Skip to main content

Digital Volume Correlation of Laminographic and Tomographic Images: Results and Challenges

  • Chapter
  • First Online:
Virtual Design and Validation

Abstract

Although digital volume correlation (DVC) seems to be a simple extension of digital image correlation to 3D situations, new challenges arise. The first problem is that the actual microstructure of the material can hardly be varied overall to improve the contrast. The applicability of the technique may therefore seem limited to a restricted class of materials. Artifacts during image acquisition and/or reconstruction potentially have a more dramatic effect than noise on the calculated displacement field. Because the acquisition time is generally long, the time sampling is very low compared to the spatial sampling. Moreover, experiments have to be interrupted during acquisition to “freeze” out motions, thereby making time-dependent behavior out of reach. Handling large amounts of data is another challenge. To cope with these complications, specific developments must be designed, the most important of which are mechanics-based regularizations that constrain the desired field of motion to compensate for the adverse effects of noise, artifacts and/or poor texture. With such strategies, DVC offers an unprecedented wealth of information to analyze the mechanical behavior of a large class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay, B. K. (2008). Methods and applications of digital volume correlation. Journal Strain Analysis, 43, 745.

    Google Scholar 

  2. Helfen, L., Baumbach, T., Mikulik, P., Kiel, D., Pernot, P., Cloetens, P., et al. (2005). High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Applied Physics Letters, 86(7), 071915.

    Google Scholar 

  3. Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. New York, NY (USA): Springer.

    Google Scholar 

  4. Hild, F., & Roux, S. (2012). Digital image correlation. In P. Rastogi & E. Hack (Eds.), Optical methods for solid mechanics. A full-field approach (pp. 183–228). Weinheim (Germany): Wiley-VCH.

    Google Scholar 

  5. Buljac, A., Jailin, C., Mendoza, A., Taillandier-Thomas, T., Bouterf, A., Neggers, J., et al. (2018). Digital volume correlation: Review on progress and challenges. Experimental Mechanics, 58(5), 661–708.

    Google Scholar 

  6. Baruchel, J., Buffière, J. Y., Maire, E., Merle, P., & Peix, G. (Eds.). (2000). X-Ray tomography in material sciences. Paris (France): Hermès Science.

    Google Scholar 

  7. Weitkamp, T., Tafforeau, P., Boller, E., Cloetens, P., Valade, J., Bernard, P., et al. (2010). Status and evolution of the ESRF beamline ID19. In ICXOM 2009 (AIP Conference Proceedings) (Vol. 1221, pp. 33–38)

    Google Scholar 

  8. Maire, E., & Withers, P. J. (2014). Quantitative X-ray tomography. International Materials Reviews, 59(1), 1–43.

    Google Scholar 

  9. Wikipedia Contributors. (2019). Industrial computed tomography. Wikipedia, The Free Encyclopedia p. 883448937.

    Google Scholar 

  10. Buffière, J. Y., Maire, E., Adrien, J., Masse, J. P, & Boller, E. (2010). In Situ Experiments with X ray Tomography: An Attractive Tool for Experimental Mechanics. Experimental Mechanics, 50(3), 289–305.

    Google Scholar 

  11. Rannou, J., Limodin, N., Réthoré, J., Gravouil, A., Ludwig, W., Baïetto, M., et al. (2010). Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Computer Methods in Applied Mechanics and Engineering, 199, 1307–1325.

    Google Scholar 

  12. Hild, F., Bouterf, A., Chamoin, L., Mathieu, F., Neggers, J., Pled, F., et al. (2016). Toward 4D mechanical correlation. Advanced Modeling and Simulation in Engineering Sciences, 3(1), 1–26.

    Google Scholar 

  13. Buljac, A., Shakoor, M., Bernacki, M., Bouchard, P. O., Morgeneyer, T. F., & Hild, F. (2017). Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging. Computational Mechanics, 59(3), 419–441.

    Google Scholar 

  14. Bornert, M., Chaix, J. M., Doumalin, P., Dupré, J. C., Fournel, T., Jeulin, D., et al. (2004). Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Institute Mes Métrology, 4, 43–88.

    Google Scholar 

  15. Ludwig, W., Buffière, J. Y., Savelli, S., & Cloetens, P. (2003). Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography. Acta Materials, 51(3), 585–598.

    Google Scholar 

  16. Buffière, J. Y., Maire, E., Cloetens, P., Lormand, G., & Fougères, R. (1999). Characterisation of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Materials, 47(5), 1613–1625.

    Google Scholar 

  17. Helfen, L., Baumbach, T., Cloetens, P., & Baruchel, J. (2009). Phase contrast and holographic computed laminography. Applied Physics Letters, 94, 104103.

    Google Scholar 

  18. Altapova, V., Helfen, L., Myagotin, A., Hänschke, D., Moosmann, J., Gunneweg, J., et al. (2012). Phase contrast laminography based on talbot interferometry. Optics Express, 20, 6496–6508.

    Google Scholar 

  19. Bay, B. K., Smith, T. S., Fyhrie, D. P., & Saad, M. (1999). Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Experimental Mechanics, 39, 217–226.

    Google Scholar 

  20. Roux, S., Hild, F., Viot, P., & Bernard, D. (2008). Three dimensional image correlation from X-Ray computed tomography of solid foam. Composites Part A, 39(8), 1253–1265.

    Google Scholar 

  21. Hall, S., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, C., et al. (2010). Discrete and continuum analysis of localized deformation in sand using X-ray micro CT and volumetric digital image correlation. Géotechnique, 60(5), 315–322.

    Google Scholar 

  22. Hild, F., Fanget, A., Adrien, J., Maire, E., & Roux, S. (2011). Three dimensional analysis of a tensile test on a propellant with digital volume correlation. Archives of Mechanics, 63(5–6), 1–20.

    Google Scholar 

  23. Limodin, N., Réthoré, J., Adrien, J., Buffière, J. Y., Hild, F., & Roux, S. (2011). Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Experimental Mechanics, 51(6), 959–970.

    Google Scholar 

  24. Vidal, F. P., Letang, J. M., Peix, G., & Cloetens, P. (2005). Investigation of artifact sources in synchrotron microtomography via virtual X-ray imaging. Nuclear Instruments and Methods in Physics Research, 234, 333–348.

    Google Scholar 

  25. Prell, D., Kyriakou, Y., & Kalender, W. A. (2009). Comparison of ring artifact correction methods for flat-detector CT. Physics in Medicine and Biology, 54, 3881–3895.

    Google Scholar 

  26. Jailin, C., Buljac, A., Bouterf, A., Poncelet, M., Hild, F., & Roux, S. (2018). Self-calibration for lab-mct using space-time regularized projection-based dvc and model reduction. Measurement Science and Technology, 29, 024003.

    Google Scholar 

  27. Dahdah, N., Limodin, N., El Bartali, A., Witz, J. -F., Seghir, R., Charkaluk, E., et al. (2016). Damage investigation in A319 aluminium alloy by X-ray tomography and digital volume correlation during in situ high-temperature fatigue tests. Strain, 52(4), 324–335.

    Google Scholar 

  28. Cai, B., Karagadde, S., Yuan, L., Marrow, T. J., Connolley, T., & Lee, P. D. (2014). In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al-Cu alloy. Acta Materials, 76, 371–380.

    Google Scholar 

  29. Maire, E., Le Bourlot, C., Adrien, J., Mortensen, A., & Mokso, R. (2016). 20-Hz X-ray tomography during an in situ tensile test. International Journal of Fracture, 200(1), 3–12.

    Google Scholar 

  30. Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone beam algorithm. The Journal of the Optical Society of America, 1, 612–619.

    Google Scholar 

  31. Gabor, G. T. (2009). Fundamentals of computerized tomography: Image reconstruction from projections. London (UK): Springer.

    Google Scholar 

  32. Leclerc, H., Périé, J. N., Hild, F., & Roux, S. (2012). Digital volume correlation: What are the limits to the spatial resolution? Mechanical and Industrial, 13, 361–371.

    Google Scholar 

  33. Herman, G. T., & Davidi, R. (2008). Image reconstruction from a small number of projections. Inverse Problems, 24, 045011.

    Google Scholar 

  34. Hild, F., & Roux, S. (2012). Comparison of local and global approaches to digital image correlation. Search Results, 52(9), 1503–1519.

    Google Scholar 

  35. Sutton, M. A. (2013). Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation. Applied Mechanics Reviews, 65 (AMR-13-1009), 050802.

    Google Scholar 

  36. Smith, T. S., Bay, B. K., & Rashid, M. M. (2002). Digital volume correlation including rotational degrees of freedom during minimization. Experimental Mechanics, 42(3), 272–278.

    Google Scholar 

  37. Bouterf, A., Adrien, J., Maire, E., Brajer, X., Hild, F., & Roux, S. (2017). Identification of the crushing behavior of brittle foam: From indentation to oedometric tests. Journal of the Mechanics and Physics of Solids, 98, 181–200.

    Google Scholar 

  38. Réthoré, J., Limodin, N., Buffière, J. Y., Hild, F., Ludwig, W., & Roux, S. (2011). Digital volume correlation analyses of synchrotron tomographic images. The Journal of Strain Analysis, 46, 683–695.

    Google Scholar 

  39. Black, T., & Belytschko, T. (1999). Elastic crack growth in finite elements with minimal remeshing. The International Journal for Numerical Methods in Engineering, 45, 601–620.

    Google Scholar 

  40. Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. The International Journal for Numerical Methods in Engineering, 46(1), 133–150.

    Google Scholar 

  41. Réthoré, J., Tinnes, J. P., Roux, S., Buffière, J., & Hild, F. (2008). Extended three-dimensional digital image correlation. textitComptes Rendus Mécanique, 336, 643–649.

    Google Scholar 

  42. Buljac, A., Taillandier-Thomas, T., Helfen, L., Morgeneyer, T., & Hild, F. (2018). Evaluation of measurement uncertainties of digital volume correlation applied to laminography data. The Journal of Strain Analysis, 53, 49–65.

    Google Scholar 

  43. Bouterf, A., Roux, S., Hild, F., Adrien, J., & Maire, E. (2014). Digital volume correlation applied to X-ray tomography images from spherical indentation tests on lightweight gypsum. Strain, 50(5), 444–453.

    Google Scholar 

  44. Buljac, A., Trejo-Navas, V. -M., Shakoor, M., Bouterf, A., Neggers, J., Bernacki, M., et al. (2018). On the calibration of elastoplastic parameters at the microscale via X-ray microtomography and digital volume correlation for the simulation of ductile damage. European Journal of Mechanics, 72, 287–297.

    Google Scholar 

  45. Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition. Current Science, 78(7), 808–817.

    Google Scholar 

  46. Neggers, J., Allix, O., Hild, F., & Roux, S. (2018). Big data in experimental mechanics and model order reduction: Today’s challenges and tomorrow’s opportunities. Archives of Computational Methods in Engineering, 25(1), 143–164.

    Google Scholar 

  47. Chinesta, F., Ammar, A., & Cueto, E. (2010). Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Archives of Computational Methods in Engineering, 17(4), 327–350.

    Google Scholar 

  48. Ladevèze, P., Passieux, J. -C., & Néron, D. (2010). The LATIN multiscale computational method and the proper generalized decomposition. Computer Methods in Applied Mechanics and Engineering, 199(21), 1287–1296.

    Google Scholar 

  49. Nouy, A. (2010). Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Archives of Computational Methods in Engineering, 17(4), 403–434.

    Google Scholar 

  50. Ladevèze, P. (2014). PGD in linear and nonlinear computational solid mechanics. In Separated representations and PGD-based model reduction (pp. 91–152). Berlin: Springer.

    Google Scholar 

  51. Paillet, C., Néron, D., & Ladevèze, P. (2018). A door to model reduction in high-dimensional parameter space. Comptes Rendus Mécanique, 346(7), 524–531.

    Google Scholar 

  52. Shakoor, M., Bouchard, P. O., & Bernacki, M. (2017). An adaptive level-set method with enhanced volume conservation for simulations in multiphase domains. The International Journal for Numerical Methods in Engineering, 109(4), 555–576.

    Google Scholar 

  53. Shakoor, M., Buljac, A., Neggers, J., Hild, F., Morgeneyer, T. F., Helfen, L., et al. (2017). On the choice of boundary conditions for micromechanical simulations based on 3D imaging. International Journal of Solids and Structures, 112, 83–96.

    Google Scholar 

  54. Leclerc, H., Périé, J. N., Roux, S., & Hild, F. (2011). Voxel-scale digital volume correlation. Experimental Mechanics, 51(4), 479–490.

    Google Scholar 

  55. Taillandier-Thomas, T., Roux, S., Morgeneyer, T. F., & Hild, F. (2014). Localized strain field measurement on laminography data with mechanical regularization. Nuclear Instruments and Methods in Physics Research, 324, 70–79.

    Google Scholar 

  56. Claire, D., Hild, F., & Roux, S. (2002). Identification of damage fields using kinematic measurements. Comptes Rendus Mécanique, 330, 729–734.

    Google Scholar 

  57. Morgeneyer, T. F., Helfen, L., Sinclair, I., Proudhon, H., Xu, F., & Baumbach, T. (2011). Ductile crack initiation and propagation assessed via in situ synchrotron radiation computed laminography. Scripta Materialia, 65, 1010–1013.

    Google Scholar 

  58. Morgeneyer, T. F., Helfen, L., Mubarak, H., & Hild, F. (2013). 3D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: An initial feasibility study. Experimental Mechanics, 53(4), 543–556.

    Google Scholar 

  59. Leclerc, H., Roux, S., & Hild, F. (2015). Projection savings in CT-based digital volume correlation. Experimental Mechanics, 55(1), 275–287.

    Google Scholar 

  60. Taillandier-Thomas, T., Roux, S., & Hild, F. (2016). Soft route to 4D tomography. Physical Review Letters, 117(2), 025501.

    Google Scholar 

  61. Taillandier-Thomas, T., Jailin, C., Roux, S., Hild, F. (2016). Measurement of 3D displacement fields from few tomographic projections. In Proceedings of SPIE, Optics, Photonics and Digital Technologies for Imaging Applications IV (Vol. 9896L, p. 98960L).

    Google Scholar 

  62. Khalili, M. H., Brisard, S., Bornert, M., Aimedieu, P., Pereira, J. M., & Roux, J. N. (2017). Discrete digital projections correlation: A reconstruction-free method to quantify local kinematics in granular media by X-ray tomography. Experimental Mechanics, 57(6), 819–830.

    Google Scholar 

  63. Jailin, C., Buljac, A., Bouterf, A., Hild, F., & Roux, S. (2018). Fast 4D tensile test monitored via X-CT: Single projection based digital volume correlation dedicated to slender samples. Journal of Strain Analysis, 53(7), 473–484.

    Google Scholar 

  64. Jailin, C., Buljac, A., Bouterf, A., Hild, F., & Roux, S. (2019). Fast four-dimensional tensile test monitored via X-ray computed tomography: Elastoplastic identification from radiographs. Journal of Strain Analysis, 54(1), 44–53.

    Google Scholar 

Download references

Acknowledgements

Different parts of the above mentioned studies were funded by Agence Nationale de la Recherche under the grants ANR-10-EQPX-37 (MATMECA) and ANR-14-CE07-0034-02 (COMINSIDE), Saint Gobain, SAFRAN Aircraft Engines and SAFRAN Tech. It is a pleasure to acknowledge the support of BPI France within the DICCIT project, and ESRF for MA1006, MI1149, MA1631, MA1932 and ME1366 experiments.

Fruitful discussions with Profs. Olivier Allix, Marc Bernacki, Pierre-Olivier Bouchard, Jean-Yves Buffière, and Drs. Jérôme Adrien, Dominique Bernard, Xavier Brajer, René Gy, Lukas Helfen, Nathalie Limodin, Eric Maire, Thilo Morgeneyer, Estelle Parra, Julien Réthoré and Julien Schneider are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Hild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouterf, A., Buljac, A., Hild, F., Jailin, C., Neggers, J., Roux, S. (2020). Digital Volume Correlation of Laminographic and Tomographic Images: Results and Challenges. In: Wriggers, P., Allix, O., Weißenfels, C. (eds) Virtual Design and Validation. Lecture Notes in Applied and Computational Mechanics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-38156-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38156-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38155-4

  • Online ISBN: 978-3-030-38156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics