Skip to main content

Synthetic, Natural Derived Lipid Nanoparticles and Polymeric Nanoparticles Drug Delivery Applications

  • Chapter
  • First Online:
Integrative Nanomedicine for New Therapies

Abstract

In modern therapeutic field, the delivery of drugs to the desired site is a crucial bottleneck that needs to be addressed for efficacy and potency of the administrated drug. The recent advancements in the field of nanotechnology has enabled researchers to deliver the drug and other diagnostic agents without unfavorable effect in human. Though drug delivery system (DDS) is highly advantageous, the clinical success rate depends on the appropriate carrier molecules which precisely recognize the target site for the release of drug and its biocompatibility. To overcome this concern both synthetic and naturally derived lipid-based nano carriers are the preeminent option as it is biocompatible, non-toxic, enhances the bioavailability of poorly absorbed drugs, drug release modulation flexibility, improved drug loading capacity and stability. Similarly, several bioinspired synthetic polymeric nanomaterials shown advantage of controlled release with less toxic effects, better encapsulation and grand bioavailability. In this chapter, we discussed about the broad spectrum of lipids (synthetic and natural) and polymeric nanoparticles (synthetic and natural) for potential drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader, H., Alani, A. W., & Alany, R. G. (2014). Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Delivery, 21(2), 87–100.

    CAS  Google Scholar 

  • Ahmed, T. A., & Khalid, M. (2014). Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole. Life Sciences, 110(1), 35–43.

    CAS  Google Scholar 

  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., et al. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102.

    Google Scholar 

  • Alai, M. S., Lin, W. J., & Pingale, S. S. (2015). Application of polymeric nanoparticles and micelles in insulin oral delivery. Journal of Food and Drug Analysis, 23(3), 351–358.

    CAS  Google Scholar 

  • Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48.

    CAS  Google Scholar 

  • Ashley, C. E., Carnes, E. C., Phillips, G. K., Padilla, D., Durfee, P. N., Brown, P. A., et al. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 10(5), 389.

    CAS  Google Scholar 

  • Asua, J. M. (2004). Emulsion polymerization: From fundamental mechanisms to process developments. Journal of Polymer Science Part A: Polymer Chemistry, 42(5), 1025–1041.

    CAS  Google Scholar 

  • Battaglia, L., & Gallarate, M. (2012). Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opinion on Drug Delivery, 9(5), 497–508.

    CAS  Google Scholar 

  • Bawa, R. (2008). Nanoparticle-based therapeutics in humans: A survey. Nanotechnology Law & Business, 5, 135.

    Google Scholar 

  • Bennet, D., & Kim, S. (2014). Polymer nanoparticles for smart drug delivery. In Application of nanotechnology in drug delivery. InTech.

    Google Scholar 

  • Bhardwaj, V., Plumb, J. A., Cassidy, J., & Kumar, M. R. (2010). Evaluating the potential of polymer nanoparticles for oral delivery of paclitaxel in drug-resistant cancer. Cancer Nanotechnology, 1(1–6), 29–34.

    CAS  Google Scholar 

  • Bhavsar, M. D., & Amiji, M. M. (2007). Polymeric nano- and microparticle technologies for oral gene delivery. Expert Opinion on Drug Delivery, 4(3), 197–213.

    CAS  Google Scholar 

  • Bianco, A., Kostarelos, K., & Prato, M. (2005). Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology, 9(6), 674–679.

    CAS  Google Scholar 

  • Brannon-Peppas, L., & Blanchette, J. O. (2004). Nanoparticle and targeted system for cancer therapy. Advanced Drug Delivery Reviews, 56, 1649–1659.

    CAS  Google Scholar 

  • Cacciatore, I., Ciulla, M., Fornasari, E., Marinelli, L., & Di Stefano, A. (2016). Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opinion on Drug Delivery, 13(8), 1121–1131.

    CAS  Google Scholar 

  • Caldorera-Moore, M., Guimard, N., Shi, L., & Roy, K. (2010). Designer nanoparticles: Incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opinion on Drug Delivery, 7(4), 479–495.

    CAS  Google Scholar 

  • Chang, H. I., & Yeh, M. K. (2012). Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. International Journal of Nanomedicine, 7, 49.

    CAS  Google Scholar 

  • Chawla, V., & Saraf, S. A. (2012). Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac. Colloids and Surfaces B: Biointerfaces, 92, 293–298.

    CAS  Google Scholar 

  • Chen, M. C., Sonaje, K., Chen, K. J., & Sung, H. W. (2011). A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 32(36), 9826–9838.

