Skip to main content

A Multi-resolution Coarse-to-Fine Segmentation Framework with Active Learning in 3D Brain MRI

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

  • 1672 Accesses

Abstract

Precise segmentation of key tissues in medical images is of great significance. Although deep neural networks have achieved promising results in many medical image segmentation tasks, it is still a challenge for volumetric medical image segmentation due to the limited computing resources and annotated datasets. In this paper, we propose a multi-resolution coarse-to-fine segmentation framework to perform accurate segmentation. The proposed framework contains a coarse stage and a fine stage. The coarse stage with low-resolution data provide high semantic cues for the fine stage. Moreover, we embed active learning processes into coarse-to-fine framework for sparse annotation, the proposed multiple query criteria active learning methods can select high-value slices to label. We evaluated the effectiveness of proposed framework on two public brain MRI datasets. Our coarse-to-fine networks outperform other competitive methods under the condition of fully supervised training. In addition, the proposed active learning method only need 30% to 40% slices of one scan to produce relatively better dense prediction results than non-active learning method and one query criteria active learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 693–701. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_79

    Chapter  Google Scholar 

  4. Roy, A.G., Conjeti, S., Navab, N., et al.: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage 186, 713–727 (2019)

    Article  Google Scholar 

  5. Kumar, S., Conjeti, S., Roy, A.G., et al.: InfiNet: fully convolutional networks for infant brain MRI segmentation. In: ISBI, pp. 145–148 (2018)

    Google Scholar 

  6. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  7. Moeskops, P., et al.: Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_55

    Chapter  Google Scholar 

  8. Wachinger, C., Reuter, M., Klein, T.: DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170, 434–445 (2018)

    Article  Google Scholar 

  9. Milletari, F., et al.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision, pp. 565–571. IEEE (2016)

    Google Scholar 

  10. Huang, Y.J., et al.: HL-FCN: hybrid loss guided FCN for colorectal cancer segmentation. In: ISBI, pp. 195–198 (2018)

    Google Scholar 

  11. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  12. Zhang, Z., Zhang, X., Peng, C., Xue, X., Sun, J.: ExFuse: enhancing feature fusion for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 273–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_17

    Chapter  Google Scholar 

  13. Wang, L., Xie, C., Zeng, N.: RP-Net: a 3D convolutional neural network for brain segmentation from magnetic resonance imaging. IEEE Access 7, 39670–39679 (2019)

    Article  Google Scholar 

  14. Zhu, Z., et al.: A 3D coarse-to-fine framework for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 682–690 (2018)

    Google Scholar 

  15. Yu, Q., et al.: Recurrent saliency transformation network: incorporating multi-stage visual cues for small organ segmentation. In: CVPR, pp. 8280–8289 (2018)

    Google Scholar 

  16. Han, M., et al.: Segmentation of CT thoracic organs by multi-resolution VB-nets. SegTHOR@ ISBI (2019)

    Google Scholar 

  17. Tokunaga, H., et al.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology. In: CVPR, pp. 12597–12606 (2019)

    Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  19. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  20. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze and excitation’ in fully convolutional networks. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  21. Li, X., et al.: Selective Kernel Networks. arXiv preprint arXiv:1903.06586 (2019)

  22. Wu, J., et al.: Active learning with noise modeling for medical image annotation. In: ISBI, pp. 298–301 (2018)

    Google Scholar 

  23. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  24. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  25. Bhalgat, Y., Shah, M., Awate, S.: Annotation-cost minimization for medical image segmentation using suggestive mixed supervision fully convolutional networks. arXiv preprint arXiv:1812.11302 (2018)

  26. Zhang, Z., et al.: A sparse annotation strategy based on attention-guided active learning for 3D medical image segmentation. arXiv preprint arXiv:1906.07367 (2019)

  27. Shao, W., Sun, L., Zhang, D.: Deep active learning for nucleus classification in pathology images. In: ISBI, pp. 199–202 (2018)

    Google Scholar 

  28. Zhou, Z., et al.: Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In: CVPR, pp. 7340–7351 (2017)

    Google Scholar 

  29. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML, pp. 1050–1059 (2016)

    Google Scholar 

  30. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C.: Inherent brain segmentation quality control from fully convnet Monte Carlo sampling. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 664–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_75

    Chapter  Google Scholar 

  31. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 655–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_74

    Chapter  Google Scholar 

  32. Kennedy, D.N., Haselgrove, C., Hodge, S.M., Rane, P.S., Makris, N., Frazier, J.A.: CANDIShare: a resource for pediatric neuroimaging data. Neuroinformatics 10(3), 319–322 (2012)

    Article  Google Scholar 

  33. Frazier, J.A., et al.: Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr. Bull. 34(1), 37–46 (2007)

    Article  Google Scholar 

  34. Rohlfing, T., et al.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

    Article  Google Scholar 

  35. Zhao, Y., et al.: A novel active learning framework for classification: using weighted rank aggregation to achieve multiple query criteria. Pattern Recogn. 93, 581–602 (2019)

    Article  Google Scholar 

  36. Kumar, P., et al.: U-Segnet: fully convolutional neural network based automated brain tissue segmentation tool. In: ICIP, pp. 3503–3507 (2018)

    Google Scholar 

  37. Deng, Y., et al.: A strategy of MR brain tissue images’ suggestive annotation based on modified U-net. arXiv preprint arXiv:1807.07510 (2018)

  38. Chen, H., et al.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2018)

    Article  Google Scholar 

  39. Jiao, Z., et al.: A deep feature based framework for breast masses classification. Neurocomputing 197, 221–231 (2016)

    Article  Google Scholar 

  40. Jiao, Z., et al.: Deep convolutional neural networks for mental load classification based on EEG data. Pattern Recogn. 76, 582–595 (2018)

    Article  Google Scholar 

  41. Zhong, Z., et al.: An attention-guided deep regression model for landmark detection in cephalograms. arXiv preprint arXiv:1906.07549 (2019)

    Google Scholar 

  42. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M., et al. (eds.) DLMIA/ML-CDS-2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61432014, 61772402, U1605252 and 61671339, and in part by National High-Level Talents Special Support Program of China under Grant CS31117200001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Li, J., Zhong, Z., Jiao, Z., Gao, X. (2019). A Multi-resolution Coarse-to-Fine Segmentation Framework with Active Learning in 3D Brain MRI. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics