Skip to main content

Nano-contaminants: Sources and Impact on Agriculture

  • Chapter
  • First Online:
Contaminants in Agriculture

Abstract

Nanotechnology is an emerging field of applied science that covers a wide range of techniques and manipulation of materials in the range of nanoscale (1–100 nm). It extends enormous application in the field of agriculture, horticulture, and biotechnology industries due to its unique physicochemical properties like high reactivity, enhanced bioavailability and bioactivity, adherence, and surface effect. It plays an important role in designing a novel method to produce new products, reformulate new materials and chemicals with better performance, resulting in less consumption of energy and materials. Properly functionalized nanoparticles (NPs) serve as “magic bullets” containing large number of genes, nanopesticide, or herbicide able to trigger gene expression and target particular organelles of the cells in plant to release their content. Till date, a lot of information is available on the beneficial effects of nanoparticles on plant system. Many studies have been already conducted and published, which show that by affecting the metabolic activity of plant, nanoparticles can employ the effects on plant growth and developmental conditions. This review summarizes that nanoparticles can adversely affect the plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177

    Article  CAS  Google Scholar 

  • Adhikari T, Kundu S, Rao AS (2016) Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr 39(1):136–146

    Article  CAS  Google Scholar 

  • Adholeya A, Das RK, Dubey MK, Kochar M, Singh R (2017) Regulation of nanoproducts in agriculture. Zero Draft Policy Regul Nanoprod Agric:1–7

    Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P, Gottardo S, Marvin HJ, Mech A, Pesudo LQ, Rauscher H (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharm 73(1):463–476

    Article  Google Scholar 

  • Androvitsaneas P, Young AB, Schneider C, Maier S, Kamp M, Hofling S, Knauer S, Harbord E, Hu CY, Rarity JG, Oulton R (2016) Charged quantum dot micropillar system for deterministic light-matter interactions. Phys Rev B 93(24):241409

    Article  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  CAS  Google Scholar 

  • Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985

    Article  CAS  PubMed  Google Scholar 

  • Arivalagan K, Ravichandran S, Rangasamy K (2011) Nanomaterials and its potential applications. Int J Chem Tech Res 3:534–538

    Google Scholar 

  • Armstrong D, Bharali DJ (2013) Oxidative stress and nanotechnology. Methods Protocol 1028:1–294

    Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    Article  CAS  Google Scholar 

  • Aschberger K, Gottardo S, Amenta V, Arena M, Moniz FB, Bouwmeester H, Brandhoff P, Mech A, Pesudo LQ, Rauscher H, Schoonjans R (2015) Nanomaterials in food-current and future applications and regulatory aspects. J Phys Conf Ser 617(1):012032

    Article  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584

    Article  CAS  PubMed  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Benckiser G (2012) Hot topic: nanotechnology and patents in agriculture, food technology, nutrition and medicine-advantages and risks. Recent Pat Food Nutr Agric 4(3):171–175

    Article  PubMed  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Chapter  Google Scholar 

  • Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713

    Article  CAS  Google Scholar 

  • Brunnert I, Wick P, Manserp S, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  CAS  Google Scholar 

  • Bulovic V, Mandell A, Perlman A (2004) Advanced Micro Devices Inc. Molecular memory device. U.S. Patent 6,781,868

    Google Scholar 

  • Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80:R910–R923

    Article  CAS  PubMed  Google Scholar 

  • Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnsonc W, Anderson AJ (2012) Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–222

    Article  CAS  PubMed  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszy D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931

    Article  CAS  PubMed  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443–2449

    Article  CAS  Google Scholar 

  • Chahine NO, Collette NM, Thomas BC, Genetos DC, Loots GG (2014) Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization. Tissue Eng Part A 20:2305–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94(4):490–495

    Article  CAS  PubMed  Google Scholar 

  • Cherchi C, Gu AZ (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44:8302–8307

    Article  CAS  PubMed  Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Nanoscience in food and agriculture, vol 1. Springer, Cham, pp 247–282

    Chapter  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nano 5(2):851–873

    Google Scholar 

  • Choi O, Hu Z (2009) Role of reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. J Environ Eng 135(12):1365–1370

    Article  CAS  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8(2):e57189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49

    Article  CAS  PubMed  Google Scholar 

  • Cozzens S, Cortes R, Soumonni O, Woodson T (2001) Nanotechnology and the millennium development goals: water, energy and agri-food. J Nanopart Res 15:2001

    Article  Google Scholar 

  • Das S, Wolfson BP, Tetard L, Tharkur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci 2:203–212

    CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A (2016) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23(5):4149–4163

    Article  CAS  Google Scholar 

  • de la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174

    Article  Google Scholar 

  • de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125

    Article  CAS  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013a) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013b) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  PubMed  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res 22(11):8549–8558

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106

    Article  CAS  PubMed  Google Scholar 

  • Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018) A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic 238:126–137

    Article  Google Scholar 

  • Ferguson PL, Chandler GT, Templeton RC, Demarco A, Scrivens WA, Englehart BA (2008) Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42(10):3879–3885

    Article  CAS  PubMed  Google Scholar 

  • Fogel R, Limson J (2016) Developing biosensors in developing countries: South Africa as a case study. Biosensors 6(1):5

    Article  PubMed Central  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 13 8(12):e84441

    Article  CAS  Google Scholar 

  • Garcia A, Espinosa R, Delgodo L, Casals E, Gonzalez E, Puntes V, Barata C, Font X, Sanchez A (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269(1–3):136–141

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Priester JH, Van De Werfhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ Sci Technol 47:14411–14417

    Article  CAS  PubMed  Google Scholar 

  • Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5:157–160

    Article  CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186(1):952–955

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81(10):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Gruere GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198

    Article  Google Scholar 

  • Gruere G, Clare N, Linda A (2011) Agricultural, food and water nanotechnologies for the poor opportunities, constraints and role of the consultative group on International Agricultural Research. J Int Food Policy Res Inst 1:35

    Google Scholar 

  • Gutierrez JM, Gonzalez C, Maestro A, Sole I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251

    Article  CAS  Google Scholar 

  • Gutiérrez FJ, Mussons ML, Gaton P, Rojo R (2011) Nanotechnology and food industry. Scientific, health and social aspects of the food industry. InTech 1:95–121

    Google Scholar 

  • Hajirostamlo B, Mirsaeedghazi N, Arefnia M, Shariati MA, Fard EA (2015) The role of research and development in agriculture and its dependent concepts in agriculture [Short review]. Asian J Appl Sci Eng 4(1):78–80

    Google Scholar 

  • Hansch M, Emmerling C (2010) Effects of silver nanoparticles on themicrobiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558

    Article  CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) ZnO NPs undergo differential biological transformations in Mesquite plants. Chem Eng J 170:346–352

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann M, Holtze EM, Wiesner MR (2007) Reactive oxygen species generation on nanoparticulate material. In: Environmental nanotechnology. Applications and impacts of nanomaterials. McGraw-Hill Education, New York, pp 155–203

    Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Nanomaterials in agricultural production: benefits and possible threats. In: Sustainable nanotechnology and the environment: advances and achievements, vol 1124. American Chemical Society, Washington, DC, pp 73–90

    Chapter  Google Scholar 

  • Hu Y, Li J, Ma L, Peng Q, Feng W, Zhang L, He S, Yang F, Huang J, Li L (2010) High efficiency transport of quantum dots into plant roots with the aid of silwet L-77. Plant Physiol Biochem 48(8):703–709

    Article  CAS  PubMed  Google Scholar 

  • Josko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99

    Article  CAS  PubMed  Google Scholar 

  • Joyner JR, Kumar DV (2015) Nanosensors and their applications in food analysis: a review. Int J Sci Technol 1(4):80–90

    Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA (2007) Food web-specificbio-magnification of persistent organic pollutants. Science 317(5835):236–239

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khota LR, Sankarana S, Majaa JM, Ehsania R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27(1):49–55

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Konstantatos G, Sargent EH (2009) Solution-processed quantum dot photo detectors. Proc IEEE 97(10):1666–1683

    Article  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chadrasekaran N (2009) Genotoxicity of silver nanoparticle in Allium cepa. Sci Total Environ 407(19):5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kwbon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestrivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim SY, Kim S, Lee I (2012a) Effects of soil-plant inter active system on response to exposure to ZnO nanoparticles. J Microbiol Biotechnol 22:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012b) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemom Intell Lab Syst 86(5):491–499

    CAS  Google Scholar 

  • Li H, Shan C, Zhang Y, Cai J, Zhang W, Pan B (2016) Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: effect of the host pore structure. ACS Appl Mater Interfaces 8:3012–3020

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez C, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Moreno ML, Aviles LL, Perez NG, Irizarry BA, Perales O, Cedeno-Mattei Y, Roman F (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Bowles M (2013) How will nanotechnology affect agricultural supply chains? Int Food Agribus Manag Assoc 16(2):21–42

    Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1

    Article  CAS  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32

    Google Scholar 

  • Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA, White JC, Peralta-Videa JR, Gardea-Torresdey JL (2016) Cerium biomagnification in a terrestrial food chain: influence of particle size and growth stage. Environ Sci Technol 50(13):6782–6792

    Article  CAS  PubMed  Google Scholar 

  • Makama S. Private interview, 09-Dec-2016

    Google Scholar 

  • Maurice PA, Hochella MF (2009) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–153

    Article  CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: a research strategy for addressing risk, vol 444. Woodrow Wilson International Center for Scholars, Washington, DC, pp 267–269

    Google Scholar 

  • Misra AN, Misra M, Singh R (2013) Nanotechnology in agriculture and food industry. Int J Pure Appl Sci Technol 16(2):1–9

    CAS  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517

    Article  CAS  PubMed  Google Scholar 

  • NAAS (2013) Nanotechnology in agriculture: scope and current relevance. Policy paper no. 63. Nat Acad Agric Sci 20

    Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, MaekawaT YY, Kumar DS (2010) Nanoparticulate material delivery toplants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Newman MC, Unger MA (2003) Fundamentals of ecotoxicology, 2nd edn. Lewis Publishing, Albany, pp 320–358

    Google Scholar 

  • Nima AZ, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv 4(110):64985–64993

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir M, Kemerli T (2016) Innovative applications of micro and nanoencapsulation in food packaging. In: Encapsulation and controlled release technologies in food systems. Wiley Blackwell, Chichester, pp 333–378

    Chapter  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nanotoday, Science Direct 10(2):124–127

    Article  CAS  Google Scholar 

  • Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9(5):1649–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra JK, Baek KH (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against food borne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ, Rauscher H (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Tech 54:155–164

    Article  CAS  Google Scholar 

  • Phogat N, Khan SA, Shankar S, Ansary AA, Uddin I (2016) Fate of inorganic nanoparticles in agriculture. Adv Mater Lett 7(1):03–12

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109

    Article  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2009) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  CAS  Google Scholar 

  • Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:963961

    Article  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, RajaReddy K, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8(1014):13

    Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS 109(37):E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Racuciu M, Creanga DE (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Romanian Journal of Physics 52(3/4):395

    CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saan RP (2013) Review article; scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1(03):041–044

    Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Rana S, Kalaichelvan PT (2011) Antibacterial effects of metal nanoparticles. Adv Biotech 2(2):21–23

    Google Scholar 

  • Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN Toxicol 2013:574648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473

    CAS  Google Scholar 

  • Rodriguez J, Martin MJ, Ruiz AM, Clares B (2016) Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res Int 83:41–59

    Article  CAS  Google Scholar 

  • Rodriguez-Yanez Y, Munoz B, Albores A (2013) Mechanisms of toxicity by carbon nanotubes. Toxicol Mech Method 23:178–195

    Article  CAS  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360

    Article  CAS  PubMed  Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927

    Google Scholar 

  • Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications – a review. Rev Adv Mater Sci 36:62–69

    CAS  Google Scholar 

  • Samadi N, Yahyaabadi S, Rezayatmand Z (2014) Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita. International Journal of Plant & Soil Science 3(4):408–418

    Article  Google Scholar 

  • Santos AR, Miguel A, Tomaz L, Malho R, Maycock C, Patto MV, Fevereiro P, Oliva A (2010) The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnol 8(1):24–37

    Article  CAS  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4(10):1881–1887

    Article  CAS  Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330

    Article  CAS  PubMed  Google Scholar 

  • Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47(13):7012–7019

    Article  CAS  PubMed  Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Univ Timisoara Ser Biol 16(2):73–78

    Google Scholar 

  • Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:117–130

    Article  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148

    Article  CAS  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Nanotoxicology 6(3):241–248

    Article  CAS  PubMed  Google Scholar 

  • Shen MH, Xia XH, Wang F, Zhang P, Zhao XL (2012) Influences of multi walled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment. Environ Toxicol Chem 31(1):202–209

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9:912–918

    Article  CAS  Google Scholar 

  • Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45:6039–6050

    Article  CAS  PubMed  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soils Sci Soc Am J 75:365–377

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272

    Article  CAS  Google Scholar 

  • Somasundaran P, Fang X, Ponnurangam S, Li B (2010) Nanoparticles: characteristics, mechanisms and modulation of bio toxicity. Kona Powder Part J 28:38–49

    Article  CAS  Google Scholar 

  • Speranza A, Leopold K, Maier M, Taddei AR, Scoccianti V (2010) Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd (II). Environ Pollut 158(3):873–882

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Tadros TF, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano emulsions. Adv Colloid Interf Sci 108:303–318

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Tathore I (2012) Microbial synthesis of phosphorus nano particles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Tiede K, Hassellov M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A1216(3):503–509

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Shweta SS, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2016a) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  PubMed  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016b) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci 4:46

    Article  Google Scholar 

  • Tripathi DK, Singh, Singh S, Srivastava PK, Singh VP, Singh S, Singh VP, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017a) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Singh VP, Singh PK, Chauhan DK, Prasad SM, Dubey NK, Pandey AC (2017b) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Tripathi A, Singh S, Shweta SS, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK (2017c) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07

    PubMed  PubMed Central  Google Scholar 

  • Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) MRI-guided nano robotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 13:157–184

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46:12687–12696

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xingmao M, Geiser-lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles ENPs and plants: phytotoxcity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  Google Scholar 

  • Xuming W, Fengqing G, Linglan M, Jie L, Sitao Y, Ping Y, Fashui H (2008) Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. Biol Trace Elem Res 126(1–3):280

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Zhang SJ, Shao T, Kose HS, Karanfil T (2010) Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Environ Sci Technol 44:6377–6383

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Han L, Jing H, Blom DA, Lin Y, Xin HL, Wang H (2016) Facet control of gold nanorods. ACS Nano 10(2):2960–2974

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Liu S, Wang G, Zhang J, He X, Zhang Z (2017) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Processes Impacts 15(1):260–266

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

  • Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:1–11

    Article  Google Scholar 

Download references

Acknowledgment

The authors are highly grateful to the Director, DEI and Head, Department of Botany, for their encouragement and continuous support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, M., Gupta, A., Ranjan, R. (2020). Nano-contaminants: Sources and Impact on Agriculture. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-41552-5_8

Download citation

Publish with us

Policies and ethics