Skip to main content

Phytonanomedicines as Topical Alternatives for the Treatment of Skin Cancer

  • Chapter
  • First Online:
Nanoformulations in Human Health

Abstract

The global incidence of skin cancer has increased dramatically in recent years. It is viewed as the most widespread form of malignant disease in the world, particularly in the United States. Surgery or radiotherapy has taken the first place among the treatment modalities for skin tumors. However, to improve patient compliance and to lessen undesirable scars and surgical expenses, especially where malignant growth has spread over maximum body parts, the topical route for anticancer moieties has been investigated by researchers. Further, this mode of delivery of anticancer moieties is an appealing approach for circumventing side effects and for improving therapeutic benefits and drug targeting. In the last few years, efforts of the scientific community have been toward the discovery of effective and new chemopreventive agents from natural origin. Literature reports show that a multitude of phytoconstituents have been investigated (in vitro and in vivo) for their potential to prevent carcinogenesis via diverse cellular as well as molecular approaches. One of the most active research domains relates to nanomedicine, which applies nanotechnology to highly precise medical interventions, including cancer. Nanomedicine possesses a broad potential to enhance the selective targeting of neoplastic cells by preferential delivery of agents to tumors, owing to the improved permeability and drug retention. Nanocarriers can also ameliorate the solubility of poorly soluble drugs, enhance the bioavailability, increase drug half-life by controlling immunogenicity, and enhance pharmacokinetics and reduce drug metabolism. They can also allow an adjustable release of therapeutic agents and the simultaneous administration of two or more drugs. By administering the drug doses, it is also possible to reduce related side effects and improve the patients’ compliance. The present chapter will briefly discuss conventional modalities for the treatment of skin cancer. The aim of this chapter is to furnish a comprehensive account of the nanomedicine-based approaches that can be applied to vanquish the skin barrier. Nanocarrier-based delivery systems have been reviewed in the context of their utility for the topical delivery of anticancer drugs. An account of phytoagents for the treatment and prevention of skin cancers has also been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rahman MA, Al-Abd AM (2013) Thermoresponsive dendrimers based on oligoethylene glycols: design, synthesis and cytotoxic activity against MCF-7 breast cancer cells. Eur J Med Chem 69:848–854

    CAS  PubMed  Google Scholar 

  • Abirami A, Halith SM, Pillai KK, Anbalagan C (2014) Herbal nanoparticle for anticancer potential-a review. World J Pharm Pharm Sci 3(8):2123–2132

    Google Scholar 

  • Afaq F, Katiyar SK (2011) Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Rev Med Chem 11(14):1200–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal Y, Petkar KC, Sawant KK (2010) Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm 401(1–2):93–102

    CAS  PubMed  Google Scholar 

  • Akanda MH, Rai R, Slipper IJ, Chowdhry BZ, Lamprou D, Getti G, Douroumis D (2015) Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int J Pharm 493(1–2):161–171

    CAS  PubMed  Google Scholar 

  • Albishi T, John JA, Al-Khalifa AS, Shahidi F (2013) Antioxidative phenolic constituents of skins of onion varieties and their activities. J Funct Foods 5(3):1191–1203

    CAS  Google Scholar 

  • Ali F, Rahul, Naz F, Jyoti S, Siddique YH (2017) Health functionality of apigenin: a review. Int J Food Prop 20(6):1197–1238

    CAS  Google Scholar 

  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461

    Google Scholar 

  • Ansari KA, Vavia PR, Trotta F, Cavalli R (2011) Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 12(1):279–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apalla Z, Nashan D, Weller RB, Castellsague X (2017) Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther 7(1):5–19

    Google Scholar 

  • Arasada BL, Bommareddy A, Zhang X, Bremmon K, Dwivedi C (2008) Effects of α-santalol on proapoptotic caspases and p53 expression in UVB irradiated mouse skin. Anticancer Res 28(1A):129–132

    CAS  PubMed  Google Scholar 

  • Asensi M, Ortega A, Mena S, Feddi F, Estrela JM (2011) Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 48(5–6):197–216

    CAS  PubMed  Google Scholar 

  • Azoury SC, Lange JR (2014) Epidemiology, risk factors, prevention, and early detection of melanoma. Surg Clin North Am 94(5):945–962

    PubMed  Google Scholar 

  • Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M et al (2010) A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10(1):119

    PubMed  PubMed Central  Google Scholar 

  • Bastiancich C, Scutera S, Alotto D, Cambieri I, Fumagalli M, Casarin S et al (2014) Cyclodextrin-based nanosponges as a nanotechnology strategy for imiquimod delivery in pathological scarring prevention and treatment. J Nanopharm Drug Deliv 2(4):311–324

    Google Scholar 

  • Battaglia L, Muntoni E, Chirio D, Peira E, Annovazzi L, Schiffer D et al (2017) Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment. Nanomedicine 12(6):639–656

    CAS  PubMed  Google Scholar 

  • Bei D, Meng J, Youan B-BC (2010) Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine 5(9):1385–1399

    CAS  PubMed  Google Scholar 

  • Berciano-Guerrero MA, Montesa-Pino A, Castaneda-Penalvo G, Munoz-Fernandez L, Rodriguez-Flores J (2014) Nanoparticles in melanoma. Curr Med Chem 21(32):3701–3716

    CAS  PubMed  Google Scholar 

  • Bettoli V, Zauli S, Virgili A (2013) Retinoids in the chemoprevention of non-melanoma skin cancers: why, when and how. J Dermatol Treat 24(3):235–237

    CAS  Google Scholar 

  • Bhattacharya S, Darjatmoko SR, Polans AS (2011) Resveratrol modulates the malignant properties of cutaneous melanoma via changes in the activation and attenuation of the anti-apoptotic proto-oncogenic protein Akt/PKB. Melanoma Res 21(3):180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5(1):3

    Google Scholar 

  • Blanco E, Bey EA, Khemtong C, Yang S-G, Setti-Guthi J, Chen H et al (2010) β-Lapachone micellar nanotherapeutics for non–small cell lung cancer therapy. Cancer Res 70(10):3896–3904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolmal UB, Manvi FV, Rajkumar K, Palla SS, Paladugu A, Reddy KR (2013) Recent advances in nanosponges as drug delivery system. Int J Pharm Sci Nanotechnol 6:1934–1944

    Google Scholar 

  • Bommareddy A, Brozena S, Steigerwalt J, Landis T, Hughes S, Mabry E et al (2019) Medicinal properties of alpha-santalol, a naturally occurring constituent of sandalwood oil. Nat Prod Res 33(4):527–543

    CAS  PubMed  Google Scholar 

  • Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci 88(22):10124–10128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bush JA, Cheung K-JJ Jr, Li G (2001) Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271(2):305–314

    CAS  PubMed  Google Scholar 

  • Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571(1–2):3–17

    CAS  PubMed  Google Scholar 

  • Calderon-Montano JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11(4):298–344

    CAS  PubMed  Google Scholar 

  • Calzavara-Pinton P, Ortel B, Venturini M (2015) Non-melanoma skin cancer, sun exposure and sun protection. Giornale Italiano Di Dermatologia e Venereologia: Organo Ufficiale, Societa Italiana Di Dermatologia e Sifilografia 150(4):369–378

    CAS  Google Scholar 

  • Cao H-H, Cheng C-Y, Su T, Fu X-Q, Guo H, Li T et al (2015) Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol Cancer 14(1):103

    PubMed  PubMed Central  Google Scholar 

  • Cappellano G, Comi C, Chiocchetti A, Dianzani U (2019) Exploiting PLGA-based biocompatible nanoparticles for next-generation tolerogenic vaccines against autoimmune disease. Int J Mol Sci 20(1):204

    PubMed Central  Google Scholar 

  • Casagrande F, Darbon J-M (2000) P21CIP1 is dispensable for the G2 arrest caused by genistein in human melanoma cells. Exp Cell Res 258(1):101–108

    CAS  PubMed  Google Scholar 

  • Casagrande F, Darbon J-M (2001) Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem Pharmacol 61(10):1205–1215

    CAS  PubMed  Google Scholar 

  • Cassidy (2003) Potential risks and benefits of phytoestrogen-rich diets. Int J Vitam Nutr Res 73(2):120–126

    PubMed  Google Scholar 

  • Castillo PM, de la Mata M, Casula MF, Sánchez-Alcázar JA, Zaderenko AP (2014) PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein J Nanotechnol 5(1):1312–1319

    PubMed  PubMed Central  Google Scholar 

  • Chaiprasongsuk A, Onkoksoong T, Pluemsamran T, Limsaengurai S, Panich U (2016) Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol 8:79–90

    CAS  PubMed  Google Scholar 

  • Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P (2013) Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 28(4):314–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L-C, Sheu H-M, Huang Y-S, Tsai T-R, Kuo K-W (1999) A novel function of emodin: enhancement of the nucleotide excision repair of UV-and cisplatin-induced DNA damage in human cells. Biochem Pharmacol 58(1):49–57

    CAS  PubMed  Google Scholar 

  • Chang C-H, Huang W-Y, Lai C-H, Hsu Y-M, Yao Y-H, Chen T-Y et al (2011) Development of novel nanoparticles shelled with heparin for berberine delivery to treat Helicobacter pylori. Acta Biomater 7(2):593–603

    CAS  PubMed  Google Scholar 

  • Chao Y, Huang C-T, Fu L-T, Huang Y-B, Tsai Y-H, Wu P-C (2012) The effect of submicron emulsion systems on transdermal delivery of kaempferol. Chem Pharm Bull 60(9):1171–1175

    CAS  Google Scholar 

  • Chaudhuri P, Soni S, Sengupta S (2009) Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 21(2):025102

    PubMed  Google Scholar 

  • Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138(4):2099–2107

    CAS  PubMed  Google Scholar 

  • Chen Y-C, Shen S-C, Lee W-R, Hsu F-L, Lin H-Y, Ko C-H, Tseng S-W (2002) Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol 64(12):1713–1724

    CAS  PubMed  Google Scholar 

  • Chen H, Wu J, Sun M, Guo C, Yu A, Cao F et al (2012a) N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res 22(2):100–109

    CAS  PubMed  Google Scholar 

  • Chen J, Li S, Shen Q (2012b) Folic acid and cell-penetrating peptide conjugated PLGA–PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci 47(2):430–443

    CAS  PubMed  Google Scholar 

  • Chen S, Liu W, Wan J, Cheng X, Gu C, Zhou H et al (2013) Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique. Drug Dev Ind Pharm 39(1):20–28

    CAS  PubMed  Google Scholar 

  • Chiang H-S, Wu W-B, Fang J-Y, Chen D-F, Chen B-H, Huang C-C et al (2007) Lycopene inhibits PDGF-BB-induced signaling and migration in human dermal fibroblasts through interaction with PDGF-BB. Life Sci 81(21–22):1509–1517

    CAS  PubMed  Google Scholar 

  • Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ (2014) Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin Drug Deliv 11(1):111–120

    CAS  PubMed  Google Scholar 

  • Conte C, Caldera F, Catanzano O, D’Angelo I, Ungaro F, Miro A et al (2014) β-cyclodextrin nanosponges as multifunctional ingredient in water-containing semisolid formulations for skin delivery. J Pharm Sci 103(12):3941–3949

    CAS  PubMed  Google Scholar 

  • Corcoran MP, McKay DL, Blumberg JB (2012) Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr 31(3):176–189

    PubMed  Google Scholar 

  • Coricovac D, Dehelean C, Moaca E-A, Pinzaru I, Bratu T, Navolan D, Boruga O (2018) Cutaneous melanoma—a long road from experimental models to clinical outcome: a review. Int J Mol Sci 19(6):1566

    PubMed Central  Google Scholar 

  • Darandale SS, Vavia PR (2013) Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem 75(3–4):315–322

    CAS  Google Scholar 

  • Darbon J-M, Penary M, Escalas N, Casagrande F, Goubin-Gramatica F, Baudouin C, Ducommun B (2000) Distinct Chk2 activation pathways are triggered by genistein and DNA-damaging agents in human melanoma cells. J Biol Chem 275(20):15363–15369

    CAS  PubMed  Google Scholar 

  • Das S, Das J, Paul A, Samadder A, Khuda-Bukhsh AR (2013a) Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage. J Acupunct Meridian Stud 6(5):252–262

    PubMed  Google Scholar 

  • Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR (2013b) Efficacy of PLGA-loaded apigenin nanoparticles in Benzo [a] pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem Toxicol 62:670–680

    CAS  PubMed  Google Scholar 

  • Deep G, Agarwal R (2010) Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev 29(3):447–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delmas D, Lançon A, Colin D, Jannin B, Latruffe N (2006) Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr Drug Targets 7(4):423–442

    CAS  PubMed  Google Scholar 

  • Dhanalakshmi S, Agarwal P, Glode,LM, Agarwal R (2003) Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin-and carboplatin-induced growth inhibition and apoptotic death. International Journal of Cancer, 106(5):699–705

    Google Scholar 

  • Dhanalakshmi S, Mallikarjuna GU, Singh RP, Agarwal R (2004a) Dual efficacy of silibinin in protecting or enhancing ultraviolet B radiation-caused apoptosis in HaCaT human immortalized keratinocytes. Carcinogenesis 25(1):99–106

    CAS  PubMed  Google Scholar 

  • Dhanalakshmi S, Mallikarjuna GU, Singh RP, Agarwal R (2004b) Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 in epidermis. Carcinogenesis 25(8):1459–1465

    CAS  PubMed  Google Scholar 

  • Dhawan S, Kapil R, Singh B (2011) Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 63(3):342–351

    CAS  PubMed  Google Scholar 

  • Didona D, Paolino G, Bottoni U, Cantisani C (2018) Non melanoma skin cancer pathogenesis overview. Biomedicine 6(1):6

    Google Scholar 

  • Dong P, Wang X, Gu Y, Wang Y, Wang Y, Gong C et al (2010) Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf A Physicochem Eng Asp 358(1–3):128–134

    CAS  Google Scholar 

  • Eggermont AM, Spatz A, Robert C (2014) Cutaneous melanoma. Lancet 383(9919):816–827

    CAS  PubMed  Google Scholar 

  • Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24(10):851–874

    CAS  Google Scholar 

  • Esmaeili F, Rajabnejhad S, Partoazar AR, Mehr SE, Faridi-Majidi R, Sahebgharani M et al (2016) Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharm Dev Technol 21(7):887–893

    CAS  PubMed  Google Scholar 

  • Es-Saady D, Simon A, Ollier M, Maurizis JC, Chulia AJ, Delage C (1996) Inhibitory effect of ursolic acid on B16 proliferation through cell cycle arrest. Cancer Lett 106(2):193–197

    CAS  PubMed  Google Scholar 

  • Fabbrocini G, Triassi M, Mauriello MC, Torre G, Annunziata MC, De Vita V et al (2010) Epidemiology of skin cancer: role of some environmental factors. Cancers 2(4):1980–1989

    PubMed  PubMed Central  Google Scholar 

  • Fan J, Eastham L, Varney ME, Hall A, Adkins NL, Sollars VE et al (2010) Silencing and re-expression of retinoic acid receptor beta2 in human melanoma. Pigment Cell Melanoma Res 23(3):419–429

    CAS  PubMed  Google Scholar 

  • Fang J-Y, Fang C-L, Liu C-H, Su Y-H (2008) Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 70(2):633–640

    CAS  PubMed  Google Scholar 

  • Fernandez MA, Saenz MT, Garcia MD (1998) Natural products: anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J Pharm Pharmacol 50(10):1183–1186

    CAS  PubMed  Google Scholar 

  • Flaig TW, Gustafson DL, Su L-J, Zirrolli JA, Crighton F, Harrison GS et al (2007) A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investig New Drugs 25(2):139–146

    CAS  Google Scholar 

  • Flaten GE, Chang TT, Phillips WT, Brandl M, Bao A, Goins B (2013) Liposomal formulations of poorly soluble camptothecin: drug retention and biodistribution. J Liposome Res 23(1):70–81

    CAS  PubMed  Google Scholar 

  • Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A et al (2010) Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur J Cancer 46(2):270–283

    PubMed  Google Scholar 

  • Gazak R, Walterova D, Kren V (2007) Silybin and silymarin-new and emerging applications in medicine. Curr Med Chem 14(3):315–338

    CAS  PubMed  Google Scholar 

  • Gholibegloo E, Mortezazadeh T, Salehian F, Ramazani A, Amanlou M, Khoobi M (2019) Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr Polym 213:70–78

    CAS  PubMed  Google Scholar 

  • Gigliotti CL, Minelli R, Cavalli R, Occhipinti S, Barrera G, Pizzimenti S et al (2016) In vitro and in vivo therapeutic evaluation of camptothecin-encapsulated β-cyclodextrin nanosponges in prostate cancer. J Biomed Nanotechnol 12(1):114–127

    CAS  PubMed  Google Scholar 

  • Goldman G (2002) The current status of curettage and electrodesiccation. Dermatol Clin 20(3):569–578. https://doi.org/10.1016/S0733-8635(02)00022-0

    Article  PubMed  Google Scholar 

  • Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13(4):435–448

    CAS  PubMed  Google Scholar 

  • Guruvayoorappan C, Kuttan G (2007) β-Carotene down-regulates inducible nitric oxide synthase gene expression and induces apoptosis by suppressing bcl-2 expression and activating caspase-3 and p53 genes in B16F-10 melanoma cells. Nutr Res 27(6):336–342

    CAS  PubMed  Google Scholar 

  • Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157, 117739280700200000

    PubMed  PubMed Central  Google Scholar 

  • Hahm E-R, Singh SV (2007) Honokiol causes G0-G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level/phosphorylation and inhibition of E2F1 transcriptional activity. Mol Cancer Ther 6(10):2686–2695

    CAS  PubMed  Google Scholar 

  • Harborne JB, Dey PM, Lea PJ (1989) Methods in plant biochemistry. Academic Press, London

    Google Scholar 

  • Harmand P-O, Duval R, Liagre B, Jayat-Vignoles C, Beneytout J-L, Delage C, Simon A (2003) Ursolic acid induces apoptosis through caspase-3 activation and cell cycle arrest in HaCat cells. Int J Oncol 23(1):105–112

    CAS  PubMed  Google Scholar 

  • Hennings H, Glick AB, Greenhalgh DA, Morgan DL, Strickland JE, Tennenbaum T, Yuspa SH (1993) Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis. Proc Soc Exp Biol Med 202(1):1–8

    CAS  PubMed  Google Scholar 

  • Hollman PC, Van Trijp JM, Mengelers MJ, De Vries JH, Katan MB (1997) Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett 114(1–2):139–140

    CAS  PubMed  Google Scholar 

  • Hou Z, Li Y, Huang Y, Zhou C, Lin J, Wang Y et al (2012) Phytosomes loaded with mitomycin C–soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm 10(1):90–101

    PubMed  Google Scholar 

  • Hu C-MJ, Zhang L (2012) Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83(8):1104–1111

    CAS  PubMed  Google Scholar 

  • Huang HS, Hainfeld JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomedicine 8:2521

    PubMed  PubMed Central  Google Scholar 

  • Huang H-C, Chang J-H, Tung S-F, Wu R-T, Foegh ML, Chu S-H (1992) Immunosuppressive effect of emodin, a free radical generator. Eur J Pharmacol 211(3):359–364

    CAS  PubMed  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    CAS  Google Scholar 

  • Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K et al (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94(3):308–313

    CAS  PubMed  Google Scholar 

  • Iwashita K, Kobori M, Yamaki K, Tsushida T (2000) Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem 64(9):1813–1820

    CAS  PubMed  Google Scholar 

  • Jaganathan SK, Supriyanto E (2012) Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17(6):6290–6304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J-L, Huang X-F, Zhu H-L (2012) Curcumin and its formulations: potential anti-cancer agents. Anticancer Agents Med Chem 12(3):210–218

    CAS  PubMed  Google Scholar 

  • Ji P, Yu T, Liu Y, Jiang J, Xu J, Zhao Y et al (2016) Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des Devel Ther 10:911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing X, Ueki N, Cheng J, Imanishi H, Hada T (2002) Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn J Cancer Res 93(8):874–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce KM (2017) Surgical management of melanoma. In: Ward WH, Farma JM (eds) Cutaneous melanoma: etiology and therapy. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK481850/

    Google Scholar 

  • Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo Y-S et al (2008) Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res 68(14):6021–6029

    CAS  PubMed  Google Scholar 

  • Kakran M, Li L (2012) Carbon nanomaterials for drug delivery. In: Key engineering materials, vol 508. Trans Tech Publications, Switzerland. pp 76–80

    Google Scholar 

  • Kang JS, Cho D, Kim Y-I, Hahm E, Yang Y, Kim D et al (2003) L-Ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8–independent pathway. Cancer Immunol Immunother 52(11):693–698

    CAS  PubMed  Google Scholar 

  • Kang NJ, Lee KW, Shin BJ, Jung SK, Hwang MK, Bode AM et al (2008) Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 30(2):321–330

    PubMed  PubMed Central  Google Scholar 

  • Katalinic A, Kunze U, Schäfer T (2003) Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Br J Dermatol 149(6):1200–1206

    CAS  PubMed  Google Scholar 

  • Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S et al (2000) Doxorubicin-loaded poly (ethylene glycol)–poly (β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64(1–3):143–153

    CAS  PubMed  Google Scholar 

  • Katiyar SK, Korman NJ, Mukhtar H, Agarwal R (1997) Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89(8):556–565

    CAS  PubMed  Google Scholar 

  • Kaul A, Khanduja L (1998) Polyphenols inhibit promotional phase of tumorigenesis: relevance of superoxide radicals. Nutr Cancer 32(2):81–85

    CAS  PubMed  Google Scholar 

  • Kauvar ANB, Cronin T, Roenigk R, Hruza G, Bennett R (2015) Consensus for nonmelanoma skin cancer treatment: basal cell carcinoma, including a cost analysis of treatment methods. Dermatol Surg 41(5):550–571. https://doi.org/10.1097/DSS.0000000000000296

    Article  CAS  PubMed  Google Scholar 

  • Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6(6):714–729

    CAS  PubMed  Google Scholar 

  • Kelly GS (2011) Quercetin. Altern Med Rev 16(2):172–195

    PubMed  Google Scholar 

  • Khan T, Gurav P (2018) PhytoNanotechnology: enhancing delivery of plant based anti-cancer drugs. Front Pharmacol 8:1002

    PubMed  PubMed Central  Google Scholar 

  • Kidd PM (2009) Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev 14(3):226–246

    PubMed  Google Scholar 

  • Kim D-S, Jeong Y-M, Moon S-I, Kim S-Y, Kwon S-B, Park E-S et al (2006) Indole-3-carbinol enhances ultraviolet B-induced apoptosis by sensitizing human melanoma cells. Cell Mol Life Sci 63(22):2661–2668

    CAS  PubMed  Google Scholar 

  • Kim W, Yang HJ, Youn H, Yun YJ, Seong KM, Youn B (2010) Myricetin inhibits Akt survival signaling and induces Bad-mediated apoptosis in a low dose ultraviolet (UV)-B-irradiated HaCaT human immortalized keratinocytes. J Radiat Res 51(3):285–296

    CAS  PubMed  Google Scholar 

  • Kim HN, Kim H, Kong JM, Bae S, Kim YS, Lee N et al (2011) Vitamin C down-regulates VEGF production in B16F10 murine melanoma cells via the suppression of p42/44 MAPK activation. J Cell Biochem 112(3):894–901. https://doi.org/10.1002/jcb.22997

    Article  CAS  PubMed  Google Scholar 

  • Kolenyak dos Santos F, Helena Oyafuso M, Priscila Kiill C, Palmira Daflon-Gremiao M, Chorilli M (2013) Nanotechnology-based drug delivery systems for treatment of hyperproliferative skin diseases-a review. Curr Nanosci 9(1):159–167

    CAS  Google Scholar 

  • Kowalczyk MC, Walaszek Z, Kowalczyk P, Kinjo T, Hanausek M, Slaga TJ (2009) Differential effects of several phytochemicals and their derivatives on murine keratinocytes in vitro and in vivo: implications for skin cancer prevention. Carcinogenesis 30(6):1008–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama M, Kelly TR, Watanabe KA (1988) Novel type of potential anticancer agents derived from chrysophanol and emodin. Some structure-activity relationship studies. J Med Chem 31(2):283–284

    CAS  PubMed  Google Scholar 

  • Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242

    PubMed  Google Scholar 

  • Kumar AB, Habbu P, Hullatti P, Kumar RS (2017) Phytosomes as novel drug delivery system for herbal medicine-A review. Sys Rev Pharm 8(1):5

    Google Scholar 

  • Kumari P, Swami MO, Nadipalli SK, Myneni S, Ghosh B, Biswas S (2016) Curcumin delivery by poly (Lactide)-based co-polymeric micelles: an in vitro anticancer study. Pharm Res 33(4):826–841

    CAS  PubMed  Google Scholar 

  • Kuo T-C, Yang J-S, Lin M-W, Hsu S-C, Lin J-J, Lin H-J et al (2009) Emodin has cytotoxic and protective effects in rat C6 glioma cells: roles of Mdr1a and nuclear factor κB in cell survival. J Pharmacol Exp Ther 330(3):736–744

    CAS  PubMed  Google Scholar 

  • Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18(12):2379–2384

    CAS  PubMed  Google Scholar 

  • Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K (1997) Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release 48(2–3):195–201

    CAS  Google Scholar 

  • Lee DE, Lee KW, Byun S, Jung SK, Song N, Lim SH et al (2011) 7, 3′, 4′-Trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses ultraviolet B-induced skin cancer by targeting Cot and MKK4. J Biol Chem 286(16):14246–14256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leiter U, Eigentler T, Garbe C (2014) Epidemiology of skin cancer. In: Sunlight, vitamin D and skin cancer. Springer, New York, NY. pp 120–140

    Google Scholar 

  • Li J, Malakhova M, Mottamal M, Reddy K, Kurinov I, Carper A et al (2012) Norathyriol suppresses skin cancers induced by solar ultraviolet radiation by targeting ERK kinases. Cancer Res 72(1):260–270

    CAS  PubMed  Google Scholar 

  • Li H, Gao A, Jiang N, Liu Q, Liang B, Li R et al (2016) Protective effect of curcumin against acute ultraviolet B irradiation-induced photo-damage. Photochem Photobiol 92(6):808–815

    CAS  PubMed  Google Scholar 

  • Lin Y-S, Tsai P-H, Kandaswami CC, Cheng C-H, Ke F-C, Lee P-P et al (2011) Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial–mesenchymal transition in A431 epidermal cancer cells. Cancer Sci 102(10):1829–1839

    CAS  PubMed  Google Scholar 

  • Lipke MM (2006) An armamentarium of wart treatments. Clin Med Res 4(4):273–293. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764803/

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Liu Z, Wang L, Zhang C, Zhang N (2011) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B: Biointerfaces 85(2):262–269

    CAS  PubMed  Google Scholar 

  • Lu LY, Ou N, Lu Q-B (2013) Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci Rep 3:3169

    PubMed  PubMed Central  Google Scholar 

  • Lugowska I, Teterycz P, Rutkowski P (2018) Immunotherapy of melanoma. Contemp Oncol 22(1A):61–67. https://doi.org/10.5114/wo.2018.73889

    Article  Google Scholar 

  • Luiza Ribeiro de Souza A, Priscila Kiill C, Kolenyak dos Santos F, Marielli da Luz G, Rocha e Silva H, Chorilli M, Palmira Daflon Gremiao M (2012) Nanotechnology-based drug delivery systems for dermatomycosis treatment. Curr Nanosci 8(4):512–519

    Google Scholar 

  • Luper S (1998) A review of plants used in the treatment of liver disease: part 1. Altern Med Rev 3(6):410–421

    CAS  PubMed  Google Scholar 

  • Ma X, Zhou J, Zhang C-X, Li X-Y, Li N, Ju R-J et al (2013) Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials 34(18):4452–4465

    CAS  PubMed  Google Scholar 

  • Magenheim B, Benita S (1991) Nanoparticle characterization: a comprehensive physicochemical approach. STP Pharma Sci 1(4):221–241

    CAS  Google Scholar 

  • Maia CS, Mehnert W, Schäfer-Korting M (2000) Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm 196(2):165–167

    CAS  PubMed  Google Scholar 

  • Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK (2006) Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J Pharm Pharmacol 58(9):1227–1233

    CAS  PubMed  Google Scholar 

  • Majumdar D, Jung K-H, Zhang H, Nannapaneni S, Wang X, Amin AR et al (2014) Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev Res 7(1):65–73

    CAS  Google Scholar 

  • Malar C, Bavanilathamuthiah (2015) Dendrosomal capsaicin nanoformulation for the in vitro anti-cancer effect on HEp 2 and MCF - 7 cell lines. Int J Appl Bioeng 9:30–35. https://doi.org/10.18000/ijabeg.10133

    Article  CAS  Google Scholar 

  • Mazumder A, Dwivedi A, Du Preez JL, Du Plessis J (2016) In vitro wound healing and cytotoxic effects of sinigrin–phytosome complex. Int J Pharm 498(1–2):283–293

    CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta (BBA)-Mol Cell Res 1773(8):1263–1284

    CAS  Google Scholar 

  • Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101

    Google Scholar 

  • Merlin JJ, Prasad NR, Shibli SMA (2012) Ferulic acid loaded poly-d, l-lactide-co-glycolide nanoparticles: systematic study of particle size, drug encapsulation efficiency and anticancer effect in non-small cell lung carcinoma cell line in vitro. Biomed Prev Nutr 2(1):69–76

    Google Scholar 

  • Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 30(5):774–778

    CAS  PubMed  Google Scholar 

  • Minelli R, Cavalli R, Ellis L, Pettazzoni P, Trotta F, Ciamporcero E et al (2012) Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur J Pharm Sci 47(4):686–694

    CAS  PubMed  Google Scholar 

  • Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH (2011) Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int J Pharm 414(1–2):267–275

    CAS  PubMed  Google Scholar 

  • Mognetti B, Barberis A, Marino S, Berta G, De Francia S, Trotta F, Cavalli R (2012) In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J Incl Phenom Macrocycl Chem 74(1–4):201–210

    CAS  Google Scholar 

  • Moon MK, Lee YJ, Kim JS, Kang DG, Lee HS (2009) Effect of caffeic acid on tumor necrosis factor-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Biol Pharm Bull 32(8):1371–1377

    CAS  PubMed  Google Scholar 

  • Muller RH, Radtke M, Wissing SA (2004) Solid lipid NPs and nanostructured lipid carriers. In: Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  • Muto A, Hori M, Sasaki Y, Saitoh A, Yasuda I, Maekawa T et al (2007) Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther 6(3):987–994

    CAS  PubMed  Google Scholar 

  • Naik A, Kalia YN, Guy RH, Fessi H (2004) Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 21(10):1818–1825

    PubMed  Google Scholar 

  • Nakashima S, Matsuda H, Oda Y, Nakamura S, Xu F, Yoshikawa M (2010) Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorg Med Chem 18(6):2337–2345

    CAS  PubMed  Google Scholar 

  • Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5(16):1779–1787

    CAS  PubMed  Google Scholar 

  • Ndiaye M, Philippe C, Mukhtar H, Ahmad N (2011) The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch Biochem Biophys 508(2):164–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nihal M, Ahmad N, Mukhtar H, Wood GS (2005) Anti-proliferative and proapoptotic effects of (−)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 114(4):513–521

    CAS  PubMed  Google Scholar 

  • Nihal M, Ahsan H, Siddiqui IA, Mukhtar H, Ahmad N, Wood GS (2009) (−)-Epigallocatechin-3-gallate (EGCG) sensitizes melanoma cells to interferon induced growth inhibition in a mouse model of human melanoma. Cell Cycle 8(13):2057–2063

    CAS  PubMed  Google Scholar 

  • Nihal M, Roelke CT, Wood GS (2010) Anti-melanoma effects of vorinostat in combination with polyphenolic antioxidant (−)-epigallocatechin-3-gallate (EGCG). Pharm Res 27(6):1103–1114

    CAS  PubMed  Google Scholar 

  • Obeidat WM, Schwabe K, Müller RH, Keck CM (2010) Preservation of nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 76(1):56–67

    CAS  PubMed  Google Scholar 

  • Ochi MM, Amoabediny G, Rezayat SM, Akbarzadeh A, Ebrahimi B (2016) In vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells. Cell J (Yakhteh) 18(2):135

    Google Scholar 

  • Ou S, Kwok K-C (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84(11):1261–1269

    CAS  Google Scholar 

  • Ourique AF, Melero A, da Silva C d B, Schaefer UF, Pohlmann AR, Guterres SS et al (2011) Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm 79(1):95–101

    CAS  PubMed  Google Scholar 

  • Oyagbemi AA, Saba AB, Azeez OI (2010) Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer 47(1):53

    CAS  PubMed  Google Scholar 

  • Palombo P, Fabrizi G, Ruocco V, Ruocco E, Fluhr J, Roberts R, Morganti P (2007) Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: A double-blind, placebo-controlled study. Skin Pharmacology and Physiology, 20(4):199–210

    Google Scholar 

  • Palozza P, Serini S, Torsello A, Di Nicuolo F, Maggiano N, Ranelletti FO et al (2003) Mechanism of activation of caspase cascade during β-carotene-induced apoptosis in human tumor cells. Nutr Cancer 47(1):76–87

    CAS  PubMed  Google Scholar 

  • Pandey GP (1990) Hepatogenic effect of some indigenous drugs on experimental liver damage. PhD thesis, College of Veterinary Science & Animal Husbandry

    Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1–2):170–184

    CAS  PubMed  Google Scholar 

  • PDQ Adult Treatment Editorial Board (2002) Skin Cancer Treatment (PDQ®): Patient Version. In: PDQ Cancer Information Summaries. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK65824/

  • Penta D, Somashekar BS, Meeran SM (2018) Epigenetics of skin cancer: interventions by selected bioactive phytochemicals. Photodermatol Photoimmunol Photomed 34(1):42–49

    PubMed  Google Scholar 

  • Pentak D (2016) In vitro spectroscopic study of piperine-encapsulated nanosize liposomes. Eur Biophys J 45(2):175–186

    CAS  PubMed  Google Scholar 

  • Pierre MBR, Tedesco AC, Marchetti JM, Bentley MVL (2001) Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol 1(1):5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potenza C, Bernardini N, Balduzzi V, Losco L, Mambrin A, Marchesiello A et al (2018) A review of the literature of surgical and nonsurgical treatments of invasive squamous cells carcinoma. Biomed Res Int 2018:1–9. https://doi.org/10.1155/2018/9489163

    Article  CAS  Google Scholar 

  • Pushpalatha R, Selvamuthukumar S, Kilimozhi D (2019) Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: development, optimization, in vitro and ex vivo evaluation. J Drug Delivery Sci Technol 52:55–64

    CAS  Google Scholar 

  • Qiu L-Y, Yan L, Zhang L, Jin Y-M, Zhao Q-H (2013) Folate-modified poly (2-ethyl-2-oxazoline) as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery. Int J Pharm 456(2):315–324

    CAS  PubMed  Google Scholar 

  • Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H (2014) Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochem Biophys Res Commun 448(1):15–21

    CAS  PubMed  Google Scholar 

  • Rafiq RA, Quadri A, Nazir LA, Peerzada K, Ganai BA, Tasduq SA (2015) A potent inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, quercetin (3, 3′, 4′, 5, 7-pentahydroxyflavone) promotes cell death in ultraviolet (UV)-B-irradiated B16F10 melanoma cells. PLoS One 10(7):e0131253

    PubMed  PubMed Central  Google Scholar 

  • Rahiminejad A, Dinarvand R, Johari B, Nodooshan SJ, Rashti A, Rismani E et al (2019) Preparation and investigation of indirubin-loaded SLN nanoparticles and their anti-cancer effects on human glioblastoma U87MG cells. Cell Biol Int 43(1):2–11

    CAS  PubMed  Google Scholar 

  • Ramakrishna Y, Goda H, Baliga MS, Munshi AK (2011) Decreasing cariogenic bacteria with a natural, alternative prevention therapy utilizing phytochemistry (plant extracts). J Clin Pediatr Dent 36(1):55–64

    CAS  PubMed  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32(8–9):962–990

    CAS  Google Scholar 

  • Rasaie S, Ghanbarzadeh S, Mohammadi M, Hamishehkar H (2014) Nano phytosomes of quercetin: a promising formulation for fortification of food products with antioxidants. Pharma Sci 20(3):96

    Google Scholar 

  • Rather RA, Bhagat M (2018) Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 6:10

    PubMed  PubMed Central  Google Scholar 

  • Rauth S, Kichina J, Green A (1997) Inhibition of growth and induction of differentiation of metastatic melanoma cells in vitro by genistein: chemosensitivity is regulated by cellular p53. Br J Cancer 75(11):1559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rompicharla SVK, Bhatt H, Shah A, Komanduri N, Vijayasarathy D, Ghosh B, Biswas S (2017) Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem Phys Lipids 208:10–18

    CAS  PubMed  Google Scholar 

  • Rundhaug JE, Fischer SM (2010) Molecular mechanisms of mouse skin tumor promotion. Cancers 2(2):436–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rundlöf T, Olsson E, Wiernik A, Back S, Aune M, Johansson L, Wahlberg I (2000) Potential nitrite scavengers as inhibitors of the formation of N-nitrosamines in solution and tobacco matrix systems. J Agric Food Chem 48(9):4381–4388

    PubMed  Google Scholar 

  • Rusin A, Krawczyk Z, Grynkiewicz G, Gogler A, Zawisza-Puchałka J, Szeja W (2010) Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim Pol 57(1):23–34

    CAS  PubMed  Google Scholar 

  • Sabzichi M, Hamishehkar H, Ramezani F, Sharifi S, Tabasinezhad M, Pirouzpanah M et al (2014) Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pac J Cancer Prev 15(13):5311–5316

    PubMed  Google Scholar 

  • Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF et al (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 47(18):5235–5237

    CAS  Google Scholar 

  • Sakai S, Kawamata H, Kogure T, Mantani N, Terasawa K, Umatake M, Ochiai H (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264. 7 cells. Mediat Inflamm 8(3):173–175

    CAS  Google Scholar 

  • Saladi RN, Persaud AN (2005) The causes of skin cancer: a comprehensive review. Drugs Today 41(1):37–54

    CAS  Google Scholar 

  • Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013) Resveratrol-loaded nanoparticles based on poly (epsilon-caprolactone) and poly (d, l-lactic-co-glycolic acid)–poly (ethylene glycol) blend for prostate cancer treatment. Mol Pharm 10(10):3871–3881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraf S (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia 81(7):680–689

    PubMed  Google Scholar 

  • Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21(3–4):265–280

    CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Kong D (2009) Cellular signaling perturbation by natural products. Cell Signal 21(11):1541–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ (2008) Magnetic nanoparticle- peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 130(31):10258–10262

    CAS  PubMed  Google Scholar 

  • Shen R, Kim JJ, Yao M, Elbayoumi TA (2016) Development and evaluation of vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical. Int J Nanomedicine 11:1687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym 173:37–49

    CAS  PubMed  Google Scholar 

  • Shimizu R, Kishi K (2012) Skin graft. Plast Surg Int 2012. https://doi.org/10.1155/2012/563493

  • Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, Sethi G (2013) Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 341(2):139–149

    CAS  PubMed  Google Scholar 

  • Shukla S, Gupta S (2010) Apigenin and cancer chemoprevention. In: Bioactive foods in promoting health. Elsevier, Cleveland, Ohio, USA. pp 663–689

    Google Scholar 

  • Siddiqui IA, Bharali DJ, Nihal M, Adhami VM, Khan N, Chamcheu JC et al (2014) Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine 10(8):1619–1626

    CAS  PubMed  Google Scholar 

  • Singh M, Suman S, Shukla Y (2014) New enlightenment of skin cancer chemoprevention through phytochemicals: in vitro and in vivo studies and the underlying mechanisms. BioMed Res Int 2014. pp 1–18

    Google Scholar 

  • Singh D, Soni GC, Prajapati SK (2016) Recent advances in nanosponges as drug delivery system: a review. Eur J Pharm Med Res 3:364–371

    Google Scholar 

  • Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235(1–2):179–192

    CAS  PubMed  Google Scholar 

  • Sinha N, Yeow J-W (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience 4(2):180–195

    PubMed  Google Scholar 

  • Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli M (2011) Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomedicine 6:705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    CAS  PubMed  Google Scholar 

  • Souto EB, Wissing SA, Barbosa CM, Müller RH (2004) Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 278(1):71–77

    CAS  PubMed  Google Scholar 

  • Srinivasan C (2008) Carbon nanotubes in cancer therapy. Curr Sci 94(3):300

    Google Scholar 

  • Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55(23):9470–9478

    CAS  PubMed  Google Scholar 

  • Stevanovic M, Uskokovic D (2009) Poly (lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci 5(1):1–14

    CAS  Google Scholar 

  • Steward WP, Brown K (2013) Cancer chemoprevention: a rapidly evolving field. Br J Cancer 109(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strickland LR, Pal HC, Elmets CA, Afaq F (2015) Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett 359(1):20–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strojan P (2010) Role of radiotherapy in melanoma management. Radiol Oncol 44(1):1–12. https://doi.org/10.2478/v10019-010-0008-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Su Y-T, Chang H-L, Shyue S-K, Hsu S-L (2005) Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem Pharmacol 70(2):229–241

    CAS  PubMed  Google Scholar 

  • Subramaniam A, Shanmugam MK, Ong TH, Li F, Perumal E, Chen L et al (2013) Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol 170(4):807–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71(3):445–462

    CAS  PubMed  Google Scholar 

  • Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D et al (2010) Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 74(2):193–201

    CAS  PubMed  Google Scholar 

  • Swamy MK, Patra JK, Rudramurthy GR (2019) Medicinal plants: chemistry, pharmacology, and therapeutic applications. CRC Press. Boco Raton.

    Google Scholar 

  • Tang JY, Fu T, Lau C, Oh DH, Bikle DD, Asgari MM (2012) Vitamin D in cutaneous carcinogenesis: part I. J Am Acad Dermatol 67(5):803–8e1

    PubMed  PubMed Central  Google Scholar 

  • Thakre AR, Gholse YN, Kasliwal RH (2016) Nanosponges: a novel approach of drug delivery system. J Med Pharm Allied Sci 78(92):78

    Google Scholar 

  • Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD et al (2018) Ovarian cancer statistics, 2018. CA Cancer J Clin 68(4):284–296

    PubMed  PubMed Central  Google Scholar 

  • Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R (2002) Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clin Cancer Res 8(11):3512–3519

    CAS  PubMed  Google Scholar 

  • Vaid M, Katiyar SK (2010) Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.). Int J Oncol 36(5):1053–1060

    CAS  PubMed  Google Scholar 

  • Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T et al (2013) Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 11(1):1

    CAS  Google Scholar 

  • Verschoyle RD, Greaves P, Patel K, Marsden DA, Brown K, Steward WP, Gescher AJ (2008) Evaluation of the cancer chemopreventive efficacy of silibinin in genetic mouse models of prostate and intestinal carcinogenesis: relationship with silibinin levels. Eur J Cancer 44(6):898–906

    CAS  PubMed  Google Scholar 

  • Wang J, Liu W, Tu Q, Wang J, Song N, Zhang Y et al (2010) Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery. Biomacromolecules 12(1):228–234

    PubMed  Google Scholar 

  • Wang C, Feng L, Yang X, Wang F, Lu W (2013) Folic acid-conjugated liposomal vincristine for multidrug resistant cancer therapy. Asian J Pharm Sci 8(2):118–127

    Google Scholar 

  • Wang W, Zhang L, Chen T, Guo W, Bao X, Wang D et al (2017) Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules 22(11):1814

    PubMed Central  Google Scholar 

  • Wei H, Bowen R, Zhang X, Lebwohl M (1998) Isoflavone genistein inhibits the initiation and promotion of two-stage skin carcinogenesis in mice. Carcinogenesis 19(8):1509–1514

    CAS  PubMed  Google Scholar 

  • Wei H, Zhang X, Wang Y, Lebwohl M (2002) Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Lett 185(1):21–29

    CAS  PubMed  Google Scholar 

  • Wei H, Saladi R, Lu Y, Wang Y, Palep SR, Moore J et al (2003) Isoflavone genistein: photoprotection and clinical implications in dermatology. J Nutr 133(11):3811S–3819S

    CAS  PubMed  Google Scholar 

  • Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, Fang X (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376(1–2):176–185

    CAS  PubMed  Google Scholar 

  • Wei J, Bhatt S, Chang LM, Sampson HA, Masilamani M (2012) Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS One 7(10):e47979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X et al (2015) Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci 112(10):2978–2983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MA, Schuchter LM (2016) Chemotherapy for melanoma. Cancer Treat Res 167:209–229. https://doi.org/10.1007/978-3-319-22539-5_8

    Article  PubMed  Google Scholar 

  • Wong KH, Li GQ, Li KM, Razmovski-Naumovski V, Chan K (2011) Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J Ethnopharmacol 134(3):584–607

    PubMed  Google Scholar 

  • Wu M, Kubota C (2008) Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci Hortic 116(2):122–129

    CAS  Google Scholar 

  • Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand J-P et al (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44(39):6358–6362

    CAS  Google Scholar 

  • Wu Z, Liu B, Liu J, Zhang Q, Liu J, Chen N et al (2015) Resveratrol inhibits the proliferation of human melanoma cells by inducing G1/S cell cycle arrest and apoptosis. Mol Med Rep 11(1):400–404

    CAS  PubMed  Google Scholar 

  • Xi J, Guo R (2007) Studies on molecular interactions between puerarin and PC liposomes. Chin Sci Bull 52(19):2612–2617

    CAS  Google Scholar 

  • Xu P, Yin Q, Shen J, Chen L, Yu H, Zhang Z, Li Y (2013) Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int J Pharm 454(1):21–30

    CAS  PubMed  Google Scholar 

  • Xu W, Bae EJ, Lee M-K (2018) Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int J Nanomedicine 13:7549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Ding W, Liu Y (2010) Anti-diabetic effects of emodin involved in the activation of PPARγ on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 81(3):173–177

    CAS  PubMed  Google Scholar 

  • Yang SC, Zhu JB (2002) Preparation and characterization of camptothecin solid lipid nanoparticles. Drug Dev Ind Pharm 28(3):265–274

    CAS  PubMed  Google Scholar 

  • Yang Y, Li Y, Wang K, Wang Y, Yin W, Li L (2013) P38/NF-κB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PLoS One 8(3):e58915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaoxian W, Hui Y, Yunyan Z, Yanqin L, Xin G, Xiaoke W (2013) Emodin induces apoptosis of human cervical cancer hela cells via intrinsic mitochondrial and extrinsic death receptor pathway. Cancer Cell Int 13(1):71

    PubMed  PubMed Central  Google Scholar 

  • Yen G-C, Duh P-D, Chuang D-Y (2000) Antioxidant activity of anthraquinones and anthrone. Food Chem 70(4):437–441

    CAS  Google Scholar 

  • Yiu W, Basco MT, Aruny JE, Cheng SW, Sumpio BE (2007) Cryosurgery: a review. Int J Angiol 16(1):1–6. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732998/

    PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Chen L, Fan L, Tang M, Yang G, Yang H et al (2006) Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res 12(10):3193–3199

    CAS  PubMed  Google Scholar 

  • Zhang G, Miura Y, Yagasaki K (2000) Induction of apoptosis and cell cycle arrest in cancer cells by in vivo metabolites of teas. Nutr Cancer 38(2):265–273

    CAS  PubMed  Google Scholar 

  • Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    CAS  PubMed  Google Scholar 

  • Zhao Y, Moddaresi M, Jones SA, Brown MB (2009) A dynamic topical hydrofluoroalkane foam to induce nanoparticle modification and drug release in situ. Eur J Pharm Biopharm 72(3):521–528

    CAS  PubMed  Google Scholar 

  • Zhao Q-H, Zhang Y, Liu Y, Wang H-L, Shen Y-Y, Yang W-J, Wen L-P (2010) Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med Oncol 27(2):203–212

    CAS  PubMed  Google Scholar 

  • Zhigaltsev IV, Maurer N, Akhong Q-F, Leone R, Leng E, Wang J et al (2005) Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release 104(1):103–111

    CAS  PubMed  Google Scholar 

  • Zhou XM, Chen QH (1988) Biochemical study of Chinese rhubarb. XXII. Inhibitory effect of anthraquinone derivatives on Na+-K+-ATPase of the rabbit renal medulla and their diuretic action. Yao Xue Xue Bao= Acta Pharmaceutica Sinica 23(1):17

    CAS  PubMed  Google Scholar 

  • Zipser MC, Mangana J, Oberholzer PA, French LE, Dummer R (2010) Melanoma after laser therapy of pigmented lesions—circumstances and outcome. Eur J Dermatol 20(3):334–338. https://doi.org/10.1684/ejd.2010.0933

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalal, P., Kadian, V., Rao, R. (2020). Phytonanomedicines as Topical Alternatives for the Treatment of Skin Cancer. In: Talegaonkar, S., Rai, M. (eds) Nanoformulations in Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-41858-8_18

Download citation

Publish with us

Policies and ethics