Skip to main content

Treatment Technologies for Removal of Antibiotics, Antibiotic Resistance Bacteria and Antibiotic-Resistant Genes

  • Chapter
  • First Online:
Antibiotics and Antimicrobial Resistance Genes

Abstract

This chapter describes current knowledge on the selected eco-friendly strategies for the treatment of main sources (manure and wastewater) of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB), including bacteria pathogenic for humans and animals, also those mentioned on the WHO list of antibiotic-resistant priority pathogens. In the first part, known and used methods for manure treatment, like thermophilic composting and digestion, are described. In the second part, established methods of wastewater treatment (anaerobic-aerobic bioreactors, constructed wetlands, coagulation, membrane filtration and disinfection processes) as well as those tested only in a laboratory or small scale requiring further investigation (nanomaterials and biochar). The chapter concludes by highlighting the importance to develop effective treatment methods, management strategies and prevention activities, to eliminate or reduce the risk of the release of antibiotics, ARGs and ARB to the environment from manure and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zboril R, Gardea-Torresdey JL (2014) Enhanced formation of silver nanoparticles in Ag+-NOM-Iron(II, III) systems and antibacterial activity studies. Environ Sci Technol 48:3228–3235

    Article  CAS  Google Scholar 

  • Alexander JT, Hai FI, Al-aboud TM (2012) Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential. J Environ Manag 111:195–207

    Article  CAS  Google Scholar 

  • AlMatar M, Makky EA, Var I, Koksal F (2017) The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms. Curr Drug Deliv 15:470–484. https://doi.org/10.2174/1567201815666171207163504

    Article  CAS  Google Scholar 

  • An X-L, Chen Q-L, Zhu D, Su J-Q (2018) Distinct effects of struvite and biochar amendment on the class 1 integron antibiotic resistance gene cassettes in phyllosphere and rhizosphere. Sci Total Environ 631-632:668–676

    Article  CAS  Google Scholar 

  • Arkhangelsky E, Sefi Y, Hajaj B, Rothenberg G, Gitis V (2011) Kinetics and mechanism of plasmid DNA penetration through nanopores. J Membr Sci 371(1–2):45–51

    Article  CAS  Google Scholar 

  • Arkhangelsky E, Steubing B, Ben-Dov E, Kushmaro A, Gitis V (2008) Influence of pH and ionic strength on transmission of plasmid DNA through ultrafiltration membranes. Desalination 227(1–3):111–119

    Article  CAS  Google Scholar 

  • Aruguete DM, Kim B, Hochella MF Jr, Ma Y, Cheng Y, Hoegh A, Liu J, Pruden A (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts 15(1):93–102

    Article  CAS  Google Scholar 

  • Bai X, Ma X, Xu F, Li J, Zhang H, Xiao X (2015) The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Sci Total Environ 533:24–31

    Article  CAS  Google Scholar 

  • Baptista PV, McCusker MP, Carvalho A et al (2018) Nano-strategies to fight multidrug resistant Bacteria-"A Battle of the Titans". Front Microbiol 9:1441. https://doi.org/10.3389/fmicb.2018.01441

    Article  Google Scholar 

  • Barancheshme F, Munir M (2018) Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol 8:2603. https://doi.org/10.3389/fmicb.2017.02603

    Article  Google Scholar 

  • Bassegoda A, Ivanova K, Ramon E, Tzanov T (2018) Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 102:2075–2089. https://doi.org/10.1007/s00253-018-8776-0

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282

    Article  CAS  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317. https://doi.org/10.1038/nrmicro3439

    Article  CAS  Google Scholar 

  • Bratby J (2016) Coagulation and flocculation in water and wastewater treatment – Third Edition, IWA Publishing, ISBN (electronic): 9781780407500,https://doi.org/10.2166/9781780407500

  • Chen J, Ying GG, Wei XD, Liu YS, Liu SS, Hu LX, He LY, Chen ZF, Chen FR, Yang YQ (2016) Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species. Sci Total Environ 571:974–982. https://doi.org/10.1016/j.scitotenv.2016.07.085

