiprofen for ocular delivery. Curr Eye Res 44(5):575–582

    CAS  PubMed  Google Scholar 

  • Silva GA (2008) Nanotechnology approaches to crossing the blood brain barrier and delivery to the CNS. BMC Neurosci 9:54

    Google Scholar 

  • Sultana S, Khan R, Kumar M, Kumar S (2012) Nanoparticle mediated drug delivery approaches for cancer targeting: a review. J Drug Target 21(2):712130

    Google Scholar 

  • Sun Y, Wang H, Wang P, Zhang K, Geng X, Liu Q, Wang X (2019) Tumor targeting DVDMS-nanoliposomes for an enhanced sonodynamic therapy of gliomas. Biomater Sci 7(3):985–994

    CAS  PubMed  Google Scholar 

  • Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4:823–832

    CAS  PubMed  Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11(3):51–66

    Google Scholar 

  • Tong Y, Wang Y, Yang M, Yang J, Chen L, Chu X, Gao C, Jin Q, Gong W, Gao C (2018) Systematic development of self-nanoemulsifying liquisolid tablets to improve the dissolution and oral bioavailability of an oily drug, vitamin K1. Pharmaceutics 10(3). https://doi.org/10.3390/pharmaceutics10030096

  • Valizadeh A, Mikaeili H, Samiei M, Farkhani SS, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7(1):480

    PubMed  PubMed Central  Google Scholar 

  • Wabuyele MB, Farquar H, Stryjewski W, Hammer RP, Soper SA, Cheng Y, Barany F (2003) Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J Am Chem 125:6937–6945

    CAS  Google Scholar 

  • Wagner AM, Knipe JM, Orive G, Peppas NA (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wn J, Zhou O, Wang Y, Chen T (2015) Berberine nanosuspension enhances hypoglycemic efficacy on streptozatocinn induced diabetic C57BL/6 mice. Evid Based Complement Altern Med 239479:5

    Google Scholar 

  • Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Dendrimer – based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1–8

    CAS  PubMed  Google Scholar 

  • Wu G, Barth RF, Yang W, Chatterjee M, Tjarks W, Ciesielski MJ, Fenstermaker RA (2004) Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMCC225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem 15:185–194

    CAS  PubMed  Google Scholar 

  • World Health Organization (2018). Newsroom factsheet on cancer. Retrieved from who.int/news-room/fact-sheets/detail/cancer.

    Google Scholar 

  • Xiao S, Zhou D, Luan P, Gu B, Feng L, Fan S, Liao W, Fang W, Yang L, Tao E, Guo R, Liu J (2016) Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 106:98–110

    CAS  PubMed  Google Scholar 

  • Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y, Liu Z (2019) Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials 207:1–9

    CAS  PubMed  Google Scholar 

  • Yan C, Gu J, Hou D, Jing H, Wang J, Guo Y, Katsumi H, Sakane T, Yamamoto A (2015) Improved tumor targetability of Tat-conjugated PAMAM dendrimers as a novel nanosized anti-tumor drug carrier. Drug Dev Ind Pharm 41(4):617–622

    CAS  PubMed  Google Scholar 

  • Yan S, Zeng X, Tang Y, Liu BF, Wang Y, Liu X (2019) Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core-shell upconversion nanoparticles. Adv Mater 31(46):e1905825

    PubMed  Google Scholar 

  • YĂĽcel Ç, Karatoprak GĹž, AktaĹź Y (2018) Nanoliposomal resveratrol as a novel approach to treatment of diabetes mellitus. J Nanosci Nanotechnol 18(6):3856–3864

    PubMed  Google Scholar 

  • Zahoor A, Sharma S, Khuller GK (2005) Inhalable alignate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrobial Agents 26:298–303

    CAS  Google Scholar 

  • Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831

    CAS  PubMed  Google Scholar 

  • Zhao T, Liu X, Li Y, Zhang M, He J, Zhang X, Liu H, Wang X, Gu H (2017) Fluorescence and drug loading properties of ZnSe:Mn/ZnS-Paclitaxel/SiO2 nanocapsules templated by F127 micelles. J Colloid Interface Sci 490:436–443

    CAS  PubMed  Google Scholar 

  • Zhao CY, Cheng R, Yang Z, Tian ZM (2018) Nanotechnology for cancer therapy based on chemotherapy. Molecules 23(4):826

    PubMed Central  Google Scholar 

  • Zhou HY, Hao JL, Wang S, Zeng Y, Zhang WS (2013) Nanoparticles in ocular drug delivery. Int J Opthalmol 6(3):390–396

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, V., Kohli, S. (2020). Nanoformulations in Human Health Conditions: The Paradigm Shift. In: Talegaonkar, S., Rai, M. (eds) Nanoformulations in Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-41858-8_2

Download citation

Publish with us

Policies and ethics