Skip to main content

Conversion of Lignocellulosic Biomass to Fuels and Value-Added Chemicals Using Emerging Technologies and State-of-the-Art Density Functional Theory Simulations Approach

  • Chapter
  • First Online:
Book cover Valorization of Biomass to Value-Added Commodities

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In recent years, the drive toward a sustainable economy has challenged the scientific community to pursue ambitious investigations to convert sustainable feedstocks such as lignocellulose into useful products. These products include biofuels, commodity chemicals, and new bio-based materials including bioplastics, which offer a potential substitution to the dwindling nonrenewable fossil resources. A plethora of lignocellulosic biomass processing technologies have been attempted and effectively documented in literature, which include, but not limited to, biochemical, liquid acid, thermochemical, and catalytic (homogeneous and heterogeneous catalysis) transformation processes. This chapter reviews the state-of-the-art research and development of these process technologies. We further highlight the advantages and disadvantages, potential for future applications, challenges related to these technologies, and opportunities to maximize economic and environmental benefits, while minimizing waste and pollution. Special emphasis is placed and discussed on the production of biofuels and commodity chemicals from these process technologies. Besides, the application of molecular modeling in integration with experiments is highlighted in this chapter as a new paradigm for mechanism study and thus could open up new avenues to design and develop catalysts for a plethora of biomass reactions that require high activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Benoit, A. Rodrigues, Q. Zhang, E. Fourré, K. De Oliveira Vigier, J.M. Tatibouët, F. Jérôme, Angew. Chem. Int. Ed. 50, 8964–8967 (2011)

    Article  Google Scholar 

  2. Q. Zhang, F. Jerome, ChemSusChem 6, 2042–2044 (2013)

    Article  Google Scholar 

  3. P.N. Amaniampong, A. Karam, Q.T. Trinh, K. Xu, H. Hirao, F. Jérôme, G. Chatel, Sci. Rep. 7, 40650 (2017)

    Article  Google Scholar 

  4. D.J. Tenenbaum, Environ. Health Perspect. 116, A254 (2008)

    Google Scholar 

  5. E. Fletcher, A. Krivoruchko, J. Nielsen, Biotechnol. Bioeng. 113, 1164–1170 (2016)

    Article  Google Scholar 

  6. M. Irfan, M. Nadeem, Q. Syed, Braz. J. Microbiol. 45, 457–465 (2014)

    Article  Google Scholar 

  7. R. Nair, P.R. Lennartsson, M.J. Taherzadeh, Current Developments in Biotechnology and Bioengineering (Elsevier, Amsterdam, 2017), pp. 157–190

    Book  Google Scholar 

  8. K.H. Caffall, D. Mohnen, Carbohydr. Res. 344, 1879–1900 (2009)

    Article  Google Scholar 

  9. S.J. Horn, G. Vaaje-Kolstad, B. Westereng, V. Eijsink, Biotechnol. Biofuels 5, 45 (2012)

    Article  Google Scholar 

  10. P.T. Adeboye, M. Bettiga, L. Olsson, AMB Express 4, 46 (2014)

    Article  Google Scholar 

  11. K.S. Johansen, Biochem. Soc. Trans. 44, 143–149 (2016)

    Article  Google Scholar 

  12. E.M. Obeng, S.N.N. Adam, C. Budiman, C.M. Ongkudon, R. Maas, J. Jose, Bioresour. Bioprocess. 4, 16 (2017)

    Article  Google Scholar 

  13. E.M. Rubin, Nature 454, 841 (2008)

    Article  Google Scholar 

  14. A.S. Bhattacharya, A. Bhattacharya, B.I. Pletschke, Biotechnol. Lett. 37, 1117–1129 (2015)

    Article  Google Scholar 

  15. M.E. Himmel, Q. Xu, Y. Luo, S.-Y. Ding, R. Lamed, E.A. Bayer, Biofuels 1, 323–341 (2010)

    Article  Google Scholar 

  16. M. Paloheimo, T. Haarmann, S. Mäkinen, J. Vehmaanperä, Gene Expression Systems in Fungi: Advancements and Applications (Springer, Cham, 2016), pp. 23–57

    Book  Google Scholar 

  17. C. Yang, Y. Xia, H. Qu, A.-D. Li, R. Liu, Y. Wang, T. Zhang, Biotechnol. Biofuels 9, 138 (2016)

    Article  Google Scholar 

  18. I. Wu, F.H. Arnold, Biotechnol. Bioeng. 110, 1874–1883 (2013)

    Article  Google Scholar 

  19. R.J. Quinlan, M.D. Sweeney, L.L. Leggio, H. Otten, J.-C.N. Poulsen, K.S. Johansen, K.B. Krogh, C.I. Jørgensen, M. Tovborg, A. Anthonsen, Proc. Natl. Acad. Sci. 108, 15079–15084 (2011)

    Article  Google Scholar 

  20. S.H. Kung, S. Lund, A. Murarka, D. McPhee, C.J. Paddon, Front. Plant Sci. 9, 87 (2018)

    Article  Google Scholar 

  21. M.S. Krishnan, N.W. Ho, G.T. Tsao. Appl Biochem Biotechnol. 77–79:373–388 (1999)

    Google Scholar 

  22. C. Navarrete, J. Nielsen, V. Siewers, AMB Express 4, 86 (2014)

    Article  Google Scholar 

  23. G.J. Martin, A. Knepper, B. Zhou, N.B. Pamment, J. Ind. Microbiol. Biotechnol. 33, 834 (2006)

    Article  Google Scholar 

  24. A.-K. Löbs, C. Schwartz, I. Wheeldon, Synth Syst Biotechnol. Aug 31;2(3):198–207 (2017)

    Google Scholar 

  25. E. Fletcher, A. Feizi, M.M. Bisschops, B.M. Hallström, S. Khoomrung, V. Siewers, J. Nielsen, Metab. Eng. 39, 19–28 (2017)

    Article  Google Scholar 

  26. M. Adjin-Tetteh, N. Asiedu, D. Dodoo-Arhin, A. Karam, P.N. Amaniampong, Ind. Crop. Prod. 119, 304–312 (2018)

    Article  Google Scholar 

  27. A.D. McNaught, A.D. McNaught, Compendium of Chemical Terminology (Blackwell Science Oxford, Oxford, 1997)

    MATH  Google Scholar 

  28. C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Chem. Soc. Rev. 40, 5588–5617 (2011)

    Article  Google Scholar 

  29. S. Xiu, A. Shahbazi, Renew. Sust. Energ. Rev. 16, 4406–4414 (2012)

    Article  Google Scholar 

  30. S. Xiu, A. Shahbazi, V. Shirley, D. Cheng, J. Anal. Appl. Pyrolysis 88, 73–79 (2010)

    Article  Google Scholar 

  31. S.H. Mushrif, V. Vasudevan, C.B. Krishnamurthy, B. Venkatesh, Chem. Eng. Sci. 121, 217–235 (2015)

    Article  Google Scholar 

  32. Y.-C. Lin, G.W. Huber, Energy Environ. Sci. 2, 68–80 (2009)

    Article  Google Scholar 

  33. M.J. Climent, A. Corma, S. Iborra, Green Chem. 13, 520–540 (2011)

    Article  Google Scholar 

  34. P.L. Dhepe, A. Fukuoka, ChemSusChem 1, 969–975 (2008)

    Article  Google Scholar 

  35. M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 114, 1827–1870 (2014)

    Article  Google Scholar 

  36. Q.T. Trinh, B.K. Chethana, S.H. Mushrif, J. Phys. Chem. C 119, 17137–17145 (2015)

    Article  Google Scholar 

  37. P.N. Amaniampong, Q.T. Trinh, B. Wang, A. Borgna, Y. Yang, S.H. Mushrif, Angew. Chem. Int. Ed. 54, 8928–8933 (2015)

    Article  Google Scholar 

  38. A. Nandula, Q.T. Trinh, M. Saeys, A.N. Alexandrova, Angew. Chem. Int. Ed. 54, 5312–5316 (2015)

    Article  Google Scholar 

  39. C. Yang, Q.T. Trinh, X. Wang, Y. Tang, K. Wang, S. Huang, X. Chen, S.H. Mushrif, M. Wang, Chem. Commun. 51, 3375–3378 (2015)

    Article  Google Scholar 

  40. J. Mondal, Q.T. Trinh, A. Jana, W.K.H. Ng, P. Borah, H. Hirao, Y. Zhao, ACS Appl. Mater. Interfaces 8, 15307–15319 (2016)

    Article  Google Scholar 

  41. Q.T. Trinh, J. Yang, J.Y. Lee, M. Saeys, J. Catal. 291, 26–35 (2012)

    Article  Google Scholar 

  42. Q.T. Trinh, A.V. Nguyen, D.C. Huynh, T.H. Pham, S.H. Mushrif, Cat. Sci. Technol. 6, 5871–5883 (2016)

    Article  Google Scholar 

  43. Q.T. Trinh, A. Banerjee, Y. Yang, S.H. Mushrif, J. Phys. Chem. C 121, 1099–1112 (2017)

    Article  Google Scholar 

  44. Q.T. Trinh, K.F. Tan, A. Borgna, M. Saeys, J. Phys. Chem. C 117, 1684–1691 (2013)

    Article  Google Scholar 

  45. J.J. Varghese, Q.T. Trinh, S.H. Mushrif, Cat. Sci. Technol. 6, 3984–3996 (2016)

    Article  Google Scholar 

  46. P.N. Amaniampong, Q.T. Trinh, J.J. Varghese, R. Behling, S. Valange, S.H. Mushrif, F. Jérôme, Green Chem. 20, 2730–2741 (2018)

    Article  Google Scholar 

  47. R. Singuru, Q.T. Trinh, B. Banerjee, B. Govinda Rao, L. Bai, A. Bhaumik, B.M. Reddy, H. Hirao, J. Mondal, ACS Omega 1, 1121–1138 (2016)

    Article  Google Scholar 

  48. J.R. McManus, W. Yu, M. Salciccioli, D.G. Vlachos, J.G. Chen, J.M. Vohs, Surf. Sci. 606, L91–L94 (2012)

    Article  Google Scholar 

  49. J.R. McManus, M. Salciccioli, W. Yu, D.G. Vlachos, J.G. Chen, J.M. Vohs, J. Phys. Chem. C 116, 18891–18898 (2012)

    Article  Google Scholar 

  50. J.R. McManus, E. Martono, J.M. Vohs, Catal. Today 237, 157–165 (2014)

    Article  Google Scholar 

  51. J.R. McManus, E. Martono, J.M. Vohs, ACS Catal. 3, 1739–1750 (2013)

    Article  Google Scholar 

  52. P.N. Amaniampong, Q.T. Trinh, K. Li, S.H. Mushrif, Y. Hao, Y. Yang, Catal. Today 306, 172–182 (2018)

    Article  Google Scholar 

  53. M.T. Le, V.H. Do, D.D. Truong, E. Bruneel, I. Van Driessche, A. Riisager, R. Fehrmann, Q.T. Trinh, Ind. Eng. Chem. Res. 55, 4846–4855 (2016)

    Article  Google Scholar 

  54. J. Lu, M. Wang, X. Zhang, A. Heyden, F. Wang, ACS Catal. 6, 5589–5598 (2016)

    Article  Google Scholar 

  55. P. Srifa, M.V. Galkin, J.S.M. Samec, K. Hermansson, P. Broqvist, J. Phys. Chem. C 120, 23469–23479 (2016)

    Article  Google Scholar 

  56. C.-C. Chiu, A. Genest, A. Borgna, N. Rösch, ACS Catal. 4, 4178–4188 (2014)

    Article  Google Scholar 

  57. A. Banerjee, S.H. Mushrif, J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.8b01301

  58. J. Zhang, H. Asakura, J. van Rijn, J. Yang, P. Duchesne, B. Zhang, X. Chen, P. Zhang, M. Saeys, N. Yan, Green Chem. 16, 2432–2437 (2014)

    Article  Google Scholar 

  59. D. Shi, L. Arroyo-Ramírez, J.M. Vohs, J. Catal. 340, 219–226 (2016)

    Article  Google Scholar 

  60. D. Shi, J.M. Vohs, ACS Catal. 5, 2177–2183 (2015)

    Article  Google Scholar 

  61. D. Shi, J.M. Vohs, Catal. Today 302, 272–276 (2018)

    Article  Google Scholar 

  62. J. Tao, C. Dai, Q. Dai, M. Zhao, J. Microbiol. 26, 48–54 (2006)

    Google Scholar 

  63. J. Von Braun, R.K. Pachauri, The Promises and Challenges of Biofuels for the Poor in Developing Countries: IFPRI 2005–2006 Annual Report Essay (International Food Policy Research Institute, Washington, DC, 2006)

    Google Scholar 

  64. D.O. Hall., Biomass energy. Energy policy, 19(8), 711–737 (1991)

    Google Scholar 

  65. International Energy Agency. World energy outlook. IEA/OECD, (1995)

    Google Scholar 

  66. M. Parikka, Biomass Bioenergy 27, 613–620 (2004)

    Article  Google Scholar 

  67. G. Antonopoulou, H.N. Gavala, I.V. Skiadas, K. Angelopoulos, G. Lyberatos, Bioresour. Technol. 99, 110–119 (2008)

    Article  Google Scholar 

  68. A. Al-Muyeed, A. Shadullah, Electrification through biogas. FORUM, Monthly publication of THE DAILY STAR. 3, 1 (2010)

    Google Scholar 

  69. L.K. Paine, T.L. Peterson, D. Undersander, K.C. Rineer, G.A. Bartelt, S.A. Temple, D.W. Sample, R.M. Klemme, Biomass Bioenergy 10, 231–242 (1996)

    Article  Google Scholar 

  70. C. Panoutsou, Energy Policy 35, 6046–6059 (2007)

    Article  Google Scholar 

  71. R. Venendaal, U. Jørgensen, C. Foster, Biomass Bioenergy 13, 147–185 (1997)

    Article  Google Scholar 

  72. K. Ericsson, H. Rosenqvist, L.J. Nilsson, Biomass Bioenergy 33, 1577–1586 (2009)

    Article  Google Scholar 

  73. L.H. Reineke, Research Note FPL No. 090 (USDA, Forest Service, Forest Products Laboratory, Madison, 1965), 14 pages, 90

    Google Scholar 

  74. A. Hossain, O. Badr, Renew. Sust. Energ. Rev. 11, 1617–1649 (2007)

    Article  Google Scholar 

  75. M.A. Oke, M.S.M. Annuar, K. Simarani, Bioenergy Res. 9, 1189–1203 (2016)

    Article  Google Scholar 

  76. J.R. Ziolkowska, Biotechnol. Rep. 4, 94–98 (2014)

    Article  Google Scholar 

  77. N. Dilekli, F. Duchin, J. Ind. Ecol. 20, 120–131 (2016)

    Article  Google Scholar 

  78. K. Sanderson, A field in ferment. Nature 444.7120: 673 (2006)

    Google Scholar 

  79. C.A. Cardona, Ó.J. Sánchez, Bioresour. Technol. 98, 2415–2457 (2007)

    Article  Google Scholar 

  80. P. Badger, Trends New Crops New Uses 1, 17–21 (2002)

    Google Scholar 

  81. S. Ezeoha, C. Anyanwu, J. Nwakaire, Nigerian. J. Technol. 36, 267–275 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Amaniampong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amaniampong, P.N., Asiedu, N.Y., Fletcher, E., Dodoo-Arhin, D., Olatunji, O.J., Trinh, Q.T. (2020). Conversion of Lignocellulosic Biomass to Fuels and Value-Added Chemicals Using Emerging Technologies and State-of-the-Art Density Functional Theory Simulations Approach. In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38032-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38031-1

  • Online ISBN: 978-3-030-38032-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics