Skip to main content

Iron Oxide Nanoparticles in Biosensors, Imaging and Drug Delivery Applications—A Complete Tool

  • Chapter
  • First Online:
Internet of Things and Big Data Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 180))

Abstract

Iron Oxide Nanoparticles(IONPs) have been extensively studied and have found applications in biomedical engineering. Iron Oxide owing to its unique biocompatibility and therefore low toxicity have come up as an amazing category of nanoparticles to be used as drug delivery vehicle especially being used for cancer therapies e.g. hyperthermia. Alongside IONPs have found a great deal of application into biosensors e.g. Glucose sensor, BPA sensor, Gas sensors. In this paper we have reviewed the different biosensors based on IONPs and their applications, IONPs in imaging and drug delivery. Iron Oxide Nanoparticles can be synthesized with co-precipitation, thermal decomposition, microwave techniques to achieve optimum results and then coated with polymers and further loaded with related drug, biomolecule or a dye to obtain an optical result. These IONPs are then doped with other nanoparticles to form composites with nanostructures as Graphene or biomolecules as Chitosan are further usually dispersed over a glass or a silicon substrate to fabricate a biosensor. IONPs tend to achieve super paramagnetic property and therefore known as SPIONs that increases the application of these nanoparticles in all spectrums of biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahadar, H., Maqbool, F., Niaz, K., Abdollahi, M.: Toxicity of nanoparticles and an overview of current experimental models. Biomed J. 20(1), 1–11 (2016)

    Google Scholar 

  2. Kayal, S.., Ramanujan, R.V.: Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng. C 30, 484–490 (2010)

    Google Scholar 

  3. Santra, S., Kaittanis, C., Grimm, J., Perez, J.M.: Drug loaded multifunctional iron oxide nanoparticles for combined targeted drug therapy and dual optical/magnetic resonance imaging. Small 5(16), 1862–1868 (2009)

    Article  Google Scholar 

  4. Kumar, S., et al.: Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT: PSS. Anal. Chim. Acta 1056, 135–145 (2019)

    Article  Google Scholar 

  5. Yu, M.K., Kim, D., Lee, I.-H., So, J.-S., Jeong, Y.Y., Jon, S.: Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15), 2241–2249 (2011)

    Article  Google Scholar 

  6. Wang, M., Fang, S.: Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: Electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens. Bioelectron. 135(15), 22–29 (2019)

    Article  Google Scholar 

  7. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005)

    Article  Google Scholar 

  8. Abenojar, E.C., Wickramsinghe, S., Basconcepcion, J., Samia, A.C.S.: Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Progr. Nat. Sci. Mater. Int. 26(5), 440–448 (2016)

    Article  Google Scholar 

  9. Bao, Y., Sherwood, J.A., Sun, Z.: Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J. Mater. Chem. (6), (2018)

    Google Scholar 

  10. Jang, D.R. et al.: Hybrid Superparamagnetic Iron Oxide Nanoparticles for Tumour Imaging and therapy In Vivo. Smart Probes, Presentation number 0145, Sept (2010)

    Google Scholar 

  11. Kaushik, A., et al.: Iron oxide nanoparticles—chitosan composite based glucose biosensor. Biosens. Bioelectron. 24(4), 676–683 (2008)

    Article  MathSciNet  Google Scholar 

  12. Terse-Thakoor, T., Badhulika, S., Mulchandani, A.: Graphene based biosensors for healthcare. J. Mater. Res. 32(15), 2905–2929 (2017)

    Article  Google Scholar 

  13. Lee, S., Oh, J., Kim, D., Piao, Y.: A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Korea 160(1), 528–536 (2016)

    Google Scholar 

  14. Iosub, C.S., Olaret, E., Grumezescu, A.M., Holban, A.M., Andronescu, E.: Toxicity of nanostructures—a general approach. In: Nanostructures for Novel Therapy Micro and Nano Technologies, pp. 793–809, Romania (2017)

    Google Scholar 

  15. Gao, L., Fan, K., Yan, X.: Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13) (2017)

    Google Scholar 

  16. Lee, N., Hyeon, T.: Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Korea, RSC 7, (2012)

    Google Scholar 

  17. Pena-Bahamonde, J., Nguyen, H.N., Fanourakis, S.K., Rodrigues, D.F.: Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 16(1), 75 (2018)

    Article  Google Scholar 

  18. De La Franier, B., Thompson, M.: Early stage detection and screening of ovarian cancer: A research opportunity and significant challenge for biosensor technology. Biosens. Bioelectron. 135(15), 71–81 (2019)

    Article  Google Scholar 

  19. Teja, A.S., Koh, P.-Y.: Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Atlanta USA, Google Scholar, 55(1–2), pp. 22–45 (2009)

    Google Scholar 

  20. Cotin, G., Piant Mertz, S., Felder, D., Begin, S.: Iron oxide nanoparticles for biomedical applications: Synthesis, functionalization, and application. France, Metal Oxides, pp. 43–88 (2018)

    Google Scholar 

  21. Chaterjee, J., Haik, Y., Chen, C.-J.: Size dependent magnetic properties of iron oxide nanoparticles. J. Magn. Magn. Mater. 257(1), 113–118 (2003)

    Article  Google Scholar 

  22. Habib, A.H.: Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103(7), 07A307 (2008)

    Article  Google Scholar 

  23. Wahajuddin, S.A.: Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 7, 3445–3471 (2012)

    Article  Google Scholar 

  24. Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63(1–2), 24–46 (2011)

    Article  Google Scholar 

  25. Hilger, I., Kaiser, W.A.: Iron oxide based nanostructures for MRI and Magnetic Hyperthermia. Nanomedicine 7, 1443–1459 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Kumar, V. (2020). Iron Oxide Nanoparticles in Biosensors, Imaging and Drug Delivery Applications—A Complete Tool. In: Balas, V., Solanki, V., Kumar, R. (eds) Internet of Things and Big Data Applications. Intelligent Systems Reference Library, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-39119-5_20

Download citation

Publish with us

Policies and ethics