Skip to main content

The Chemopreventive Power of Isothiocyanates

  • Chapter
  • First Online:
Natural Products for Cancer Chemoprevention

Abstract

Isothiocyanates are derived from their naturally-occurring glucosinolate precursors, which are abundant in cruciferous vegetables. Numerous scientific studies beginning more than half a century ago have documented the chemoprotective activities of these compounds. Isothiocyanates have numerous protein targets through which they exert protection in the context of various diseases such as cancer, neurodegeneration, inflammatory disease, metabolic disease and infection. The major mechanisms by which the isothiocyanates confer protection involve induction of stress response pathways that restore the cellular redox and protein homeostasis, and contribute to resolution of inflammation. However, high concentrations of isothiocyanates cause cell cycle arrest and selectively kill cancer cells by inducing apoptosis, autophagy or necrosis. In this review, we present readers with a detailed overview of isothiocyanates functions and discuss their molecular targets and antineoplastic effects. Furthermore, we provide an up-to-date summary of the evidence on the chemoprotective activities of the most widely-studied isothiocyanates: sulforaphane, phenethyl isothiocyanate (PEITC) and benzyl isothiocyanate (BITC).

This chapter is dedicated to Paul Talalay MD (1923–2019) whose vision, scientific rigour, and insightful mentoring have inspired the work and influenced the lives of generations of scientists. He was a pioneer in cancer chemoprevention, famously saying of the early days of the field ‘no room was small enough to accommodate the few who were interested’. His leadership in quantitative discovery science culminated in the isolation from broccoli of the isothiocyanate sulforaphane as inducer of cytoprotective enzymes, leading to the exponential growth of research on sulforaphane worldwide and its current development for disease prevention in humans. Although we have lost our hero, the treasure of his legacy will always be kept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid G, Anwar-Mohamed A, Elmazar MM, El-Kadi AO (2010) Modulation of NAD(P)H:quinone oxidoreductase by vanadium in human hepatoma HepG2 cells. Toxicol in Vitro 24(6):1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Ade N, Leon F, Pallardy M, Peiffer JL, Kerdine-Romer S, Tissier MH et al (2009) HMOX1 and NQO1 genes are upregulated in response to contact sensitizers in dendritic cells and THP-1 cell line: role of the Keap1/Nrf2 pathway. Toxicol Sci 107(2):451–460

    Article  CAS  PubMed  Google Scholar 

  • Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A et al (2012) Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat 132(1):175–187

    Article  CAS  PubMed  Google Scholar 

  • Amara IE, El-Kadi AO (2011) Transcriptional modulation of the NAD(P)H:quinone oxidoreductase 1 by mercury in human hepatoma HepG2 cells. Free Radic Biol Med 51(9):1675–1685

    Article  CAS  PubMed  Google Scholar 

  • Antosiewicz J, Ziolkowski W, Kar S, Powolny AA, Singh SV (2008) Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents. Planta Med 74(13):1570–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar-Mohamed A, El-Kadi AO (2009) Down-regulation of the detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 by vanadium in Hepa 1c1c7 cells. Toxicol Appl Pharmacol 236(3):261–269

    Article  CAS  PubMed  Google Scholar 

  • Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11(4):777–790

    Article  CAS  PubMed  Google Scholar 

  • Bacon JR, Williamson G, Garner RC, Lappin G, Langouet S, Bao Y (2003) Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2 cells and hepatocytes. Carcinogenesis 24(12):1903–1911

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom P, Andersson HC, Gao Y, Karlsson JO, Nodin C, Anderson MF et al (2011) Repeated transient sulforaphane stimulation in astrocytes leads to prolonged Nrf2-mediated gene expression and protection from superoxide-induced damage. Neuropharmacology 60(2–3):343–353

    Article  PubMed  CAS  Google Scholar 

  • Bertl E, Bartsch H, Gerhauser C (2006) Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther 5(3):575–585

    Article  CAS  PubMed  Google Scholar 

  • Bishopric NH, Webster KA (2002) Preventing apoptosis with thioredoxin: ASK me how. Circ Res 90(12):1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Brooks JD, Paton V (1999) Potent induction of carcinogen defence enzymes with sulforaphane, a putative prostate cancer chemopreventive agent. Prostate Cancer Prostatic Dis 2(S3):S8

    Article  CAS  PubMed  Google Scholar 

  • Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomark Prev 10(9):949–954

    CAS  Google Scholar 

  • Brown KK, Eriksson SE, Arner ES, Hampton MB (2008) Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates. Free Radic Biol Med 45(4):494–502

    Article  CAS  PubMed  Google Scholar 

  • Brown KK, Cox AG, Hampton MB (2010) Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin. FEBS Lett 584(6):1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Chang G, Guo Y, Jia Y, Duan W, Li B, Yu J et al (2010) Protective effect of combination of sulforaphane and riluzole on glutamate-mediated excitotoxicity. Biol Pharm Bull 33(9):1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Chen NG, Chen KT, Lu CC, Lan YH, Lai CH, Chung YT et al (2010) Allyl isothiocyanate triggers G2/M phase arrest and apoptosis in human brain malignant glioma GBM 8401 cells through a mitochondria-dependent pathway. Oncol Rep 24(2):449–455

    CAS  PubMed  Google Scholar 

  • Chen G, Fang Q, Zhang J, Zhou D, Wang Z (2011) Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res 89(4):515–523

    Article  CAS  PubMed  Google Scholar 

  • Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Chou YC, Chang MY, Lee HT, Shen CC, Harnod T, Liang YJ et al (2018) Phenethyl isothiocyanate inhibits in vivo growth of xenograft tumors of human glioblastoma cells. Molecules 23(9). https://doi.org/10.3390/molecules23092305

  • Chung FL, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21(12):2287–2291

    Article  CAS  PubMed  Google Scholar 

  • Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E (2011) Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res 55(7):999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conaway CC, Wang CX, Pittman B, Yang YM, Schwartz JE, Tian D et al (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65(18):8548–8557

    Article  CAS  PubMed  Google Scholar 

  • Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK et al (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28(7):1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Cross JV, Templeton DJ (2004) Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem J 381(Pt 3):675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross JV, Foss FW, Rady JM, Macdonald TL, Templeton DJ (2007) The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase. BMC Cancer 7:183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL et al (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18(4):295–317

    Article  CAS  PubMed  Google Scholar 

  • Dai MY, Wang Y, Chen C, Li F, Xiao BK, Chen SM et al (2016) Phenethyl isothiocyanate induces apoptosis and inhibits cell proliferation and invasion in Hep-2 laryngeal cancer cells. Oncol Rep 35(5):2657–2664

    Article  CAS  PubMed  Google Scholar 

  • Danilov CA, Chandrasekaran K, Racz J, Soane L, Zielke C, Fiskum G (2009) Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 57(6):645–656

    Article  PubMed  PubMed Central  Google Scholar 

  • Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN (2009) Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett 460(2):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayalan Naidu S, Sutherland C, Zhang Y, Risco A, de la Vega L, Caunt CJ et al (2016) Heat shock factor 1 is a substrate for p38 mitogen-activated protein kinases. Mol Cell Biol 36(18):2403–2417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova-Kostova AT (2018) Phenethyl isothiocyanate, a dual activator of transcription factors NRF2 and HSF1. Mol Nutr Food Res 62(18):e1700908

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl 1):S128–S138

    PubMed  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2010) NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501(1):116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkova-Kostova AT, Wang XJ (2011) Induction of the Keap1/Nrf2/ARE pathway by oxidizable diphenols. Chem Biol Interact 192(1–2):101–106

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99(18):11908–11913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT et al (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240(2):243–252

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW (2017) KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Technol 69(Pt B):257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert B, Kisiela M, Malatkova P, El-Hawari Y, Maser E (2010) Regulation of human carbonyl reductase 3 (CBR3; SDR21C2) expression by Nrf2 in cultured cancer cells. Biochemistry 49(39):8499–8511

    Article  CAS  PubMed  Google Scholar 

  • Ernst IM, Schuemann C, Wagner AE, Rimbach G (2011) 3,3′-Diindolylmethane but not indole-3-carbinol activates Nrf2 and induces Nrf2 target gene expression in cultured murine fibroblasts. Free Radic Res 45(8):941–949

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK et al (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 99(11):7610–7615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei P, Matwyshyn GA, Rushmore TH, Kong AN (1996) Transcription regulation of rat glutathione S-transferase Ya subunit gene expression by chemopreventive agents. Pharm Res 13(7):1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P (2012) Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 750(2):107–131

    Article  CAS  PubMed  Google Scholar 

  • Forster T, Rausch V, Zhang Y, Isayev O, Heilmann K, Schoensiegel F et al (2014) Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget 5(6):1621–1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Friling RS, Bensimon A, Tichauer Y, Daniel V (1990) Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl Acad Sci U S A 87(16):6258–6262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan N, Mi L, Sun X, Dai G, Chung FL, Song L (2010) Sulforaphane protects microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response. Toxicol Appl Pharmacol 247(2):129–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Dinkova-Kostova AT, Talalay P (2001) Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci U S A 98(26):15221–15226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaona-Gaona L, Molina-Jijon E, Tapia E, Zazueta C, Hernandez-Pando R, Calderon-Oliver M et al (2011) Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats. Toxicology 286(1–3):20–27

    Article  CAS  PubMed  Google Scholar 

  • Gerhauser C, You M, Liu J, Moriarty RM, Hawthorne M, Mehta RG et al (1997) Cancer chemopreventive potential of sulforamate, a novel analogue of sulforaphane that induces phase 2 drug-metabolizing enzymes. Cancer Res 57(2):272–278

    CAS  PubMed  Google Scholar 

  • Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM (2006) Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett 236(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Gross-Steinmeyer K, Stapleton PL, Liu F, Tracy JH, Bammler TK, Quigley SD et al (2004) Phytochemical-induced changes in gene expression of carcinogen-metabolizing enzymes in cultured human primary hepatocytes. Xenobiotica 34(7):619–632

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Beltran CE, Calderon-Oliver M, Martinez-Abundis E, Tapia E, Zarco-Marquez G, Zazueta C et al (2010) Protective effect of sulforaphane against cisplatin-induced mitochondrial alterations and impairment in the activity of NAD(P)H: quinone oxidoreductase 1 and gamma glutamyl cysteine ligase: studies in mitochondria isolated from rat kidney and in LLC-PK1 cells. Toxicol Lett 199(1):80–92

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Han D, Canali R, Rettori D, Kaplowitz N (2003) Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol 64(5):1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Haristoy X, Fahey JW, Scholtus I, Lozniewski A (2005) Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori. Planta Med 71(4):326–330

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13(11):1713–1748

    Article  CAS  PubMed  Google Scholar 

  • Heiss E, Gerhauser C (2005) Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-kappaB binding to DNA. Antioxid Redox Signal 7(11–12):1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001) Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276(34):32008–32015

    Article  CAS  PubMed  Google Scholar 

  • Herr I, Buchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36(5):377–383

    Article  CAS  PubMed  Google Scholar 

  • Herz C, Hertrampf A, Zimmermann S, Stetter N, Wagner M, Kleinhans C et al (2014) The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC. J Cell Mol Med 18(12):2393–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins LG, Hayes JD (2011) The cap’n’collar transcription factor Nrf2 mediates both intrinsic resistance to environmental stressors and an adaptive response elicited by chemopreventive agents that determines susceptibility to electrophilic xenobiotics. Chem Biol Interact 192(1–2):37–45

    Article  CAS  PubMed  Google Scholar 

  • Ho JN, Yoon HG, Park CS, Kim S, Jun W, Choue R et al (2012) Isothiocyanates ameliorate the symptom of heart dysfunction and mortality in a murine AIDS model by inhibiting apoptosis in the left ventricle. J Med Food 15(9):781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Yan W, Chen S, Sun CR, Zhang JM (2010) The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 31(11):1421–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong YH, Uddin MH, Jo U, Kim B, Song J, Suh DH et al (2015) ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis. Front Oncol 5:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu YC, Chang SJ, Wang MY, Chen YL, Huang TY (2013) Growth inhibition and apoptosis of neuroblastoma cells through ROS-independent MEK/ERK activation by sulforaphane. Cell Biochem Biophys 66(3):765–774

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Hebbar V, Kim BR, Chen C, Winnik B, Buckley B et al (2004) In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat. J Pharmacol Exp Ther 310(1):263–271

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Xu C, Shen G, Jain MR, Khor TO, Gopalkrishnan A et al (2006a) Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Cancer Lett 243(2):170–192

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C et al (2006b) Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27(10):2038–2046

    Article  CAS  PubMed  Google Scholar 

  • Huang YP, Jiang YW, Chen HY, Hsiao YT, Peng SF, Chou YC et al (2018) Benzyl isothiocyanate induces apoptotic cell death through mitochondria-dependent pathway in gefitinib-resistant NCI-H460 human lung cancer cells in vitro. Anticancer Res 38(9):5165–5176

    Article  CAS  PubMed  Google Scholar 

  • Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689

    Article  CAS  PubMed  Google Scholar 

  • Innamorato NG, Jazwa A, Rojo AI, Garcia C, Fernandez-Ruiz J, Grochot-Przeczek A et al (2010) Different susceptibility to the Parkinson’s toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One 5(7):e11838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob C, Jamier V, Ba LA (2011) Redox active secondary metabolites. Curr Opin Chem Biol 15(1):149–155

    Article  CAS  PubMed  Google Scholar 

  • Jakubikova J, Sedlak J, Mithen R, Bao Y (2005a) Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol 69(11):1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Jakubikova J, Bao Y, Sedlak J (2005b) Isothiocyanates induce cell cycle arrest, apoptosis and mitochondrial potential depolarization in HL-60 and multidrug-resistant cell lines. Anticancer Res 25(5):3375–3386

    CAS  PubMed  Google Scholar 

  • Jakubikova J, Cervi D, Ooi M, Kim K, Nahar S, Klippel S et al (2011) Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma. Haematologica 96(8):1170–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14(12):2347–2360

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZQ, Chen C, Yang B, Hebbar V, Kong AN (2003) Differential responses from seven mammalian cell lines to the treatments of detoxifying enzyme inducers. Life Sci 72(20):2243–2253

    Article  CAS  PubMed  Google Scholar 

  • Johansson NL, Pavia CS, Chiao JW (2008) Growth inhibition of a spectrum of bacterial and fungal pathogens by sulforaphane, an isothiocyanate product found in broccoli and other cruciferous vegetables. Planta Med 74(7):747–750

    Article  CAS  PubMed  Google Scholar 

  • Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA (2007) Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci U S A 104(36):14460–14465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerns M, DePianto D, Yamamoto M, Coulombe PA (2010) Differential modulation of keratin expression by sulforaphane occurs via Nrf2-dependent and -independent pathways in skin epithelia. Mol Biol Cell 21(23):4068–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726–734

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Tanito M, Huang Z, Li F, Zhou X, Zaharia A et al (2007) Delay of photoreceptor degeneration in tubby mouse by sulforaphane. J Neurochem 101(4):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Kumari V, Dyba MA, Holland RJ, Liang YH, Singh SV, Ji X (2016) Irreversible inhibition of glutathione S-transferase by phenethyl isothiocyanate (PEITC), a dietary cancer chemopreventive phytochemical. PLoS One 11(9):e0163821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuroiwa Y, Nishikawa A, Kitamura Y, Kanki K, Ishii Y, Umemura T et al (2006) Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Lett 241(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Kylarova S, Kosek D, Petrvalska O, Psenakova K, Man P, Vecer J et al (2016) Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. FEBS J 283(20):3821–3838

    Article  CAS  PubMed  Google Scholar 

  • Lin RK, Zhou N, Lyu YL, Tsai YC, Lu CH, Kerrigan J et al (2011) Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIalpha. J Biol Chem 286(38):33591–33600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Nishitoh H, Ichijo H, Kyriakis JM (2000) Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20(6):2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Abe-Kanoh N, Liu Y, Zhu B, Munemasa S, Nakamura T et al (2017) Inhibition of phosphatidylinositide 3-kinase impairs the benzyl isothiocyanate-induced accumulation of autophagic molecules and Nrf2 in human colon cancer cells. Biosci Biotechnol Biochem 81(11):2212–2215

    Article  CAS  PubMed  Google Scholar 

  • Loo G (2003) Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation (review). J Nutr Biochem 14(2):64–73

    Article  CAS  PubMed  Google Scholar 

  • Maheo K, Morel F, Langouet S, Kramer H, Le Ferrec E, Ketterer B et al (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57(17):3649–3652

    CAS  PubMed  Google Scholar 

  • Mantso T, Anestopoulos I, Lamprianidou E, Kotsianidis I, Pappa A, Panayiotidis MI (2019) Isothiocyanate-induced cell cycle arrest in a novel in vitro exposure protocol of human malignant melanoma (A375) cells. Anticancer Res 39(2):591–596

    Article  PubMed  Google Scholar 

  • Mao L, Wang H, Wang X, Liao H, Zhao X (2011) Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury. J Surg Res 170(1):e105–e115

    Article  CAS  PubMed  Google Scholar 

  • Marrot L, Jones C, Perez P, Meunier JR (2008) The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. Pigment Cell Melanoma Res 21(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Mas S, Gasso P, Trias G, Bernardo M, Lafuente A (2012) Sulforaphane protects SK-N-SH cells against antipsychotic-induced oxidative stress. Fundam Clin Pharmacol 26(6):712–721

    Article  CAS  PubMed  Google Scholar 

  • Matusheski NV, Jeffery EH (2001) Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49(12):5743–5749

    Article  CAS  PubMed  Google Scholar 

  • Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65(9):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI et al (2001) The Cap’n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61(8):3299–3307

    CAS  PubMed  Google Scholar 

  • McMahon M, Lamont DJ, Beattie KA, Hayes JD (2010) Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 107(44):18838–18843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi L, Wang X, Govind S, Hood BL, Veenstra TD, Conrads TP et al (2007) The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res 67(13):6409–6416

    Article  CAS  PubMed  Google Scholar 

  • Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S et al (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283(32):22136–22146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi L, Gan N, Cheema A, Dakshanamurthy S, Wang X, Yang DC et al (2009) Cancer preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins by proteasomes. J Biol Chem 284(25):17039–17051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi L, Sirajuddin P, Gan N, Wang X (2010) A cautionary note on using N-acetylcysteine as an antagonist to assess isothiocyanate-induced reactive oxygen species-mediated apoptosis. Anal Biochem 405(2):269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi L, Gan N, Chung FL (2011) Isothiocyanates inhibit proteasome activity and proliferation of multiple myeloma cells. Carcinogenesis 32(2):216–223

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi N, Uchida K, Osawa T, Nakamura Y (2004) A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res 64(6):2134–2142

    Article  CAS  PubMed  Google Scholar 

  • Morel F, Langouet S, Maheo K, Guillouzo A (1997) The use of primary hepatocyte cultures for the evaluation of chemoprotective agents. Cell Biol Toxicol 13(4–5):323–329

    Article  CAS  PubMed  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557

    Article  CAS  PubMed  Google Scholar 

  • Munday R, Munday CM (2004) Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. J Agric Food Chem 52(7):1867–1871

    Article  CAS  PubMed  Google Scholar 

  • Munday R, Mhawech-Fauceglia P, Munday CM, Paonessa JD, Tang L, Munday JS et al (2008) Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res 68(5):1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20(3):506–508

    Article  CAS  PubMed  Google Scholar 

  • Nadeau PJ, Charette SJ, Toledano MB, Landry J (2007) Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol Biol Cell 18(10):3903–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Miyoshi N (2010) Electrophiles in foods: the current status of isothiocyanates and their chemical biology. Biosci Biotechnol Biochem 74(2):242–255

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kawakami M, Yoshihiro A, Miyoshi N, Ohigashi H, Kawai K et al (2002) Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem 277(10):8492–8499

    Article  CAS  PubMed  Google Scholar 

  • Navarro SL, Li F, Lampe JW (2011) Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2(10):579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-kappaB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res 8(4):294–304

    Article  CAS  PubMed  Google Scholar 

  • Ni WY, Hsiao YP, Hsu SC, Hsueh SC, Chang CH, Ji BC et al (2013) Oral administration of benzyl-isothiocyanate inhibits in vivo growth of subcutaneous xenograft tumors of human malignant melanoma A375.S2 cells. In Vivo 27(5):623–626

    CAS  PubMed  Google Scholar 

  • Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J 374(Pt 2):337–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olagnier D, Lababidi RR, Hadj SB, Sze A, Liu Y, Naidu SD et al (2017) Activation of Nrf2 signaling augments vesicular stomatitis virus oncolysis via autophagy-driven suppression of antiviral immunity. Mol Ther 25(8):1900–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhauser C (2006) Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res 599(1–2):76–87

    Article  CAS  PubMed  Google Scholar 

  • Pappa G, Bartsch H, Gerhauser C (2007a) Biphasic modulation of cell proliferation by sulforaphane at physiologically relevant exposure times in a human colon cancer cell line. Mol Nutr Food Res 51(8):977–984

    Article  CAS  PubMed  Google Scholar 

  • Pappa G, Strathmann J, Lowinger M, Bartsch H, Gerhauser C (2007b) Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28(7):1471–1477

    Article  CAS  PubMed  Google Scholar 

  • Piao CS, Gao S, Lee GH, Kim do S, Park BH, Chae SW et al (2010) Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol Res 61(4):342–348

    Article  CAS  PubMed  Google Scholar 

  • Ping Z, Liu W, Kang Z, Cai J, Wang Q, Cheng N et al (2010) Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Res 1343:178–185

    Article  CAS  PubMed  Google Scholar 

  • Powolny AA, Bommareddy A, Hahm ER, Normolle DP, Beumer JH, Nelson JB et al (2011) Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 103(7):571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prashar A, Siddiqui F, Singh AK (2012) Synthetic and green vegetable isothiocyanates target red blood leukemia cancers. Fitoterapia 83(2):255–265

    Article  CAS  PubMed  Google Scholar 

  • Rakariyatham K, Yang X, Gao Z, Song M, Han Y, Chen X et al (2019) Synergistic chemopreventive effect of allyl isothiocyanate and sulforaphane on non-small cell lung carcinoma cells. Food Funct 10(2):893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz SA, Wan J, Diaz-Sanchez D (2007) Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract. Am J Physiol Lung Cell Mol Physiol 292(1):L33–L39

    Article  CAS  PubMed  Google Scholar 

  • Rojo AI, Innamorato NG, Martin-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58(5):588–598

    Article  PubMed  Google Scholar 

  • Roos G, Foloppe N, Messens J (2013) Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal 18(1):94–127

    Article  CAS  PubMed  Google Scholar 

  • Rushmore TH, Pickett CB (1990) Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem 265(24):14648–14653

    CAS  PubMed  Google Scholar 

  • Russo M, Spagnuolo C, Tedesco I, Russo GL (2010) Phytochemicals in cancer prevention and therapy: truth or dare? Toxins 2(4):517–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H et al (2016) Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol 36(2):271–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saw CL, Cintron M, Wu TY, Guo Y, Huang Y, Jeong WS et al (2011) Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos 32(5):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehrawat A, Singh SV (2016) Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells. Mol Carcinog 55(5):473–485

    Article  CAS  PubMed  Google Scholar 

  • Siebert A, Desai V, Chandrasekaran K, Fiskum G, Jafri MS (2009) Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. J Neurosci Res 87(7):1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ et al (2004) NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65(5):1238–1247

    Article  CAS  PubMed  Google Scholar 

  • Singh SV, Warin R, Xiao D, Powolny AA, Stan SD, Arlotti JA et al (2009) Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res 69(5):2117–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova NA, Haskew-Layton RE, Basso M, Hushpulian DM, Payappilly JB, Speer RE et al (2011) Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators. Chem Biol 18(6):752–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soane L, Li Dai W, Fiskum G, Bambrick LL (2010) Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation. J Neurosci Res 88(6):1355–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stan SD, Singh SV, Whitcomb DC, Brand RE (2014) Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Nutr Cancer 66(4):747–755

    Article  CAS  PubMed  Google Scholar 

  • Starrett W, Blake DJ (2011) Sulforaphane inhibits de novo synthesis of IL-8 and MCP-1 in human epithelial cells generated by cigarette smoke extract. J Immunotoxicol 8(2):150–158

    Article  CAS  PubMed  Google Scholar 

  • Svehlikova V, Wang S, Jakubikova J, Williamson G, Mithen R, Bao Y (2004) Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells. Carcinogenesis 25(9):1629–1637

    Article  CAS  PubMed  Google Scholar 

  • Talalay P, Fahey JW, Healy ZR, Wehage SL, Benedict AL, Min C et al (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci U S A 104(44):17500–17505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan XL, Shi M, Tang H, Han W, Spivack SD (2010) Candidate dietary phytochemicals modulate expression of phase II enzymes GSTP1 and NQO1 in human lung cells. J Nutr 140(8):1404–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Zhang Y (2005) Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol Cancer Ther 4(8):1250–1259

    Article  CAS  PubMed  Google Scholar 

  • Tanito M, Masutani H, Kim YC, Nishikawa M, Ohira A, Yodoi J (2005) Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Invest Ophthalmol Vis Sci 46(3):979–987

    Article  PubMed  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    CAS  PubMed  Google Scholar 

  • Toyama T, Shinkai Y, Yasutake A, Uchida K, Yamamoto M, Kumagai Y (2011) Isothiocyanates reduce mercury accumulation via an Nrf2-dependent mechanism during exposure of mice to methylmercury. Environ Health Perspect 119(8):1117–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252

    Article  CAS  PubMed  Google Scholar 

  • Traka M, Gasper AV, Smith JA, Hawkey CJ, Bao Y, Mithen RF (2005) Transcriptome analysis of human colon Caco-2 cells exposed to sulforaphane. J Nutr 135(8):1865–1872

    Article  CAS  PubMed  Google Scholar 

  • Traka M, Gasper AV, Melchini A, Bacon JR, Needs PW, Frost V et al (2008) Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One 3(7):e2568

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueno T, Sato W, Horie Y, Komatsu M, Tanida I, Yoshida M et al (2008) Loss of Pten, a tumor suppressor, causes the strong inhibition of autophagy without affecting LC3 lipidation. Autophagy 4(5):692–700

    Article  CAS  PubMed  Google Scholar 

  • Valgimigli L, Iori R (2009) Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen 50(3):222–237

    Article  CAS  PubMed  Google Scholar 

  • Vauzour D, Buonfiglio M, Corona G, Chirafisi J, Vafeiadou K, Angeloni C et al (2010) Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes. Mol Nutr Food Res 54(4):532–542

    Article  CAS  PubMed  Google Scholar 

  • Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I et al (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(Suppl 2):S219

    Article  PubMed  Google Scholar 

  • Vermeulen M, Boerboom AM, Blankvoort BM, Aarts JM, Rietjens IM, van Bladeren PJ et al (2009) Potency of isothiocyanates to induce luciferase reporter gene expression via the electrophile-responsive element from murine glutathione S-transferase Ya. Toxicol in Vitro 23(4):617–621

    Article  CAS  PubMed  Google Scholar 

  • Wagner AE, Ernst I, Iori R, Desel C, Rimbach G (2010) Sulforaphane but not ascorbigen, indole-3-carbinole and ascorbic acid activates the transcription factor Nrf2 and induces phase-2 and antioxidant enzymes in human keratinocytes in culture. Exp Dermatol 19(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13(11):1649–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan J, Diaz-Sanchez D (2006) Phase II enzymes induction blocks the enhanced IgE production in B cells by diesel exhaust particles. J Immunol 177(5):3477–3483

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Hayes JD, Wolf CR (2006) Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of nrf2 by cancer chemotherapeutic agents. Cancer Res 66(22):10983–10994

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Hayes JD, Higgins LG, Wolf CR, Dinkova-Kostova AT (2010) Activation of the NRF2 signaling pathway by copper-mediated redox cycling of para- and ortho-hydroquinones. Chem Biol 17(1):75–85

    Article  PubMed  CAS  Google Scholar 

  • Wang X, de Rivero Vaccari JP, Wang H, Diaz P, German R, Marcillo AE et al (2012a) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 29(5):936–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen Y, Wang J, Chen J, Aggarwal BB, Pang X et al (2012b) Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr Mol Med 12(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Upadhyaya B, Liu Y, Knudsen D, Dey M (2014) Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells. BMC Cancer 14:591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiczk A, Hofman D, Konopa G, Herman-Antosiewicz A (2012) Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells. Biochim Biophys Acta 1823(8):1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Wu XJ, Hua X (2007) Targeting ROS: selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound. Cancer Biol Ther 6(5):646–647

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhou QH, Xu K (2009) Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol Sin 30(5):501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhu Y, Yan H, Liu B, Li Y, Zhou Q et al (2010) Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells. BMC Cancer 10:269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CL, Huang AC, Yang JS, Liao CL, Lu HF, Chou ST et al (2011) Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthop Res 29(8):1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 67(5):2239–2246

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Vogel V, Singh SV (2006) Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol Cancer Ther 5(11):2931–2945

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Powolny AA, Singh SV (2008) Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cells. J Biol Chem 283(44):30151–30163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, Kim SH et al (2010) Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 285(34):26558–26569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO et al (2006) Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res 66(16):8293–8296

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Zhu Y, Liu B, Wu H, Li Y, Wu X et al (2011) Mitogen-activated protein kinase mediates the apoptosis of highly metastatic human non-small cell lung cancer cells induced by isothiocyanates. Br J Nutr 106(12):1779–1791

    Article  CAS  PubMed  Google Scholar 

  • Yanaka A, Fahey JW, Fukumoto A, Nakayama M, Inoue S, Zhang S et al (2009) Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev Res (Phila) 2(4):353–360

    Article  CAS  Google Scholar 

  • Yang F, Wang F, Liu Y, Wang S, Li X, Huang Y et al (2018) Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci 213:149–157

    Article  CAS  PubMed  Google Scholar 

  • Yeh YT, Hsu YN, Huang SY, Lin JS, Chen ZF, Chow NH et al (2016a) Benzyl isothiocyanate promotes apoptosis of oral cancer cells via an acute redox stress-mediated DNA damage response. Food Chem Toxicol 97:336–345

    Article  CAS  PubMed  Google Scholar 

  • Yeh CC, Ko HH, Hsieh YP, Wu KJ, Kuo MY, Deng YT (2016b) Phenethyl isothiocyanate enhances TRAIL-induced apoptosis in oral cancer cells and xenografts. Clin Oral Investig 20(9):2343–2352

    Article  PubMed  Google Scholar 

  • Zhang Y (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21(6):1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2001) Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanates. Carcinogenesis 22(3):425–431

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2010) Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res 54(1):127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tang L (2007) Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 28(9):1343–1354

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89(6):2399–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A 91(8):3147–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Svehlikova V, Bao Y, Howie AF, Beckett GJ, Williamson G (2003) Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis 24(3):497–503

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li J, Tang L (2005) Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress. Free Radic Biol Med 38(1):70–77

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yao S, Li J (2006a) Vegetable-derived isothiocyanates: anti-proliferative activity and mechanism of action. Proc Nutr Soc 65(1):68–75

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Munday R, Jobson HE, Munday CM, Lister C, Wilson P et al (2006b) Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J Agric Food Chem 54(25):9370–9376

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Liu H, Zhu C, Briggs K, Kang Y, Fleming JA et al (2012) Silencing thioredoxin induces liver cancer cell senescence under hypoxia. Hepatol Res 42(7):706–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Moore AN, Clifton GL, Dash PK (2005) Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res 82(4):499–506

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW et al (2007a) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38(12):3280–3286

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Moore AN, Redell JB, Dash PK (2007b) Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci 27(38):10240–10248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D et al (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Bowden GT (2004) Molecular mechanism(s) for UV-B irradiation-induced glutathione depletion in cultured human keratinocytes. Photochem Photobiol 80(2):191–196

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Fahl WE (2000) Development of a green fluorescent protein microplate assay for the screening of chemopreventive agents. Anal Biochem 287(2):210–217

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Zhang Y, Cooper S, Sikorski E, Rohwer J, Bowden GT (2004) Phase II enzyme inducer, sulforaphane, inhibits UVB-induced AP-1 activation in human keratinocytes by a novel mechanism. Mol Carcinog 41(3):179–186

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Jia Z, Strobl JS, Ehrich M, Misra HP, Li Y (2008) Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress. Cardiovasc Toxicol 8(3):115–125

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albena T. Dinkova-Kostova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dayalan Naidu, S., Brodziak-Jarosz, L., Gerhäuser, C., Dinkova-Kostova, A.T. (2020). The Chemopreventive Power of Isothiocyanates. In: Pezzuto, J., Vang, O. (eds) Natural Products for Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-030-39855-2_9

Download citation

Publish with us

Policies and ethics