    Article  CAS  Google Scholar 

  • Chen Q-L, Fan X-T, Zhu D, An X-L, Su J-Q, Cui L (2018) Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L. Soil Biol Biochem 119:74–82

    Article  CAS  Google Scholar 

  • Choi K-J, Kim S-G, Kim S-H (2008) Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater 151(1):38–43

    Article  CAS  Google Scholar 

  • Christgen B, Yang Y, Ahammad SZ, Li B, Rodriquez DC, Zhang T, Graham DW (2015) Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater. Environ Sci Technol 49(4):2577–2584. https://doi.org/10.1021/es505521w

    Article  CAS  Google Scholar 

  • Cui E, Wu Y, Zuo Y, Chen H (2016) Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour Technol 203:11–17

    Article  CAS  Google Scholar 

  • Cui E-P, Gao F, Liu Y, Fan X-Y, Li Z-Y, Du Z-J, Hu C, Neal AL (2018) Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: proceed with caution. Environ Pollut 240:475–484

    Article  CAS  Google Scholar 

  • Du J, Ren H, Geng J, Zhang Y, Xu K, Ding L (2014) Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environ Sci Pollut Res Int 21(12):7276–7284

    Article  CAS  Google Scholar 

  • Duan M, Li H, Gu J, Tuo X, Sun W, Qian X, Wang X (2017) Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ Pollut 224:787–795

    Article  CAS  Google Scholar 

  • EU (2011) Joint Programming Initiative on antibiotic resistance, http://www.jpiamr.eu

  • EU (2017) A European One Health Action Plan against Antimicrobial Resistance (AMR), https://ec.europa.eu/health/amr/sites/amr/files/amr_action_plan_2017_en.pdf

  • Ezzariai A, Hafidi M, Khadra A, Aemig Q, E Fels L, Barret M, Merlina G, Patureau D, Pinelli E (2018) Human and veterinary antibiotics during composting of sludge or manure: global perspectives on persistence, degradation, and resistance genes. J Hazard Mater 359:465–481

    Article  CAS  Google Scholar 

  • Fang H, Zhang Q, Nie X, Chen B, Xiao Y, Zhou Q, Liao W, Liang X (2017) Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland. Chemosphere 173:99–106. https://doi.org/10.1016/j.chemosphere.2017.01.027

    Article  CAS  Google Scholar 

  • Fayaz MA, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT (2011) Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem 46:636–641. https://doi.org/10.1016/j.procbio.2010.11.001

    Article  CAS  Google Scholar 

  • Feng L, Zhang S, Liu Z (2011a) Graphene based gene transfection. Nanoscale 3(3):1252–1257

    Article  CAS  Google Scholar 

  • Feng Y, Yang F, Wang Y, Ma L, Wu Y, Kerr PG, Yang L (2011b) Basic dye adsorption onto an agro-based waste material–sesame hull (Sesamum indicum L.). BioresourTechnol 102:10280–10285

    Article  CAS  Google Scholar 

  • Gerba CP, Betancourt WQ, Kitajima M, Rock CM (2018) Reducing uncertainty in estimating virus reduction by advanced water treatment processes. Water Res 133:282–288

    Article  CAS  Google Scholar 

  • Guo A, Gu J, Wang X, Zhang R, Yin Y, Sun W, Tuo X, Zhang L (2017) Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterialcommunity during swine manure composting. Bioresour Technol 244:658. https://doi.org/10.1016/j.biortech.2017.08.016

    Article  CAS  Google Scholar 

  • Guo M-T, Zhang G-S (2017) Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. Chemosphere 183:197–203

    Article  CAS  Google Scholar 

  • Guo X, Li J, Yang F, Yang J, Yin D (2014) Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. Sci Total Environ 493:626–631

    Article  CAS  Google Scholar 

  • Gwenzi W, Chaukura N, Noubactep C, Mukome FND (2017) Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J Environ Manag 197:732–749

    Article  Google Scholar 

  • Gwenzi W, Musiyiwa K, Mangori L (2018) Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: a hotspot reservoir. J Environ Chem Eng:102220

    Google Scholar 

  • Hai F, Riley T, Shawkat S, Magram S, Yamamoto K (2014) Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water 6(12):3603

    Article  Google Scholar 

  • Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de Aberasturi D, IRd L, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  • Hwangbo M, Claycomb EC, Liu Y, Alivio TEG, Banerjee S, Chu K-H (2019) Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Sci Total Environ 649:1189–1197

    Article  CAS  Google Scholar 

  • Jiao W, Du R, Ye M, Sun M, Feng Y, Wan J, Zhao Y, Zhang Z, Huang D, Du D, Jiang X (2018) ‘Agricultural waste to treasure’ – biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environ Pollut 242:2088–2095

    Article  CAS  Google Scholar 

  • Johnsen PJ, Townsend JP, Bøhn T, Simonsen GS, Sundsfjord A, Nielsen KM (2011) Retrospective evidence for a biological cost of vancomycin resistance determinants in the absence of glycopeptide selective pressures. J Antimicrob Chemother 66(3):608–610. https://doi.org/10.1093/jac/dkq512

    Article  CAS  Google Scholar 

  • Ju F, Li B, Ma L, Wang Y, Huang D, Zhang T (2016) Antibiotic resistance genes and human bacterial pathogens: co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Res 91:1–10. https://doi.org/10.1016/j.watres.2015.11.071

    Article  CAS  Google Scholar 

  • Karkman A, Do TT, Walsh F, Virta MPJ (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26(3):220–228

    Article  CAS  Google Scholar 

  • Katva S, Das S, Moti HS, Jyoti A, Kaushik S (2018) Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Pharmacogn Mag 13:S828–S833. https://doi.org/10.4103/pm.pm_120_17

    Article  Google Scholar 

  • Kim SY, Gutierrez J, Kim PJ (2012) Considering winter cover crop selection as green manure to control methane emission during rice cultivation in paddy soil. Agric Ecosyst Environ 161:130–136

    Article  Google Scholar 

  • Krzeminski P, Feys E, d’Auriac MA, Wennberg AC and Uh W (2018) Cell free DNA removal by membrane filtration assessed by spiking with plasmids carrying antibiotic resistance genes, and monitored using qPCR. Xenowac II Conference, Limassol (Cyprus)

    Google Scholar 

  • Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo, Fatta-Kassinos D (2019) Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci Total Environ 648:1052–1081

    Article  CAS  Google Scholar 

  • Krzeminski P, Feys E, d'Auriac MA, Wennberg AC, Umar M, Schwermer CU, Uhl W (2020) Combined membrane filtration and 265 nm UV irradiation for effective removal of cell free antibiotic resistance genes from feed water and concentrate. J Membr Sci 598C:117676

    Google Scholar 

  • Lan L, Kong X, Sun H, Li C, Liu D (2019) High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. J Environ Manag 231:439–445

    Article  CAS  Google Scholar 

  • Le T-H, Ng C, Tran NH, Chen H, Gin KY-H (2018) Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res 145:498–508

    Article  CAS  Google Scholar 

  • Lee J, Jeon JH, Shin J, Jang HM, Kim S, Song MS, Kim YM (2017) Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Sci Total Environ 605–606:906–914

    Article  CAS  Google Scholar 

  • Li N, Sheng G-P, Lu Y-Z, Zeng RJ, Yu H-Q (2017) Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res 111:204–212

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Liu J (2012) Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Phys Chem Chem Phys 14(30):10485–10496

    Article  CAS  Google Scholar 

  • Liu Z, Zhu M, Wang Z, Wang H, Deng C, Li K (2016) Effective degradation of aqueous tetracycline using a nano-TiO2/carbon electrocatalytic membrane. Materials 9(5):364

    Article  CAS  Google Scholar 

  • Luo P, Morrison I, Dudkiewicz A, Tiede K, Boyes E, O'Toole P et al (2013) Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy. J Microsc 250:32–41. https://doi.org/10.1111/jmi.12014

    Article  CAS  Google Scholar 

  • Marko A, Denysenkov V, Margraf D, Cekan P, Schiemann O, Sigurdsson ST, Prisner TF (2011) Conformational flexibility of DNA. J Am Chem Soc 133(34):13375–13379

    Article  CAS  Google Scholar 

  • McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44(16):6102–6109. https://doi.org/10.1021/es9038165

    Article  CAS  Google Scholar 

  • Miller JH, Novak JT, Knocke WR, Young K, Hong Y, Vikesland PJ, Hull MS, Pruden A (2013) Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion. Water Environ Res 85(5):411–421

    Article  CAS  Google Scholar 

  • Mohring SA, Strzysch I, Fernandes MR, Kiffmeyer TK, Tuerk J, Hamscher G (2009) Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Technol 43(7):2569–2574

    Article  CAS  Google Scholar 

  • Moritz M, Geszke-Moritz M (2013) The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596–613

    Article  CAS  Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45(2):681–693. https://doi.org/10.1016/j.watres.2010.08.033

    Article  CAS  Google Scholar 

  • Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustainable Dev 34(2):473–492. https://doi.org/10.1007/s13593-013-0196-z. Springer Verlag/EDP Sciences/INRA

    Article  Google Scholar 

  • Pecson BM, Triolo SC, Olivieri S, Chen EC, Pisarenko AN, Yang C-C, Olivieri A, Haas CN, Trussell RS, Trussell RR (2017) Reliability of pathogen control in direct potable reuse: performance evaluation and QMRA of a full-scale 1 MGD advanced treatment train. Water Res 122:258–268

    Article  CAS  Google Scholar 

  • Pei R, Cha J, Carlson KH, Pruden A (2007) Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water. Environ Sci Technol 41(14):5108–5113

    Article  CAS  Google Scholar 

  • Piña B, Bayona JM, Christou A, Fatta-Kassinos D, Guillon E, Lambropoulou D, Michael C, Polesel F, Sayen S (2018) On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes – NEREUS COST action ES1403 position paper. J Environ Chem Eng:102131

    Google Scholar 

  • Piotrowska M, Popowska M (2014) The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Ann Microbiol 64:921–934

    Article  CAS  Google Scholar 

  • Piotrowska M, Przygodzińska D, Matyjewicz K, Popowska M (2017) Occurrence and variety of β-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front Microbiol 8:863. https://doi.org/10.3389/fmicb.2017.00863

    Article  Google Scholar 

  • Pruden A, Larsson DG, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu YG (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121(8):878–885. https://doi.org/10.1289/ehp.1206446

    Article  Google Scholar 

  • Qian X, Gu J, Sun W, Wang XJ, Su JQ, Stedfeld R (2018) Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J Hazard Mater 344:716–722. https://doi.org/10.1016/j.jhazmat.2017.11.020

    Article  CAS  Google Scholar 

  • Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, Wang J, Shen Z, Wang X, Qian D, Huang A, Zhang B, Li J-W (2012) Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci 109(13):4944–4949

    Article  CAS  Google Scholar 

  • Riquelme Breazeal MV, Novak JT, Vikesland PJ, Pruden A (2013) Effect of wastewater colloids on membrane removal of antibiotic resistance genes. Water Res 47(1):130–140

    Article  CAS  Google Scholar 

  • Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032

    Article  CAS  Google Scholar 

  • Rizzo L, Gernjak W, Krzeminski P, Malato S, McArdell CS, Perez JAS, Schaar H, Fatta-Kassinos D (2020) Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci Total Environ 710:136312

    Google Scholar 

  • Safaei Khorram M, Zhang Q, Lin D, Zheng Y, Fang H, Yu Y (2016) Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. J Environ Sci 44:269–279

    Article  Google Scholar 

  • Schwermer CU, Krzeminski P, Wennberg AC, Vogelsang C, Uhl W (2018) Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes. Water Sci Technol 77(4):1115–1126

    Article  CAS  Google Scholar 

  • Selvam A, Xu D, Zhao Z, Wong JW (2012a) Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour Technol 126:383–390

    Article  CAS  Google Scholar 

  • Selvam A, Zhao Z, Wong JWC (2012b) Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin. Bioresour Technol 126:412–417

    Article  CAS  Google Scholar 

  • Sharma G, Kumar A, Naushad M, Pathania D, Sillanpää M (2016) Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: ion exchange properties, antibacterial activity, and photocatalytic behavior. J Ind Eng Chem 33:201–208. https://doi.org/10.1016/j.jiec.2015.10.011

    Article  CAS  Google Scholar 

  • Sharma R, Larney FJ, Chen J, Yanke LJ, Morrison M, Topp E, McAllister TA, Yu Z (2009) Selected antimicrobial resistance during composting of manure from cattle administered sub-therapeutic antimicrobials. J Environ Qual 38(2):567–575. https://doi.org/10.2134/jeq2007.0638

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14. https://doi.org/10.1186/s12951-018-0334-5

    Article  CAS  Google Scholar 

  • Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014) Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Nanobiotechnology 12:40. https://doi.org/10.1186/s12951-014-0040-x

    Article  CAS  Google Scholar 

  • Slipko K, Reif D and Kreuzinger N (2018) Evaluation of technical membrane filtration for the removal of antibiotic resistance genes in free extracellular DNA. Xenowac II Conference, Limassol (Cyprus)

    Google Scholar 

  • Slipko K, Reif D, Wögerbauer M, Hufnagl P, Krampe J, Kreuzinger N (2019) Removal of extracellular free DNA and antibiotic resistance genes from water and wastewater by membranes ranging from microfiltration to reverse osmosis. Water Res 164:114916. https://doi.org/10.1016/j.watres.2019.114916

  • Storteboom HN, Kim S-C, Doesken KC, Carlson KH, Davis JG, Pruden A (2007) Response of antibiotics and resistance genes to high-intensity and low-intensity manure management. J Environ Qual 36:1695–1703. https://doi.org/10.2134/jeq2007.0006

    Article  CAS  Google Scholar 

  • Sun W, Gu J, Wang X, Qian X, Tuo X (2018) Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater. Bioresour Technol 256:342–349

    Article  CAS  Google Scholar 

  • Sun Y, Shen YX, Liang P, Zhou J, Yang Y, Huang X (2016) Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment. Bioresour Technol 222:100–106

    Article  CAS  Google Scholar 

  • Szogi AA, Vanotti MB, Ro KS (2015) Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Curr Pollut Rep 1:47. https://doi.org/10.1007/s40726-015-0005-1

    Article  CAS  Google Scholar 

  • Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic Iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8(19):3016–3027

    Article  CAS  Google Scholar 

  • Thompson JMT, Travers AA (2004) The structural basis of DNA flexibility. Philos Trans Royal Soc London Series A: Math Phys Eng Sci 362(1820):1423–1438

    Article  Google Scholar 

  • Threedeach S, Chiemchaisri W, Chiemchaisri C (2016) Fate of antibiotic resistant E. coli in anoxic/aerobic membrane bioreactor treating municipal solid waste leachate. Int Biodeterior Biodegradation 113:57–65

    Article  CAS  Google Scholar 

  • Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine 5:277–283

    CAS  Google Scholar 

  • UN (2016) Draft Political Declaration of the High-level Meeting of the General Assembly on Antimicrobial Resistance, http://go.nature.com/2e3bMdF.UN

  • Wang J, Mao D, Mu Q, Luo Y (2015) Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants. Sci Total Environ 526:366–373

    Article  CAS  Google Scholar 

  • Wang L, Oda Y, Grewal S, Morrison M, Michel F, Yu Z (2012) Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. Microb Ecol 63:32–40

    Article  CAS  Google Scholar 

  • Wang M, Zhang DQ, Dong JW, Tan SK (2017) Constructed wetlands for wastewater treatment in cold climate – a review. J Environ Sci (China) 57:293–311. https://doi.org/10.1016/j.jes.2016.12.019

    Article  Google Scholar 

  • Wang X, Yang F, Zhao J, Xu Y, Mao D, Zhu X, Luo Y, Alvarez PJJ (2018) Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes. NanoImpact 10:61–67

    Article  CAS  Google Scholar 

  • Westerman PW, Bicudo JR (2005) Management considerations for organic waste use in agriculture. Bioresour Technol 96(2):215–221

    Article  CAS  Google Scholar 

  • Wu H, Fan J, Zhang J, Ngo HH, Guo W, Hu Z, Liang S (2015b) Decentralized domesticwastewater treatment using intermittently aerated vertical flow constructed wetlands: impact of influent strengths. Bioresour Technol 176:163–168

    Article  CAS  Google Scholar 

  • Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015a) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  Google Scholar 

  • Wu S, Kuschk P, Brix H, Vymazal J, Dong R (2014) Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res 57C:40–55

    Article  CAS  Google Scholar 

  • WHO (2015) Global Action Plan on Antimicrobial Resistance, http://www.who.int/antimicrobial-resistance/global-action-plan/en

  • Xu L, Ouyang W, Qian Y, Su C, Su J, Chen H (2016) High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ Pollut 213:119–126

    Article  CAS  Google Scholar 

  • Yang D, Wang J, Qiu Z, Jin M, Shen Z, Chen Z, Wang X, Zhang B, Li J-W (2013) Horizontal transfer of antibiotic resistance genes in a membrane bioreactor. J Biotechnol 167(4):441–447

    Article  CAS  Google Scholar 

  • Ye M, Sun M, Feng Y, Wan J, Xie S, Tian D, Zhao Y, Wu J, Hu F, Li H, Jiang X (2016) Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. J Hazard Mater 309:219–227

    Article  CAS  Google Scholar 

  • Ying Y, Ying W, Li Q, Meng D, Ren G, Yan R, Peng X (2017) Recent advances of nanomaterial-based membrane for water purification. Appl Mater Today 7:144–158

    Article  Google Scholar 

  • Youngquist CP, Mitchell SM, Cogger CG (2016) Fate of antibiotics and antibiotic resistance during digestion and composting: a review. J Environ Qual 45:537–545. https://doi.org/10.2134/jeq2015.05.0256

    Article  CAS  Google Scholar 

  • Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C 74:568–581

    Article  CAS  Google Scholar 

  • Yu W, Zhan S, Shen Z, Zhou Q (2018) A newly synthesized au/GO-Co3O4 composite effectively inhibits the replication of tetracycline resistance gene in water. Chem Eng J 345:462–470

    Article  CAS  Google Scholar 

  • Yu W, Zhan S, Shen Z, Zhou Q, Yang D (2017) Efficient removal mechanism for antibiotic resistance genes from aquatic environments by graphene oxide nanosheet. Chem Eng J 313:836–846

    Article  CAS  Google Scholar 

  • Yuan L, Li Z-H, Zhang M-Q, Shao W, Fan Y-Y, Sheng G-P (2019) Mercury/silver resistance genes and their association with antibiotic resistance genes and microbial community in a municipal wastewater treatment plant. Sci Total Environ 657:1014–1022

    Article  CAS  Google Scholar 

  • Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomed Nanotechnol Biol Med 13:2281–2301. https://doi.org/10.1016/j.nano.2017.06.015

    Article  CAS  Google Scholar 

  • Zhang S, Han B, Gu J, Wang C, Wang P, Ma Y, Cao J, He Z (2015) Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Chemosphere 135:138–145

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20(12):8472–8483

    Article  CAS  Google Scholar 

  • Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018a) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197

    Article  CAS  Google Scholar 

  • Zhu Y, Wang Y, Zhou S, Jiang X, Ma, Liu C (2018b) Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: role of membrane foulants. Water Res 130:139–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This review research was supported by the grant from the National Science Centre (NCN), Poland (2017/25/Z/NZ7/03026), under the European Horizon 2020, The Joint Programming Initiative on Antimicrobial Resistance (fifth JPIAMR Joint Call). “INART - Intervention of antimicrobial resistance transfer into the food chain” (http://www.inart-project.eu/index.html). The authors gratefully acknowledge the financial support providedby NIVA’s Strategic Institute Initiative “Urban water challenges”(Research Council of Norway, contract no. 160016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Popowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krzemiński, P., Popowska, M. (2020). Treatment Technologies for Removal of Antibiotics, Antibiotic Resistance Bacteria and Antibiotic-Resistant Genes. In: Hashmi, M. (eds) Antibiotics and Antimicrobial Resistance Genes. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-40422-2_19

Download citation

Publish with us

Policies and ethics