Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 647))

  • 556 Accesses

Abstract

An unconventional approach for the implementation of chipless-RFID systems and related sensors is reported in this book. As it will be shown in Chap. 2, the tags consist of chains of identical resonant elements or inclusions (either functional or inoperative), etched or printed at predefined positions on a dielectric substrate, and tag reading proceeds by time-division multiplexing through near field. In a reading operation, the tag should be mechanically guided above the sensitive part of the reader, a planar microwave structure able to detect (through near-field coupling and sequentially) the functional and inoperative resonators, or inclusions, of the tag, consequently providing the ID code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finkenzeller K, Handbook RFID (2004) Radio-frequency identification fundamentals and applications, 2nd edn. John Wiley, New York, USA

    Google Scholar 

  2. Hunt VD, Puglia A, Puglia M (2007) RFID: a guide to radio frequency identification. John Wiley, New York, USA

    Book  Google Scholar 

  3. Finkenzeller K (2010) RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communications, 3rd edn. John Wiley, Hoboken, NJ, USA

    Book  Google Scholar 

  4. Karmakar NC, Kalansuriya P, Azim RE, Koswatta R (2016) Chipless radio frequency identification reader signal processing. John Wiley, Hoboken, NJ, USA

    Book  Google Scholar 

  5. Preradovic S, Karmakar NC (2010) Chipless RFID: bar code of the future. IEEE Microw Mag 11:87–97

    Article  Google Scholar 

  6. Preradovic S, Karmakar NC (2011) Multiresonator-based chipless RFID: barcode of the future. Springer-Verlag, New York, USA

    Google Scholar 

  7. Karmakar NC, Koswatta R, Kalansuriya P, E-Azim R (2013) Chipless RFID reader architecture. Artech House

    Google Scholar 

  8. Perret E (2014) Radio frequency identification and sensors: from RFID to chipless RFID. John Wiley, New York, USA

    Book  Google Scholar 

  9. Rezaiesarlak R, Manteghi M (2015) Chipless RFID: design procedure and detection techniques. Springer

    Google Scholar 

  10. Karmakar NC, Zomorrodi M, Divarathne C (2016) Advanced chipless RFID. John Wiley, Hoboken, NJ, USA

    Book  Google Scholar 

  11. Tedjini S, Karmakar N, Perret E, Vena A, Koswatta R, E-Azim R (2013) Hold the chips: chipless technology, an alternative technique for RFID. IEEE Microw Mag 14(5):56–65

    Article  Google Scholar 

  12. Karmakar NC (2016) Tag, You’re it radar cross section of chipless RFID tags. IEEE Microw Mag 17(7):64–74

    Google Scholar 

  13. Dey S, Saha JK, Karmakar NC (2015) Smart sensing: chipless RFID solutions for the internet of everything. IEEE Microw Mag 16(10):26–39

    Article  Google Scholar 

  14. Shao B, Chen Q, Amin Y, Liu R, Zheng L-R (2013) Chipless RFID tags fabricated by fully printing of metallic inks. Ann Telecommun-Ann Télécommunications 68(7–8):401–413

    Article  Google Scholar 

  15. Vena A, Perret E, Tedjini S (2013) Design rules for chipless RFID tags based on multiple scatterers. Ann Telecommun-Ann Télécommunications 68(7–8):361–374

    Article  Google Scholar 

  16. Forouzandeh M, Karmakar NC (2015) Chipless RFID tags and sensors: a review on time-domain techniques. Wirel Power Transf 2(2):62–77

    Article  Google Scholar 

  17. Vena A, Perret E, Tedjini S (2016) Chipless RFID based on RF encoding particle: realization, coding and reading system. ISTE Press – Elsevier

    Google Scholar 

  18. Karmakar NC, Amin EM, Saha JK (2016) Chipless RFID sensors. Wiley, Hoboken, NJ

    Book  Google Scholar 

  19. Rance O, Perret E, Siragusa R, Lemaitre-Auger P (2017) RCS synthesis for chipless RFID: theory and design. Elsevier

    Google Scholar 

  20. Herrojo C, Moras M, Paredes F, Núñez A, Mata-Contreras J, Ramon E, Martín F (2019) Time-domain signature chipless-RFID tags: near-field chipless-RFID systems with high data capacity. IEEE Microw Mag 20(12):87–101

    Article  Google Scholar 

  21. Herrojo C, Paredes F, Mata-Contreras J, Martín F (2019) Chipless-RFID: a review and recent developments. Sensors 19(15):3385

    Article  Google Scholar 

  22. Moscato S, et al. (2014) Chipless RFID for space applications. In: 2014 IEEE international conference on wireless for space and extreme environments (WiSEE), Noordwijk, Netherlands, Oct 2014

    Google Scholar 

  23. Nysen PA, Skeie H, Armstrong D (1988) System for interrogating a passive transponder carrying phase-encoded information. Google Patents

    Google Scholar 

  24. Hartmann CS (2002) A global SAW ID tag with large data capacity. In: Proceedings of IEEE ultrasonics symposium, vol 1, pp 65–69

    Google Scholar 

  25. Saldanha N, Malocha DC (2007) Design Parameters for SAW multi-tone frequency coded reflectors. In: 2007 IEEE ultrasonics symposium, pp 2087–2090

    Google Scholar 

  26. Harma S, Plessky VP, Hartmann CS, Steichen W (2008) Z-path SAW RFID tag. IEEE Trans Ultrason Ferroelectr Freq Control 55:208–213

    Article  Google Scholar 

  27. Han T, Wang W, Wu H, Shui Y (2008) Reflection and scattering characteristics of reflectors in SAW tags. IEEE Trans Ultrason Ferroelectr Freq Control 55(6):1387–1390

    Article  Google Scholar 

  28. Harma S, Plessky VP, Li X, Hartogh P (2009) Feasibility of ultra-wideband SAW RFID tags meeting FCC rules. IEEE Trans Ultrason Ferroelectr Freq Control 56:812–820

    Article  Google Scholar 

  29. Hartmann C, Hartmann P, Brown P, Bellamy J, Claiborne L, Bonner W (2004) Anti-collision methods for Global SAW RFID Tag systems. IEEE Ultrason Symp 2:805–808

    Google Scholar 

  30. Tao H, Weibiao W, Haodong W, Yongan S (2008) Reflection and scattering characteristics of reflectors in SAW tags. IEEE Trans Ultrason, Ferroelectr Freq Control 55:1387–1390

    Google Scholar 

  31. Chamarti A, Varahramyan K (2006) Transmission delay line based ID generation circuit for RFID applications. IEEE Microw Wireless Compon Lett 16:588–590

    Article  Google Scholar 

  32. Vemagiri J, Chamarti A, Agarwal M, Varahramyan K (2007) Transmission line delay-based radio frequency identification (RFID) tag. Microw Opt Technol Lett 49(8):1900–1904

    Article  Google Scholar 

  33. Schüßler M, Damm C, Jakoby R (2007) Periodically LC loaded lines for RFID backscatter applications. Metamaterials 2007, Rome, Italy, pp 103–106, Oct 2007

    Google Scholar 

  34. Schüßler M, Damm C, Maasch M, Jakoby R Performance evaluation of left-handed delay lines for RFID backscatter applications. In: IEEE MTT-S international microwave symposium 2008, Atlanta, GA, USA, pp 177–180

    Google Scholar 

  35. Shao B, Chen Q, Amin Y, Mendoza DS, Liu R, Zheng L-R (2010) An ultra-low-cost RFID tag with 1.67 Gbps data rate by ink-jet printing on paper substrate. In: IEEE asian solid state-circuits conference, Beijing, China, pp 1–4

    Google Scholar 

  36. Herraiz-Martínez FJ, Paredes F, Zamora G, Martín F, Bonache J (2012) Printed magnetoinductive-wave (MIW) delay lines for chipless RFID applications. IEEE Trans Ant Propag 60:5075–5082

    Article  Google Scholar 

  37. Tedjini S, Perret E, Vena A, Kaddout D (2012) Mastering the electromagnetic signature of chipless RFID tags. In: Chipless and conventional radiofrequency identification, ed. IGI Global

    Google Scholar 

  38. Zhang L, Rodriguez S, Tenhunen H, Zheng L-R An innovative fully printable RFID technology based on high speed time-domain reflections. In: Conference on high density microsystem design and packaging and component failure analysis, 2006. HDP’06, Shanghai, China, June 2006, pp 166–170

    Google Scholar 

  39. Zheng L, Rodriguez S, Zhang L, Shao B, Zheng L-R (2008) Design and implementation of a fully reconfigurable chipless RFID tag using Inkjet printing technology. In: 2008 IEEE international symposium on circuits and systems, Seattle, USA, May 2008, pp 1524–1527

    Google Scholar 

  40. Mandel C, Schussler M, Maasch M, Jakoby R (2009) A novel passive phase modulator based on LH delay lines for chipless microwave RFID applications. In: 2009 IEEE MTT-S international microwave workshop on wireless sensing, local positioning, and RFID, Cavtat, Croatia, Sep 2009, pp 1–4

    Google Scholar 

  41. Nair R, Perret E, Tedjini S (2012) Temporal multi-frequency encoding technique for chipless RFID applications. In: IEEE MTT-S international microwave symposium, Montreal, Canada, June 2012, pp 1–3

    Google Scholar 

  42. Gupta S, Nikfal B, Caloz C (2010) RFID system based on pulse-position modulation using group delay engineered microwave C-sections. In: 2010 Asia-Pacific microwave conference, Yokohama, Japan, Dec 2010, pp 203–206

    Google Scholar 

  43. Cristal EG (1966) Analysis and exact synthesis of cascaded commensurate transmission-line C-Section all-pass networks. IEEE Trans Microw Theory Tech 14(6):285–291

    Article  Google Scholar 

  44. Gupta S, Nikfal B, Caloz C (2011) Chipless RFID system based on group delay engineered dispersive delay structures. IEEE Antennas Wirel Propag Lett 10(2):1366–1368

    Article  Google Scholar 

  45. Nair RS, Perret E, Tedjini S (2013) Group delay modulation for pulse position coding based on periodically coupled C-sections. Ann Telecommun 68(7–8):447–457

    Article  Google Scholar 

  46. Nair R, Perret E, Tedjini S (2011) Chipless RFID based on group delay encoding. In: 2011 IEEE international conference on RFID-technologies and applications, Sitges, Spain, vol 1, Sep 2011, pp 214–218

    Google Scholar 

  47. Mandel C, Schussler M, Maasch M, Jakoby R (2009) A novel passive phase modulator based on LH delay lines for chipless microwave RFID applications. In: 2009 IEEE MTT-S international microwave workshop on wireless sensing, local positioning, and RFID, Sep 2009, pp 1–4

    Google Scholar 

  48. Schussler M, Mandel C, Maasch M, Giere A, Jakoby R (2009) Phase modulation scheme for chipless RFID- and wireless sensor tags. In: 2009 Asia Pacific microwave conference, Dec 2009, Singapore, pp. 229–232

    Google Scholar 

  49. Shamonina E, Kalinin VA, Ringhofer KH, Solymar L (2002) Magneto-inductive waveguide. Electron Lett 38:371–373

    Article  Google Scholar 

  50. Jalaly I, Robertson ID (2005) RF barcodes using multiple frequency bands. In: IEEE MTT-S international microwave symposium, Long Beach, USA, June 2005, pp 139–142

    Google Scholar 

  51. Preradovic S, Balbin I, Karmakar NC, Swiegers G (2008) A novel chipless RFID system based on planar multiresonators for barcode replacement. In: 2008 IEEE International Conference on RFID, Las Vegas, USA, Apr 2008, pp 289–296

    Google Scholar 

  52. Preradovic S, Balbin I, Karmakar NC, Swiegers GF (2009) Multiresonator-based chipless RFID system for low-cost item tracking. IEEE Trans Microw Theory Techn 57: 1411–1419

    Article  Google Scholar 

  53. Preradovic S, Karmakar NC (2010) Design of chipless RFID tag for operation on flexible laminates. IEEE Anten Wireless Propag Lett 9:207–210

    Article  Google Scholar 

  54. McVay J, Hoorfar A, Engheta N (2006) Space-filling curve RFID tags. IEEE Radio Wireless Symp, San Diego, CA, USA, pp 199–202

    Google Scholar 

  55. Jalaly I, Robertson D (2005) Capacitively-tuned split microstrip resonators for RFID barcodes. In: 2005 European microwave conference, Paris, France, vol 2, Oct 2005, pp 4–7

    Google Scholar 

  56. Jang H-S, Lim W-G, Oh K-S, Moon S-M, Yu J-W (2010) Design of low-cost chipless system using printable chipless tag with electromagnetic code. IEEE Microw Wireless Compon Lett 20:640–642

    Article  Google Scholar 

  57. Vena A, Perret E, Tedjini S (2012) A fully printable chipless RFID tag with detuning correction technique. IEEE Microw Wireless Compon Lett 22(4):209–211

    Article  Google Scholar 

  58. Vena A, Perret E, Tedjini S (2012) Design of compact and auto-compensated single-layer chipless RFID tag. IEEE Trans Microw Theory Techn 60(9):2913–2924

    Article  Google Scholar 

  59. Vena A, Perret E, Tedjini S (2012) High-capacity chipless RFID tag insensitive to the polarization. IEEE Trans Ant Propag 60(10):4509–4515

    Article  Google Scholar 

  60. Girbau D, Lorenzo J, Lazaro A, Ferrater C, Villarino R (2012) Frequency-coded chipless RFID tag based on dual-band resonators. IEEE Ant Wireless Propag Lett 11:126–128

    Article  Google Scholar 

  61. Khan MM, Tahir FA, Farooqui MF, Shamim A, Cheema HM (2016) 3.56-bits/cm2 compact inkjet printed and application specific chipless RFID tag. IEEE Ant Wireless Propag Lett 15:1109–1112

    Article  Google Scholar 

  62. Rezaiesarlak R, Manteghi M (2014) Complex-natural-resonance-based design of chipless RFID tag for high-density data. IEEE Trans Ant Propag 62:898–904

    Article  MATH  Google Scholar 

  63. Bhuiyan MS, Karmakar N (2014) A spectrally efficient chipless RFID tag based on split-wheel resonator. Int. Antenna Technol. Workshop on Small Antennas, Novel EM Struct., Mater., Appl., pp 1–4

    Google Scholar 

  64. Nijas CM et al (2014) Low-cost multiple-bit encoded chipless RFID tag using stepped impedance resonator. IEEE Trans Ant Propag 62(9):4762–4770

    Article  MATH  Google Scholar 

  65. Machac J, Polivka M (2014) Influence of mutual coupling on performance of small scatterers for chipless RFID tags. In: 24th Int Radioelektron Conf, pp. 1–4

    Google Scholar 

  66. Khaliel M, El-Awamry A, Fawky A, El-Hadidy M, Kaiser T (2015) A novel co/cross-polarizing chipless RFID tags for high coding capacity and robust detection. In: 2015 IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting, Jul 2015, pp 159–160

    Google Scholar 

  67. Svanda M, Machac J, Polivka M, Havlicek J (2016) A comparison of two ways to reducing the mutual coupling of chipless RFID tag scatterers. In: Proceedings of 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), May 2016, pp 1–4

    Google Scholar 

  68. Herrojo C, Naqui J, Paredes F, Martín F (2016) Spectral signature barcodes based on S-shaped Split ring resonators (S-SRR). EPJ Appl Metamaterials 3:1–6

    Article  Google Scholar 

  69. Vena A, Perret E, Tedjini S (2011) Chipless RFID tag using hybrid coding technique. IEEE Trans Microw Theory Techn 59:3356–3364

    Article  Google Scholar 

  70. Vena A, Perret E, Tedjini S (2012) A compact chipless RFID tag using polarization diversity for encoding and sensing. In: 2012 IEEE International Conference on RFID, pp 191–197

    Google Scholar 

  71. Islam MA, Karmakar NC (2012) A novel compact printable dual-polarized chipless RFID system. IEEE Trans Microw Theory Techn 60:2142–2151

    Article  Google Scholar 

  72. Balbin I, Karmakar NC (2009) Phase-encoded chipless RFID transponder for large scale low cost applications. IEEE Microw Wireless Compon Lett 19:509–511

    Article  Google Scholar 

  73. Genovesi S, Costa F, Monorchio A, Manara G (2015) Chipless RFID tag exploiting multifrequency delta-phase quantization encoding. IEEE Ant Wireless Propag Lett 15:738–741

    Article  Google Scholar 

  74. Rance O, Siragusa R, Lemaitre-Auger P, Perret E (2015) RCS magnitude coding for chipless RFID based on depolarizing tag. In: IEEE MTT-S International Microwave Symposium Digest, Phoenix, AZ, USA, pp 1–4

    Google Scholar 

  75. Rance O, Siragusa R, Lemaître-Auger P, Perret E (2016) Toward RCS magnitude level coding for chipless RFID. IEEE Trans Microw Theory Techn 64:2315–2325

    Article  Google Scholar 

  76. Herrojo C, Naqui J, Paredes F, Martín F (2016) Spectral signature barcodes implemented by multi-state multi-resonator circuits for chipless RFID tags. In: IEEE MTT-S International Microwave Symposium (IMS’16), San Francisco, May 2016

    Google Scholar 

  77. Herrojo C, Paredes F, Mata-Contreras J, Zuffanelli S, Martín F (2017) Multi-state multi-resonator spectral signature barcodes implemented by means of S-shaped Split Ring Resonators (S-SRR). IEEE Trans Microw Theory Techn 65(7):2341–2352

    Article  Google Scholar 

  78. Feng C, Zhang W, Li L, Han L, Chen X, Ma R (2015) Angle-based chipless RFID tag with high capacity and insensitivity to polarization. IEEE Trans Ant Propag 63(4):1789–1797

    Article  MathSciNet  MATH  Google Scholar 

  79. El-Awamry A, Khaliel M, Fawky A, El-Hadidy M, Kaiser T (2015) Novel notch modulation algorithm for enhancing the chipless RFID tags coding capacity. In: IEEE International Conference on RFID, San Diego, CA, USA, pp 25–31

    Google Scholar 

  80. Vena A, Babar AA, Sydanheimo L, Tentzeris MM, Ukkonen L (2013) A novel near-transparent ASK-reconfigurable inkjet-printed chipless RFID tag. IEEE Ant Wireless Propag Lett 12:753–756

    Article  Google Scholar 

  81. Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk TM, Kong JA (2004) Left-handed materials composed of only S-shaped resonators. Phys Rev E 70(5):057605

    Article  Google Scholar 

  82. Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk TM, Kong JA (2005) Negative refraction of a combined double S-shaped metamaterial. Appl Phys Lett 86(15):151909

    Article  Google Scholar 

  83. Naqui J, Coromina J, Karami-Horestani A, Fumeaux C, Martín F (2015) Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with S-shaped split ring resonator (S-SRR). Sensors 15:9628–9650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferran Martín .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín, F., Herrojo, C., Mata-Contreras, J., Paredes, F. (2020). State-of-the-Art in Chipless-RFID Technology. In: Time-Domain Signature Barcodes for Chipless-RFID and Sensing Applications. Lecture Notes in Electrical Engineering, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-030-39726-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39726-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39725-8

  • Online ISBN: 978-3-030-39726-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics