Skip to main content

Biochar Coupled Rehabilitation of Cyanobacterial Soil Crusts: A Sustainable Approach in Stabilization of Arid and Semiarid Soils

  • Chapter
  • First Online:
Biochar Applications in Agriculture and Environment Management
  • 1223 Accesses

Abstract

Cyanobacterial soil crusts (CSCs) are unique microhabitats in desert soil plays a significant role in stabilization of soil surface and provide favourable conditions for the establishment of vascular plants. The CSCs types and its distribution mainly depend up on the locality and climatic factors of the region. They help in retaining soil particles, nutrients, moisture and also add up carbon and nitrogen to the nutrient poor soils. The natural or anthropogenic intervention exerted immense pressure on the crusts community and diversity; leads to disturbed or distressed CSCs. Currently military use of the deserts have destroyed the fragile ecology of these CSCs and delay the time of recovery to reach functional state. To stabilize and rehabilitate the disturbed CSCs, a number of strategies successfully tested and implemented in small scale, some of them are artificial stabilization, resource augmentation and cyanobacterial inoculants. Biochar coupled rehabilitation of CSCs could be effective and sustainable approach for the stabilization of desert soils. Small scale biochar production would be helpful not only reducing the cost of rehabilitation but also help in providing livelihood to the local people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acea MJ, Diz N, Ferna’ndez AP (2001) Microbial populations in heated soils inoculated with cyanobacteria. Biol Fertil Soils 33:118–125

    Article  Google Scholar 

  • Aradottir AL, Arnalds O (2001) Ecosystem degradation and restoration of birch woodlands in Iceland. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. UNESCO, Paris and Parthenon Publishing, Carnforth, pp 295–308

    Google Scholar 

  • Aradottir AL, Svavasdottir K, Jonsson XH, GuCbergsson G (2000) Carbon accumulation in vegetation and soils by reclamation of degraded areas. Icel Agric Sci 13:99–113

    Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, Leaf SPAD and grain yield. Field Crop Res 111:81–84

    Article  Google Scholar 

  • Ashley J, Rushforth SR (1984) Growth of soil algae on top soil and processed oil shale from the Uintah Basin, Utah, U.S.A. Reclam Reveg Res 3:49–63

    Google Scholar 

  • Belnap J (1993) Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Nat 53:89–95

    Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57

    Article  CAS  Google Scholar 

  • Belnap J (1996) Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol Fertil Soils 23:362–367

    Article  CAS  Google Scholar 

  • Belnap J (2001a) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 241–261

    Chapter  Google Scholar 

  • Belnap J (2001b) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 167–174

    Chapter  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J (2003a) The world at your feet: desert biological soil crusts. Front Ecol Environ 1(5):181–189

    Article  Google Scholar 

  • Belnap J (2003b) Comparative structure of physical and biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 177–191

    Chapter  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Eldridge D (2001) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 363–383

    Chapter  Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53:40–47

    Google Scholar 

  • Belnap J, Lange O (eds) (2003) Biological soil crusts: structure, function and management, in press. Springer, Berlin

    Google Scholar 

  • Belnap J, Warren SD (1998) Measuring restoration success: a lesson from Patton’s tank tracks. Ecol Bull 79:33

    Google Scholar 

  • Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation-tolerance. In: Lange OL, Nobel PS, Osmund CB, Ziegler H (eds) Physiological plant ecology II. Springer, Berlin, pp 325–378

    Chapter  Google Scholar 

  • Beymer RJ, Klopatek JM (1991) Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid Soil Res Rehabil 5:187–198

    CAS  Google Scholar 

  • Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor Ecol 15(1):13–23

    Article  Google Scholar 

  • Bowker M, Reed SC, Belnap J, Phillips S (2002) Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts. Microb Ecol 43:13–25

    Article  CAS  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Phillips SL (2005) Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecol Appl 15:1941–1951

    Article  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust abundance: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Article  Google Scholar 

  • Bowler PA (1999) Understory bulbs, grasses, bryophytes and liverworts transplant successfully in coastal sage scrub (California). Ecol Restor 17:82–83

    Google Scholar 

  • Brooks SI, Pokshishevsky VV (1986) Population problems in the arid and semiarid regions of the world. In: Gerasimov IP (ed) Arid land development and the combat against desertification: an integrated approach. Commission for the United Nations Environment Program, Moscow

    Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Büdel B, Lange OL (2003) Synopsis: comparative biogeography and ecology of soil-crust biota and communities. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 141–152

    Google Scholar 

  • Büdel B, Wessels DCJ (1986) Parmelia hueana Gyeln, a vagrant lichen from the Namib Desert, SWA/Namibia. I. Anatomical and reproductive adaptations. Dinteria 18:3–15

    Google Scholar 

  • Bush JK, Van Auken OW (1991) Importance of time of germination and soil depth on growth of Prosopis glandulosa seedling in the presence of a C4 grass. Am J Bot 78:1732–1739

    Article  Google Scholar 

  • Cameron RE, Blank GB (1966) Desert algae: soil crusts and diaphanous substrata as algal habitats. JPL Tech Rep 32:1–40

    Google Scholar 

  • Carrier M, Hardieb AG, Urasa U, Gorgensa J, Knoetze J (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrolysis 96:24–32

    Article  CAS  Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 591–611

    Google Scholar 

  • Cayan DR (1996) Inter-annual climate variability and snowpack in the western United States. J Clim 9:928–948

    Article  Google Scholar 

  • Chock T, Antoninka AJ, Faist AM, Bowker MA, Belnap J, Barger NN (2019) Responses of biological soil crusts to rehabilitation strategies. J Arid Environ 163:77–85

    Article  Google Scholar 

  • Crawford CS (1991) The community ecology of macroarthropod detritivores. In: Polis G (ed) Ecology of desert communities. University of Arizona Press, Tucson, pp 89–112

    Google Scholar 

  • Csotonyi JT, Addicott JF (2004) Influence of trampling-induced microtopography on growth of the soil crust bryophyte Ceratodon purpureus in Jasper National Park. Can J Bot 82:1382–1392

    Article  Google Scholar 

  • Danin A (1978) Plant species diversity and plant succession in a sandy region in the northern Negev. Flora 167:409–422

    Article  Google Scholar 

  • Danin A (1996) Plants of desert dunes. Springer, Berlin

    Book  Google Scholar 

  • Danin A, Dor I, Sandler A, Amit R (1998) Desert crust morphology and its relations to microbiotic succession at Mt. Sedom, Israel. J Arid Environ 38:161–174

    Article  Google Scholar 

  • Davidson DW, Bowker M, George D, Phillips SL, Belnap J (2002) Treatment effects on performance of N-fixing lichens in disturbed soil crusts on the Colorado Plateau. Ecol Appl 12:1391–1405

    Article  Google Scholar 

  • Dregne HE (1983) Desertification of arid lands. Harwood Academic Publishers, New York

    Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana—a review. Renew Sust Energy Rev 15:3539–3551

    Article  Google Scholar 

  • Eldridge DJ, Greene RSB (1994) Assessment of sediment yield by splash erosion on a semi-arid soil with varying cryptogam cover. J Arid Environ 26:221–232

    Article  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40:323–336

    Article  Google Scholar 

  • Elmarsdottir A, Aradottir AL, Trlica MJ (2003) Microsite availability and establishment of native species on degraded and reclaimed sites. J Appl Ecol 40:815–823

    Article  Google Scholar 

  • Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands? Evidence from 15N of soils. Oecologia 94:314–317

    Article  CAS  Google Scholar 

  • Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225

    Article  Google Scholar 

  • Evans RD, Lange OL (2001) Biological soil crusts and ecosystems nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 263–279

    Chapter  Google Scholar 

  • Falchini L, Sparvoli E, Tomaselli L (1996) Effect of Nostoc (cyanobacteria) inoculation on the structure and stability of clay soils. Biol Fertil Soils 23:346–352

    Article  CAS  Google Scholar 

  • Fearnehough W, Fullen MA, Mitchell DJ, Trueman IC, Zhang J (1998) Aeolian deposition and its effect on soil and vegetation changes on stabilized desert dunes in northern China. Geomorphology 23:171–182

    Article  Google Scholar 

  • Frey W, Kürschner H (1991) Morphological and anatomical adaptation of the species in terrestrial bryophyte communities along an ecological transect in the Judean Desert, Israel. Bot Jahrb Syst 112:529–552

    Google Scholar 

  • Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–195

    Article  Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Grettarsdottir J, Aradottir AL, Vandvik V, Heegaard E, Birks HJB (2004) Long term effects of reclamation treatments on plant succession in Iceland. Restor Ecol 12:268–278

    Article  Google Scholar 

  • Gundale MJ, DeLuca TH (2006) Temperature and substrate influence the chemical properties of charcoal in the Ponderosa Pine/Douglas-Fire cosystem. Forest Eco Manag 231:86–93

    Article  Google Scholar 

  • Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangeland. In: Tueller PT (ed) Vegetation science applications for rangeland analysis and management. Kluwer Academic Publishers, Dordrecht, pp 135–169

    Chapter  Google Scholar 

  • Herrick JE, Wander MM (1998) Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition and soil biological activity. In: Lal R, Kimble J, Follett R, Stewart BA (eds) Advances in soil science: soil processes and the carbon cycle. CRC Press, Boca Raton, pp 405–425

    Google Scholar 

  • Horodyski RJ, Knauth LP (1994) Life on land in the Precambrian. Science 263:494–498

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14(4):281–292

    Article  CAS  Google Scholar 

  • Jeffries DL, Link SO, Klopatek JM (1993) CO2 fluxes of cryptogamic crusts. I. Response to resaturation. New Phytol 125:163–173

    Article  CAS  Google Scholar 

  • Jindo K, Suto K, Matsumoto K, García C, Sonoki T, Sanchez-Monedero MA (2012) Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol 110:396–404

    Article  CAS  Google Scholar 

  • Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147

    Article  Google Scholar 

  • Jouiada M, Al-Nofeli N, Khalifa N, Benyettouc F, Yousef LF (2015) Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm. J Anal Appl Pyrolysis 111:183–190

    Article  CAS  Google Scholar 

  • Kubeckova K, Johansen JR, Warren SD, Sparks RL (2003) Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts. Algol Stud 109:341–362

    Google Scholar 

  • Kumar A, Singh JS (2016) Microalgae and cyanobacteria biofuels: a sustainable alternate to crop-based fuels. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press Pvt. Ltd, New Delhi, pp 1–20

    Google Scholar 

  • Kumar A, Singh JS (2017) Cyanoremediation: a green-clean tool for decontamination of synthetic pesticides from agro- and aquatic ecosystems. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: Vol-2: managing environmental pollution. Springer, Cham, pp 59–83

    Chapter  Google Scholar 

  • Kumar A, Kaushal S, Saraf SA, Singh JS (2017) Cyanobacterial biotechnology: an opportunity for sustainable industrial production. Clim Change Environ Sustain 5(1):97–110

    Article  Google Scholar 

  • Kumar A, Kaushal S, Saraf SA, Singh JS (2018a) Screening of chlorpyrifos (CPF) tolerant cyanobacteria from paddy field soil of Lucknow, India. Int J Appl Adv Sci Res 3(1):100–105

    Google Scholar 

  • Kumar A, Kaushal S, Saraf SA, Singh JS (2018b) Microbial bio-fuels: a solution to carbon emissions and energy crisis. Front Biosci-Landmrk 23:1789–1802

    Article  CAS  Google Scholar 

  • Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562

    Article  CAS  Google Scholar 

  • Lange OL, Green TGA, Reichenberger H (1999) The response of lichen photosynthesis to external CO2 concentration and its interaction with thallus water-status. J Plant Physiol 154:157–166

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strategy Glob Change 11:403–427

    Article  Google Scholar 

  • Li X, Xiao H, Zhang J, Wang X (2004) Long-term ecosystem effects of sand-binding vegetation in the Tengger Desert, Northern China. Restor Ecol 12:376–390

    Article  Google Scholar 

  • Maestre FT, Cortina J (2002) Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–291

    Article  CAS  Google Scholar 

  • Maestre FT, Cortina J (2004) Insights into ecosystem composition and function in a sequence of degraded semiarid steppes. Restor Ecol 12:494–502

    Article  Google Scholar 

  • Maestre FT, Bautista S, Cortina J, Bellot J (2001) Potential for using facilitation by grasses to establish shrubs on a semiarid degraded steppe. Ecol Appl 11:1641–1655

    Article  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • Mahinpey N, Murugan P, Mani T, Raina R (2009) Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy Fuel 23:2736–2742

    Article  CAS  Google Scholar 

  • Maxwell CD, McKenna-Neuman C (1994) Photoautotrophs and the microaggregation of sand in a freshwater beach-dune complex: implications for sediment transport by wind. Soil Biol Biochem 26:221–233

    Article  Google Scholar 

  • McKenna-Neuman C, Maxwell CD, Boulton JW (1996) Wind transport of sand surfaces crusted with photoautotrophic microorganisms. Catena 27:229–247

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schlos AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Meng X, Yuan W (2014) Can biochar couple with algae to deal with desertification? J Sustain Bioenergy Syst 4:194–198

    Article  Google Scholar 

  • Metting B, Rayburn WR (1983) The influence of a microalgal conditioner on selected Washington soils: an empirical study. Soil Sci Soc Am J 47:682–685

    Article  Google Scholar 

  • Mohammed IY, Abakr YA, Kazi FK, Yusuf S, Alshareef I, Chin SA (2015) Pyrolysis of napier grass in a fixed bed reactor: effect of operating conditions on product fields and characteristic. Bio Resources 10:6457–6478

    CAS  Google Scholar 

  • Moore BD, Cheng S-H, Sims D, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582

    Article  CAS  Google Scholar 

  • Nsamba HK, Hale S, Cornelissen G, Bachmann R (2015) Sustainable technologies for small-scale biochar production—a review. J Sustain Bioenergy Syst 5:10–31

    Article  Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. Adv Microb Ecol 11:305–343

    Article  CAS  Google Scholar 

  • Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the south western United States. Biogeochemistry 10:67–79

    Article  Google Scholar 

  • Pimm SL (2001) The world according to Pimm. McGraw-Hill, New York

    Google Scholar 

  • Qiu B, Gao K (1999) Dried field populations of Nostoc flagelliforme (Cyanophyceae) require exogenous nutrients for their photosynthetic recovery. J Appl Phycol 11:535–541

    Article  CAS  Google Scholar 

  • Rao DLN, Burns RG (1990) The effect of surface growth of bluegreen algae and bryophytes on some microbiological, biochemical, and physical soil properties. Biol Fertil Soils 9:239–244

    Article  CAS  Google Scholar 

  • Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci 98:7123–7127

    Article  CAS  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Rogers L, Gallon J (1988) Biochemistry of the algae and cyanobacteria. Clarendon Press, Oxford

    Google Scholar 

  • Rossi F, Li H, Liu Y, De Philippis R (2017) Cyanobacterial inoculation (cyanobacterisation): perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Sci Rev 171:28–43

    Article  Google Scholar 

  • Scarlett N (1994) Soil crusts, germination and weeds—issues to consider. Vic Nat 111:125–130

    Google Scholar 

  • Schwartzman DW, Volk T (1989) Biotic enhancement of weathering and the habitability of earth. Nature 340:457–460

    Article  Google Scholar 

  • Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S, Cross A, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, part I: context, chemical properties, environmental and health and safety issues. Energy Policy 42:49–58

    Article  CAS  Google Scholar 

  • Sharkawi H, Yamamoto S, Honna T (2006) Rice yield and nutrient uptake as affected by cyanobacteria and soil amendments—a pot experiment. J Soil Sci Plant Nutr 169:809–815

    Article  CAS  Google Scholar 

  • Singh RN (1950) Reclamation of ‘Usar’ lands in India through blue green algae. Nature 165:325–326

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016a) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    Google Scholar 

  • Singh JS, Koushal S, Kumar A, Vimal SR, Gupta VK (2016b) Book review: microbial inoculants in sustainable agricultural productivity- Vol. II: Functional Application. Front Microbiol 7:2105

    Google Scholar 

  • Singh C, Tiwari S, Boudh S, Singh JS (2017a) Biochar application in management of paddy crop production and methane mitigation. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: vol-2: managing environmental pollution. Springer, Cham, pp 123–146

    Chapter  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017b) Impact of rice husk biochar on nitrogen mineralization and methanotrophs community dynamics in paddy soil. Int J Pure Appl Biosci 5(5):428–435

    Article  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2017c) Application of biochar in soil fertility and environmental management: a review. Bull Environ Pharmacol Life Sci 6(12):07–14

    CAS  Google Scholar 

  • Singh C, Tiwari S, Gupta VK, Singh JS (2018) The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils. Catena 171:485–493

    Article  CAS  Google Scholar 

  • Singh JS, Kumar A, Singh M (2019a) Cyanobacteria: a sustainable and commercial bio-resource in production of bio-fertilizer and bio-fuel from waste waters. Environ Sustain Indic 3–4:100008

    Article  Google Scholar 

  • Singh C, Tiwari S, Singh JS (2019b) Biochar: a sustainable tool in soil 2 pollutant bioremediation. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Cham, pp 475–494

    Google Scholar 

  • Smith SD, Strain BR, Sharkey TD (1987) Effects of CO2 enrichment on four Great Basin grasses. Funct Ecol 1:139–143

    Article  Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Srinivasarao C, Gopinath KA, Venkatesh G, Dubey AK, Wakudkar H, Purakayastha TJ, Pathak H, Jha P, Lakaria BL, Rajkhowa DJ, Mandal S, Jeyaraman S, Venkateswarlu B, Sikka AK (2013) Use of biochar for soil health enhancement and greenhouse gas mitigation in India. NICRA Bulletin, Hyderabad, pp 1–51

    Google Scholar 

  • St. Clair LL, Johansen JR, Webb BL (1986) Rapid stabilization of fire-disturbed sites using a soil crust slurry: inoculation studies. Reclam Reveg Res 4:261–269

    Google Scholar 

  • Strong CL, Bullard JE, Burford MA, McTainsh GH (2013) Response of cyanobacterial soil crusts to moisture and nutrient availability. Catena 109:195–202

    Article  CAS  Google Scholar 

  • Tiedemann AR, Lopushinsky W, Larsen HJ Jr (1980) Plant and soil responses to a commercial blue-green algae inoculant. Soil Biol Biochem 12:471–475

    Article  Google Scholar 

  • Tiwari S, Singh C, Singh JS (2018) Land use changes: a key ecological driver regulating methanotrophs abundance in upland soils. Energy Ecol Environ 3(6):355–371

    Article  Google Scholar 

  • Tongway DJ, Ludwig JA (1996) Rehabilitation of semiarid landscapes in Australia. I. Restoring productive soil patches. Restor Ecol 4:388–397

    Article  Google Scholar 

  • UNEP/WMO (2002) Executive summary (final): scientific assessment of ozone depletion: 2002. Scientific assessment panel of the montreal protocol on substances that deplete the ozone layer. United Nations, New York

    Google Scholar 

  • Van den Ancker JAM, Jungerius PD, Mur LR (1985) The role of algae in the stabilization of coastal dune blowouts. Earth Surf Process Landf 10:189–192

    Article  Google Scholar 

  • van Straalen NM (1998) Evaluation of bio-indicator systems derived from soil arthropod communities. Appl Soil Ecol 9:429–437

    Article  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizers and rice cultivation. Today and Tommorrow’s, New Delhi

    Google Scholar 

  • Venkatesh G, Korwar GR, Venkateswarlu B, Gopinath KA, Mandal UK, Srinivasarao C, Grover MT (2010) Preliminary studies on conversion of maize stalks into biochar for terrestrial sequestration of carbon in rainfed agriculture. National Symposium on Climate Change and Rainfed Agriculture, CRIDA, Hyderabad, pp 388–391

    Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, Velde MVD, Diafas I (2009) Biochar application to soils—a critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN Office for the Official Publications of the European Communities, Luxemburg, p 149

    Google Scholar 

  • Verrecchia E, Yair A, Kidron GJ, Verrecchia K (1995) Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. J Arid Environ 29:427–437

    Article  Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 273–310

    Chapter  Google Scholar 

  • Wu L, Zhu Q, Yang L, Li B, Hu C, Lan S (2018) Nutrient transferring from wastewater to desert through artificial cultivation of desert cyanobacteria. Bioresour Technol 247:947–953

    Article  CAS  Google Scholar 

  • Wullstein LH (1989) Evaluation and significance of associative dinitrogen fixation for arid soil rehabilitation. Arid Soil Res Rehabil 3:259–265

    Article  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–6278

    Article  CAS  Google Scholar 

  • Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Singh, J.S. (2020). Biochar Coupled Rehabilitation of Cyanobacterial Soil Crusts: A Sustainable Approach in Stabilization of Arid and Semiarid Soils. In: Singh, J., Singh, C. (eds) Biochar Applications in Agriculture and Environment Management. Springer, Cham. https://doi.org/10.1007/978-3-030-40997-5_8

Download citation

Publish with us

Policies and ethics