    CAS  Google Scholar 

  • Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K., & Saltzman, W. M. (2015). A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery, 14(4), 239.

    CAS  Google Scholar 

  • Couvreur, P., Dubernet, C., & Puisieux, F. (1995). Controlled drug delivery with nanoparticles: Current possibilities and future trends. European Journal of Pharmaceutics and Biopharmaceutics, 41(1), 2–13.

    CAS  Google Scholar 

  • Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 161(2), 505–522.

    CAS  Google Scholar 

  • Das, S., & Chaudhury, A. (2011). Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AapsPharmscitech, 12(1), 62–76.

    CAS  Google Scholar 

  • De Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 3(2), 133.

    Google Scholar 

  • Demento, S. L., Eisenbarth, S. C., Foellmer, H. G., Platt, C., Caplan, M. J., Saltzman, W. M., et al. (2009). Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine, 27(23), 3013–3021.

    CAS  Google Scholar 

  • Derakhshandeh, K., Erfan, M., & Dadashzadeh, S. (2007). Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: Factorial design, characterization and release kinetics. European Journal of Pharmaceutics and Biopharmaceutics, 66(1), 34–41.

    CAS  Google Scholar 

  • Deutel, B., Greindl, M., Thaurer, M., & Bernkop-Schnürch, A. (2007). Novel insulin thiomer nanoparticles: In vivo evaluation of an oral drug delivery system. Biomacromolecules, 9(1), 278–285.

    Google Scholar 

  • Dev, A., Binulal, N. S., Anitha, A., Nair, S. V., Furuike, T., Tamura, H., et al. (2010). Preparation of poly (lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydrate Polymers, 80(3), 833–838.

    CAS  Google Scholar 

  • Dolatabadi, J. E. N., Hamishehkar, H., Eskandani, M., & Valizadeh, H. (2014). Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces, 117, 21–28.

    Google Scholar 

  • Edlund, U., & Albertsson, A. C. (2002). Degradable polymer microspheres for controlled drug delivery. In Degradable aliphatic polyesters (pp. 67–112). Berlin: Springer.

    Google Scholar 

  • Ensign, L. M., Cone, R., & Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 64(6), 557–570.

    CAS  Google Scholar 

  • Federoff, H. J. (1999). Novel targets for CNS gene therapy.

    CAS  Google Scholar 

  • Fernández-Urrusuno, R., Calvo, P., Remuñán-López, C., Vila-Jato, J. L., & Alonso, M. J. (1999). Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharmaceutical Research, 16(10), 1576–1581.

    Google Scholar 

  • González-Martı́n, G., Figueroa, C., Merino, I., & Osuna, A. (2000). Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: preparation and trypanocidal activity. European Journal of Pharmaceutics and Biopharmaceutics, 49(2), 137–142.

    Google Scholar 

  • Grabrucker, A. M., Garner, C. C., Boeckers, T. M., Bondioli, L., Ruozi, B., Forni, F., et al. (2011). Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS ONE, 6(3), e17851.

    CAS  Google Scholar 

  • Gulati, N., & Gupta, H. (2011). Parenteral drug delivery: A review. Recent Patents on Drug Delivery & Formulation, 5(2), 133–145.

    CAS  Google Scholar 

  • Gursoy, R. N., & Benita, S. (2004). Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine & Pharmacotherapy, 58(3), 173–182.

    Google Scholar 

  • Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15), 1638–1649.

    CAS  Google Scholar 

  • Han, L., Tang, C., & Yin, C. (2014). Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Biomaterials, 35(15), 4589–4600.

    Google Scholar 

  • Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6(4), 319–327.

    CAS  Google Scholar 

  • Harde, H., Das, M., & Jain, S. (2011). Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opinion on Drug Delivery, 8(11), 1407–1424.

    CAS  Google Scholar 

  • He, C., Yin, L., Tang, C., & Yin, C. (2012). Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials, 33(33), 8569–8578.

    CAS  Google Scholar 

  • He, C., Yin, L., Tang, C., & Yin, C. (2013). Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials, 34(11), 2843–2854.

    CAS  Google Scholar 

  • Hoag, H. (2005). Gene therapy rising? Nature, 435(7041), 530.

    CAS  Google Scholar 

  • Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23.

    Google Scholar 

  • Hu, L., & Jia, Y. (2010). Preparation and characterization of solid lipid nanoparticles loaded with epirubicin for pulmonary delivery. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 65(8), 585–587.

    CAS  Google Scholar 

  • Jain, A. K., Das, M., Swarnakar, N. K., & Jain, S. (2011). Engineered PLGA nanoparticles: An emerging delivery tool in cancer therapeutics. Critical Reviews™ in Therapeutic Drug Carrier Systems, 28(1).

    Google Scholar 

  • Jain, R., Dandekar, P., Loretz, B., Melero, A., Stauner, T., Wenz, G., et al. (2011b). Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. International Journal of Pharmaceutics, 420(1), 147–155.

    CAS  Google Scholar 

  • Jain, R., Dandekar, P., & Patravale, V. (2009). Diagnostic nanocarriers for sentinel lymph node imaging. Journal of Controlled Release, 138(2), 90–102.

    CAS  Google Scholar 

  • Jaiswal, P., Gidwani, B., & Vyas, A. (2016). Nanostructured lipid carriers and their current application in targeted drug delivery. Artificial cells, Nanomedicine, and Biotechnology, 44(1), 27–40.

    CAS  Google Scholar 

  • Jones, D. H., Corris, S., McDonald, S., Clegg, J. C. S., & Farrar, G. H. (1997). Poly(DL-lactidecoglycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine, 15, 814–817.

    Google Scholar 

  • Junghanns, J. U. A., & Müller, R. H. (2008). Nanocrystal technology, drug delivery and clinical applications. International Journal of Nanomedicine, 3(3), 295.

    CAS  Google Scholar 

  • Kalaria, D. R., Sharma, G., Beniwal, V., & Kumar, M. R. (2009). Design of biodegradable nanoparticles for oral delivery of doxorubicin: In vivo pharmacokinetics and toxicity studies in rats. Pharmaceutical Research, 26(3), 492–501.

    CAS  Google Scholar 

  • Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., & Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chemical Society Reviews, 41(7), 2971–3010.

    CAS  Google Scholar 

  • Karimi, M., Solati, N., Ghasemi, A., Estiar, M. A., Hashemkhani, M., Kiani, P., et al. (2015). Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opinion on Drug Delivery, 12(7), 1089–1105.

    CAS  Google Scholar 

  • Kaul, G., & Amiji, M. (2002). Long-circulating poly (ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharmaceutical Research, 19(7), 1061–1067.

    CAS  Google Scholar 

  • Kaul, G., & Amiji, M. (2004). Biodistribution and targeting potential of poly (ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. Journal of Drug Targeting, 12(9–10), 585–591.

    CAS  Google Scholar 

  • Kayser, O., Lemke, A., & Hernandez-Trejo, N. (2005). The impact of nanobiotechnology on the development of new drug delivery systems. Current Pharmaceutical Biotechnology, 6(1), 3–5.

    CAS  Google Scholar 

  • Krauland, A. H., & Bernkop-Schnürch, A. (2004). Thiomers: Development and in vitro evaluation of a peroral microparticulate peptide delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 57(2), 181–187.

    CAS  Google Scholar 

  • Kreuter, J. (2012). Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews, 64, 213–222.

    Google Scholar 

  • Kreuter, J. (2014). Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Advanced Drug Delivery Reviews, 71, 2–14.

    CAS  Google Scholar 

  • Kriegel, C., & Amiji, M. (2011). Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. Journal of Controlled Release, 150(1), 77–86.

    CAS  Google Scholar 

  • Kumar, S., Dilbaghi, N., Saharan, R., & Bhanjana, G. (2012). Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. BioNanoScience, 2(4), 227–250.

    Google Scholar 

  • Kuo, Y. C., & Chung, C. Y. (2011). Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmi¬tin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir. Colloids and Surfaces B: Biointerfaces, 88(2), 682—690.

    Google Scholar 

  • Lai, P., Daear, W., Löbenberg, R., & Prenner, E. J. (2014). Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly (d, l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids and Surfaces B: Biointerfaces, 118, 154–163.

    CAS  Google Scholar 

  • Leong, K. W., Brott, B. C., & Langer, R. (1985). Bioerodible polyanhydrides as drug‐carrier matrices. I: Characterization, degradation, and release characteristics. Journal of Biomedical Materials Research, 19(8), 941–955.

    Google Scholar 

  • Li, X., Yang, Z., Yang, K., Zhou, Y., Chen, X., Zhang, Y., et al. (2009). Self-assembled polymeric micellar nanoparticles as nanocarriers for poorly soluble anticancer drug ethaselen. Nanoscale Research Letters, 4(12), 1502.

    CAS  Google Scholar 

  • Liu, J., Gong, T., Fu, H., Wang, C., Wang, X., Chen, Q., et al. (2008). Solid lipid nanoparticles for pulmonary delivery of insulin. International Journal of Pharmaceutics, 356(1–2), 333–344.

    CAS  Google Scholar 

  • Lohmeyer, J. H. G. M., Tan, Y. Y., & Challa, G. (1980). Polymerization of methacrylic acid in the presence of isotactic poly (methyl methacrylate) as possible template. Journal of Macromolecular Science Chemistry, 14(6), 945–957.

    Google Scholar 

  • Luppi, B., Bigucci, F., Corace, G., Delucca, A., Cerchiara, T., Sorrenti, M., et al. (2011). Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. European Journal of Pharmaceutical Sciences, 44(4), 559–565.

    CAS  Google Scholar 

  • Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vascularture: The key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 1898-207.

    Google Scholar 

  • Magadala, P., & Amiji, M. (2008). Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. The AAPS Journal, 10(4), 565.

    CAS  Google Scholar 

  • Majoros, I. J., Williams, C. R., Baker, J. R., & James, R. (2008). Current dendrimer applications in cancer diagnosis and therapy. Current Topics in Medicinal Chemistry, 8(14), 1165–1179.

    CAS  Google Scholar 

  • Makwana, V., Jain, R., Patel, K., Nivsarkar, M., & Joshi, A. (2015). Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. International Journal of Pharmaceutics, 495(1), 439–446.

    CAS  Google Scholar 

  • Martins, S., Sarmento, B., Ferreira, D. C., & Souto, E. B. (2007). Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. International Journal of Nanomedicine, 2(4), 595.

    CAS  Google Scholar 

  • Masood, F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 60, 569–578.

    CAS  Google Scholar 

  • Merisko-Liversidge, E. M., & Liversidge, G. G. (2008). Drug nanoparticles: Formulating poorly water-soluble compounds. Toxicologic Pathology, 36(1), 43–48.

    CAS  Google Scholar 

  • Merisko-Liversidge, E. M., & Liversidge, G. G. (2011). Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Advanced Drug Delivery Reviews, 63(6), 427–440.

    CAS  Google Scholar 

  • Miao, J., Du, Y. Z., Yuan, H., Zhang, X. G., & Hu, F. Q. (2013). Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids and Surfaces B: Biointerfaces, 110, 74–80.

    Google Scholar 

  • Mo, R., Jiang, T., Di, J., Tai, W., & Gu, Z. (2014). Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 43(10), 3595–3629.

    CAS  Google Scholar 

  • Moghassemi, S., & Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: An illustrated review. Journal of Controlled Release, 185, 22–36.

    CAS  Google Scholar 

  • Müller, R. H., Radtke, M., & Wissing, S. A. (2002a). Nanostructured lipid matrices for improved microencapsulation of drugs. International Journal of Pharmaceutics, 242(1–2), 121–128.

    Google Scholar 

  • Müller, R. H., Radtke, M., & Wissing, S. A. (2002b). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, S131–S155.

    Google Scholar 

  • Müller, R. H., Runge, S., Ravelli, V., Mehnert, W., Thünemann, A. F., & Souto, E. B. (2006). Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. International Journal of Pharmaceutics, 317(1), 82–89.

    Google Scholar 

  • Mussi, S. V., Silva, R. C., de Oliveira, M. C., Lucci, C. M., de Azevedo, R. B., & Ferreira, L. A. M. (2013). New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. European Journal of Pharmaceutical Sciences, 48(1–2), 282–290.

    CAS  Google Scholar 

  • Musumeci, T., Ventura, C. A., Giannone, I., Ruozi, B., Montenegro, L., Pignatello, R., et al. (2006). PLA/PLGA nanoparticles for sustained release of docetaxel. International Journal of Pharmaceutics, 325(1–2), 172–179.

    CAS  Google Scholar 

  • Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Biocompatibility of engineered nanoparticles for drug delivery. Journal of Controlled Release, 166(2), 182–194.

    CAS  Google Scholar 

  • Nagavarma, B. V. N., Yadav, H. K., Ayaz, A., Vasudha, L. S., & Shivakumar, H. G. (2012). Different techniques for preparation of polymeric nanoparticles-a review. Asian Journal of Pharmaceutical and Clinical Research, 5(3), 16–23.

    CAS  Google Scholar 

  • Narayan, R., Singh, M., Ranjan, O., Nayak, Y., Garg, S., Shavi, G. V., et al. (2016). Development of risperidone liposomes for brain targeting through intranasal route. Life Sciences, 163, 38–45.

    CAS  Google Scholar 

  • Naseri, N., Valizadeh, H., & Zakeri-Milani, P. (2015). Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Advanced pharmaceutical bulletin, 5(3), 305.

    CAS  Google Scholar 

  • Negi, J. S., Chattopadhyay, P., Sharma, A. K., & Ram, V. (2013). Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. European Journal of Pharmaceutical Sciences, 48(1–2), 231–239.

    CAS  Google Scholar 

  • O’driscoll, C. M., & Griffin, B. T. (2008). Biopharmaceutical challenges associated with drugs with low aqueous solubility—The potential impact of lipid-based formulations. Advanced Drug Delivery Reviews, 60(6), 617–624.

    Google Scholar 

  • Pandey, R., Ahmad, Z., Sharma, S., & Khuller, G. K. (2005). Nano-encapsulation of azole antifungals: Potential applications to improve oral drug delivery. International Journal of Pharmaceutics, 301(1–2), 268–276.

    CAS  Google Scholar 

  • Panzarini, E., Inguscio, V., Tenuzzo, B. A., Carata, E., & Dini, L. (2013). Nanomaterials and autophagy: New insights in cancer treatment. Cancers, 5(1), 296–319.

    CAS  Google Scholar 

  • Pardeike, J., Weber, S., Haber, T., Wagner, J., Zarfl, H. P., Plank, H., et al. (2011). Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. International Journal of Pharmaceutics, 419(1–2), 329–338.

    CAS  Google Scholar 

  • Pardeshi, C., Rajput, P., Belgamwar, V., Tekade, A., Patil, G., Chaudhary, K., et al. (2012). Nanonosačinabazičvrstihlipida: Pregled. Acta Pharmaceutica, 62(4), 433–472.

    CAS  Google Scholar 

  • Peng, F., Su, Y., Ji, X., Zhong, Y., Wei, X., & He, Y. (2014). Doxorubicin-loaded silicon nanowires for the treatment of drug-resistant cancer cells. Biomaterials, 35(19), 5188–5195.

    CAS  Google Scholar 

  • Porter, C. J., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipidbased formulations: Optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery, 6, 231–248.

    Google Scholar 

  • Pridgen, E. M., Alexis, F., & Farokhzad, O. C. (2014). Polymeric nanoparticle technologies for oral drug delivery. Clinical Gastroenterology and Hepatology, 12(10), 1605–1610.

    CAS  Google Scholar 

  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26(6).

    Google Scholar 

  • Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control Parameters. Progress in Polymer Science, 36 (7), 887–913.

    Google Scholar 

  • Reis, C. P., Neufeld, R. J., & Veiga, F. (2017). Preparation of drug-loaded polymeric nanoparticles. In Nanomedicine in cancer (pp. 197–240). Pan Stanford.

    Google Scholar 

  • Saha, R. N., Vasanthakumar, S., Bende, G., & Snehalatha, M. (2010). Nanoparticulate drug delivery systems for cancer chemotherapy. Molecular Membrane Biology, 27(7), 215–231.

    CAS  Google Scholar 

  • Saroja, C. H., Lakshmi, P. K., & Bhaskaran, S. (2011). Recent trends in vaccine delivery systems: A review. International Journal of Pharmaceutical Investigation, 1(2), 64.

    CAS  Google Scholar 

  • Schwarz, C. (1999). Solid lipid nanoparticles (SLN) for controlled drug delivery II. Drug incorporation and physicochemical characterization. Journal of Microencapsulation, 16(2), 205–213.

    CAS  Google Scholar 

  • Shah, M., Naseer, M. I., Choi, M. H., Kim, M. O., & Yoon, S. C. (2010). Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation. International Journal of Pharmaceutics, 400(1–2), 165–175.

    CAS  Google Scholar 

  • Silva, A. C., Kumar, A., Wild, W., Ferreira, D., Santos, D., & Forbes, B. (2012). Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 436(1–2), 798–805.

    CAS  Google Scholar 

  • Sun, M., Nie, S., Pan, X., Zhang, R., Fan, Z., & Wang, S. (2014). Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids and Surfaces B: Biointerfaces, 113, 15–24.

    CAS  Google Scholar 

  • Sun, W., Mao, S., Wang, Y., Junyaprasert, V. B., Zhang, T., Na, L., et al. (2010). Bioadhesion and oral absorption of enoxaparin nanocomplexes. International Journal of Pharmaceutics, 386(1–2), 275–281.

    CAS  Google Scholar 

  • Tagami, T., & Ozeki, T. (2017). Recent trends in clinical trials related to carrier-based drugs. Journal of Pharmaceutical Sciences, 106(9), 2219–2226.

    CAS  Google Scholar 

  • Tapeinos, C., Battaglini, M., & Ciofani, G. (2017). Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of Controlled Release, 264, 306–332.

    CAS  Google Scholar 

  • Tariq, M., Alam, M. A., Singh, A. T., Iqbal, Z., Panda, A. K., & Talegaonkar, S. (2015). Biodegradable polymeric nanoparticles for oral delivery of epirubicin: in vitro, ex vivo, and in vivo investigations. Colloids and Surfaces B: Biointerfaces, 128, 448–456.

    CAS  Google Scholar 

  • Taylor, M. J., Tanna, S., & Sahota, T. (2010). In vivo study of a polymeric glucose-sensitive insulin delivery system using a rat model. Journal of Pharmaceutical Sciences, 99(10), 4215–4227.

    CAS  Google Scholar 

  • Thickett, S. C., & Gilbert, R. G. (2007). Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer, 48(24), 6965–6991.

    CAS  Google Scholar 

  • Tofani, R. P., Sumirtapura, Y. C., & Darijanto, S. T. (2016). Formulation, characterisation, and in vitro skin diffusion of nanostructured lipid carriers for deoxyarbutin compared to a nanoemulsion and conventional cream. Scientia Pharmaceutica, 84(4), 634–645.

    CAS  Google Scholar 

  • Tosi, G., Musumeci, T., Ruozi, B., Carbone, C., Belletti, D., Pignatello, R., et al. (2016). The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. Journal of Drug Delivery Science and Technology, 32, 66–76.

    CAS  Google Scholar 

  • Turos, E., Shim, J. Y., Wang, Y., Greenhalgh, K., Reddy, G. S. K., Dickey, S., et al. (2007). Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic & Medicinal Chemistry Letters, 17(1), 53–56.

    CAS  Google Scholar 

  • Üner, M. (2006). Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 61(5), 375–386.

    Google Scholar 

  • Valencia, P. M., Pridgen, E. M., Rhee, M., Langer, R., Farokhzad, O. C., & Karnik, R. (2013). Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano, 7(12), 10671–10680.

    CAS  Google Scholar 

  • Videira, M., Almeida, A. J., & Fabra, À. (2012). Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine: Nanotechnology, Biology and Medicine, 8(7), 1208–1215.

    CAS  Google Scholar 

  • Wang, J. W., & Kuo, Y. M. (2008). Preparation and adsorption properties of chitosan–poly (acrylic acid) nanoparticles for the removal of nickel ions. Journal of Applied Polymer Science, 107(4), 2333–2342.

    CAS  Google Scholar 

  • Wang, X. Q., & Zhang, Q. (2012). PH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 82, 219–229.

    Google Scholar 

  • Wang, Y., Zhu, L., Dong, Z., Xie, S., Chen, X., Lu, M., et al. (2012). Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions. Colloids and Surfaces B: Biointerfaces, 98, 105–111.

    CAS  Google Scholar 

  • Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports, 64(5), 1020–1037.

    CAS  Google Scholar 

  • Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272.

    CAS  Google Scholar 

  • Wissing, S. A., & Müller, R. H. (2003). The influence of solid lipid nanoparticles on skin hydration and viscoelasticity—In vivo study. European Journal of Pharmaceutics and Biopharmaceutics, 56(1), 67–72.

    CAS  Google Scholar 

  • Xu, J., Ganesh, S., & Amiji, M. (2012). Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. International Journal of Pharmaceutics, 427(1), 21–34.

    CAS  Google Scholar 

  • Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2(1), 3.

    CAS  Google Scholar 

  • Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., et al. (1998). Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. Journal of Controlled Release, 50(1–3), 31–40.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the researcher supporting project RUSA – Phase 2.0 grant sanctioned vide Letter No. F.24 51/2014-U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India, Dt.09.10.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanrasu, K. et al. (2020). Synthetic, Natural Derived Lipid Nanoparticles and Polymeric Nanoparticles Drug Delivery Applications. In: Krishnan, A., Chuturgoon, A. (eds) Integrative Nanomedicine for New Therapies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-36260-7_6

Download citation

Publish with us

Policies and ethics