Skip to main content

microRNA-Mediated Regulation of Plant Vascular Development and Secondary Growth

  • Chapter
  • First Online:
Plant microRNAs

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

Abstract

Secondary or lateral growth, is the biological process that confers girth to stems and roots in plants, which is essential to structurally sustain organs, for water and nutrients transport and continuous plant growth. This process occurs at the expense of the cell division activity in two main lateral meristems—the vascular cambium and the cork cambium. From the activity of cambia, one of the main sources of biomass on Earth, wood, is produced. Given its economic, environmental and societal relevance a great deal of attention has been given to finding regulators of vascular cambium activity and wood formation. Some of the regulatory networks found are under post-transcriptional regulation of gene expression by microRNAs during vasculature formation, cambium activity, and wood formation and in several aspects of vascular development. In this chapter, we will briefly review the current knowledge on microRNAs roles during plant vascular development with a focus on recent work on miRNAs activity in secondary growth in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida T, Menendez E, Capote T et al (2013a) Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues. J Plant Physiol 170:172–178

    Article  CAS  PubMed  Google Scholar 

  • Almeida T, Pinto G, Correia B et al (2013b) QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber. Plant Physiol Biochem 73:274–281

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Serra J, Safronov O, Lim K et al (2019) Tissue-specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark. New Phytol 222:1816–1831

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baima S, Nobili F, Sessa G et al (1995) The expression of the ATHB-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182

    CAS  PubMed  Google Scholar 

  • Baima S, Possenti M, Matteucci A et al (2001) The Arabidopsis ATHB-8 HD-ZIP protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat A, Wall PK, Diloreto S et al (2007) Conservation and divergence of microRNAs in Populus. BMC Genom 8:481

    Article  CAS  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfey PN, Linstead PJ, Roberts K et al (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70

    CAS  PubMed  Google Scholar 

  • Boher P, Soler M, Sánchez A et al (2018) A comparative transcriptomic approach to understanding the formation of cork. Plant Mol Biol 96:103–118

    Article  PubMed  CAS  Google Scholar 

  • Bossinger G, Spokevicius AV (2018) Sector analysis reveals patterns of cambium differentiation in poplar tree stems. J Exp Bot 69:4339–4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campilho A, Nieminen K, Ragni L (2020) The development of the periderm: the final frontier between a plant and its environment. Curr Opin Plant Biol 53:10–14

    Article  CAS  PubMed  Google Scholar 

  • Capote T, Barbosa P, Usié A et al (2018) ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). BMC Plant Biol 18:198

    Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves I, Lin Y-C, Pinto-Ricardo C et al (2014) miRNA profiling in leaf and cork tissues of Quercus suber reveals novel miRNAs and tissue-specific expression patterns. Tree Genet Genomes 10:721–737

    Article  Google Scholar 

  • Chen J, Chen B, Yang X et al (2015a) Association genetics in Populus reveals the interactions between Pt-miR397a and its target genes. Sci Rep 5:11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Quan M, Zhang D (2015b) Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Du Q, Chen J et al (2016a) Dissection of allelic interactions among Pto-miR257 and its targets and their effects on growth and wood properties in Populus. Heredity 117:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xie J, Chen B et al (2016b) Genetic variations and miRNA–target interactions contribute to natural phenotypic variations in Populus. New Phytol 212:150–160

    Article  CAS  PubMed  Google Scholar 

  • Couzigou JM, Combier JP (2016) Plant microRNAs: key regulators of root architecture and biotic interactions. New Phytol 212:22–35

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Lu W, Lu Z et al (2019) Identification and analysis of microRNAs in the SAM and leaves of Populus tomentosa. Forests 10:130

    Article  Google Scholar 

  • Dastidar MG, Mosiolek M, Bleckmann A et al (2016) Sensitive whole mount in situ localization of small RNAs in plants. Plant J 88:694–702

    Article  CAS  Google Scholar 

  • Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives. Ann Bot 30:539–548

    Article  CAS  Google Scholar 

  • Ding Q, Zeng J, He XQ (2014) Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar. BMC Plant Biol 14:267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    CAS  PubMed  Google Scholar 

  • Du J, Miura E, Robischon M et al (2011) The Populus Class III HD ZIP Transcription Factor POPCORONA Affects Cell Differentiation during Secondary Growth of Woody Stems. PLoS ONE 6:e17458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Q, Avci U, Li S et al (2015) Activation of miR165b represses AtHB15 expression and induces pith secondary wall development in Arabidopsis. Plant J 83:388–400

    Article  CAS  PubMed  Google Scholar 

  • Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20:R858–R861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Esau K (ed) (1960) Anatomy of seed plants. Wiley, New York, p 376

    Google Scholar 

  • Evans LM, Slavov GT, Rodgers-Melnick R et al (2014) Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet 46:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Felipo-Benavent A, Úrbez C, Blanco-Touriñán N et al (2018) Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. Development 145:dev164962

    Article  PubMed  CAS  Google Scholar 

  • Graça J, Pereira H (2004) The periderm development in Quercus suber. IAWA J 25:325–335

    Article  Google Scholar 

  • Guo C, Xu Y, Shi M et al (2017) Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. Plant Cell 29:1293–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Xu C, Fu X et al (2018) The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway. Plant Physiol 177:775–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Ilegems M, Douet V, Meylan-Bettex M et al (2010) Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development 137:975–984

    Article  CAS  PubMed  Google Scholar 

  • Inácio V, Martins MT, Graça J et al (2018) Cork oak young and traumatic periderms show PCD typical chromatin patterns but different chromatin-modifying genes expression. Front Plant Sci 9

    Google Scholar 

  • Izhaki A, Bowman JL (2007) KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji L, Liu X, Yan J et al (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7:e1001358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA et al (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung J-H, Reyes JL et al (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  CAS  PubMed  Google Scholar 

  • Klevebring D, Street NR, Fahlgren N et al (2009) Genome-wide profiling of Populus small RNAs. BMC Genom 10:620

    Article  CAS  Google Scholar 

  • Ko J-H, Prassinos C, Han K-H (2006) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol 169:469–478

    Article  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Roy J, Blervacq AS, Créach A et al (2017) Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC Plant Biol 17:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Lu S (2014) Molecular characterization of the SPL gene family in Populus trichocarpa. BMC Plant Biol 14:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liebsch D, Sunaryo W, Holmlund M et al (2014) Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141:4311–4319

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun Y-H, Shi R et al (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Li Q, Wei H et al (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA 110:10848–10853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW et al (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Gonzalez E, Suarez-Lopez P (2012) “And yet it moves”: cell-to-cell and long-distance signaling by plant microRNAs. Plant Sci 196:18–30

    Article  CAS  PubMed  Google Scholar 

  • Mauriat M, Moritz T (2009) Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003

    Article  CAS  PubMed  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    CAS  PubMed  Google Scholar 

  • McConnell JR, Emery J, Eshed Y et al (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • Miguel A, Milhinhos A, Novak et al (2016) The SHORT‐ROOT‐like gene PtSHR2B is involved in Populus phellogen activity. J Exp Bot 67:1545–1555

    Google Scholar 

  • Milhinhos A, Prestele J, Bollhoner B et al (2013) Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem. Plant J 75:685–698

    Article  CAS  PubMed  Google Scholar 

  • Milhinhos A, Vera-Sirera F, Blanco-Touriñán N et al (2019) SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci USA 116:18710–18716

    Article  CAS  Google Scholar 

  • Miyashima S, Koi S, Hashimoto T (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313

    Article  CAS  PubMed  Google Scholar 

  • Miyashima S, Roszak P, Sevilem I et al (2019) Mobile PEAR transcription factors integrate hormone and miRNA cues to prime cambial growth. Nature 565:490–494

    Article  CAS  PubMed  Google Scholar 

  • Natividade JV (ed) (1950) Subericultura. DGSFA, Lisboa

    Google Scholar 

  • Ohashi-Ito K, Fukuda H (2003) HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol 44:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ et al (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25:223–236

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Leal JB, Abreu IA, Alabaça CS et al (2014) A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genom 15:371

    Article  CAS  Google Scholar 

  • Porth I, Klápste J, McKown AD et al (2014) Extensive functional pleiotropy of REVOLUTA substantiated through forward genetics. Plant Physiol 164:548–554

    Article  CAS  PubMed  Google Scholar 

  • Potkar R, Recla J, Busov V (2013) ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochem Biophys Res Commun 431:512–518

    Article  CAS  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM et al (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puzey JR, Karger A, Axtell M et al (2012) Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets. PLoS ONE 7:e33034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Li X, Zhao Y et al (2015) Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata. J Exp Bot 66:3041–3054

    Article  CAS  PubMed  Google Scholar 

  • Quan M, Wang Q, Phangthavong S et al (2016) Association studies in Populus tomentosa reveal the genetic interactions of Pto-MIR156c and its targets in wood formation. Front Plant Sci 7:1159

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan M, Xiao L, Lu W et al (2018) Association genetics in Populus reveal the allelic interactions of Pto-MIR167a and its targets in wood formation. Front Plant Sci 9:744

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan M, Du Q, Xiao L et al (2019) Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus. Plant Biotechnol J 17:302–315

    Article  CAS  PubMed  Google Scholar 

  • Ragni L, Nieminen K, Pacheco-Villalobos D et al (2011) Mobile gibberellin directly stimulates arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran P, Carlsbecker A, Etchells P (2017) Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation. J Exp Bot 68:55–69

    Article  CAS  PubMed  Google Scholar 

  • Ramos AM, Usié A, Barbosa P et al (2018) The draft genome sequence of cork oak. Sci Data 5:180069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall RS, Miyashima S, Blomster T et al (2015) AINTEGUMENTA and the D type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol Open 4:1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe OJ, Riechmann JL, Zhang JZ (2000) INTERFASCICULAR FIBERLESS1 is the same gene as REVOLUTA. Plant Cell 12:315–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Ridoutt BG, Pharis RP, Sands R (1996) Fibre length and gibberellins A1 and A20 are decreased in Eucalyptus globulus by acylcyclohexanedione injected into stem. Physiol Plant 96:559–566

    Article  CAS  Google Scholar 

  • Robischon M, Du J, Miura E, Groover A (2011) The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol 155(3):1214–1225. https://doi.org/10.1104/pp.110.167007

    Article  CAS  Google Scholar 

  • Rodriguez RE, Ercoli MF, Debernardi JM et al (2015) MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27:3354–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi J, Watanabe Y (2012) miR165/166 and the development of land plants. Dev Growth Differ 54:93–99

    Article  CAS  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V et al (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  • Shi W, Quan M, Du Q et al (2017) The interactions between the long non-coding RNA NERDL and its target gene affect wood formation in Populus tomentosa. Front Plant Sci 8:1035

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi D, Lebovka I, López-Salmerón V et al (2019) Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 146:dev171355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smetana O, Mäkilä R, Lyu M et al (2019) High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485–489

    Article  CAS  PubMed  Google Scholar 

  • Soler M, Serra O, Molinas M et al (2007) A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144:419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundell D, Street NR, Kumar M et al (2017) AspWood: High-spatial-resolution rranscriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29:1585–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira RT, Fortes AM, Bai H et al (2018) Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection. Planta 247:317–338

    Article  PubMed  CAS  Google Scholar 

  • Thamm A, Sanegre-Sans S, Paisley J et al (2019) A simple mathematical model of allometric exponential growth describes the early three-dimensional growth dynamics of secondary xylem in Arabidopsis roots. Roy Soc Open Sci 6:190126

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian J, Chen J, Li B et al (2016) Association genetics in Populus reveals the interactions between Pto-miR160a and its target Pto-ARF16. Mol Genet Genomics 291:1069–1082

    Article  CAS  PubMed  Google Scholar 

  • Todesco M, Balasubramanian S, Cao J et al (2012) Natural variation in biogenesis efficiency of individual Arabidopsis thaliana microRNAs. Curr Biol 22:166–170

    Article  CAS  PubMed  Google Scholar 

  • Tuominen H, Puech L, Fink S et al (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uggla C, Moritz T, Sandberg G et al (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vulavala VK, Fogelman E, Faigenboim A et al (2019) The transcriptome of potato tuber phellogen reveals cellular functions of cork cambium and genes involved in periderm formation and maturation. Sci Rep 9:10216 

    Google Scholar 

  • Wang H, Avci U, Nakashima J et al (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA 107:22338–22343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Park MY, Wang LJ et al (2011) MicroRNA control of vegetative phase change in trees. PLoS Genet 2:e1002012

    Article  CAS  Google Scholar 

  • Wang C, Zhang S, Yu Y et al (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J 12:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Wareing PF (1958) Interaction between indole-acetic and gibberellic acid in cambial activity. Nature 181:1744–1745

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Jurgens G (2002) Stem cells that make stems. Nature 415:751–754

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderling A, Ripper D, Barra-Jimenez A et al (2018) A molecular framework to study periderm formation in Arabidopsis. New Phytol 219:216–229

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Quan M, Du Q et al (2017) Allelic Interactions among Pto-MIR475b and its four target genes potentially affect growth and wood properties in Populus. Front Plant Sci 8

    Google Scholar 

  • Xu C, Shen Y, He F et al (2018) Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytol 222:752–767

    Article  CAS  Google Scholar 

  • Yang X, Du Q, Chen J et al (2015) Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1. Planta 242:77–95

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Barbier de Reuille P, Lane B et al (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29:75–87

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang X (2012) Argonautes compete for miR165/166 to regulate shoot apical meristem development. Curr Opin Plant Biol 15:652–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Lin S, Qiu Z et al (2015) MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol 169:2539–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Ye ZH (1999) IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis encodes a homeodomain-leucine zipper protein. Plant Cell 11:2139–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Ye ZH (2004) Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385

    Article  CAS  PubMed  Google Scholar 

  • Zhou G-K, Kubo M, Zhong R et al (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Honda M, Zhu H et al (2015) Spatiotemporal sequestration of miR165/166 by Arabidopsis argonaute10 promotes shoot apical meristem maintenance. Cell Rep 10:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Hu F, Wang R et al (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Song D, Sun J (2013) PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Mol Plant 6:1331–1343

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Song D, Xu P et al (2018) A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnol J 16:808–817

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank funding from Fundação para a Ciência e Tecnologia, in the form of CEEC/IND/00175/2017 contract to Ana Milhinhos, Ph.D. fellowship PD/BD/114359/2016 to Susana Lopes, GREEN-it (grant no. UID/Multi/04551/2013) and BioISI (grant no. UID/Multi/04046/2019). The authors apologise to authors whose work could not be included in this review due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Milhinhos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milhinhos, A., Lopes, S., Miguel, C. (2020). microRNA-Mediated Regulation of Plant Vascular Development and Secondary Growth. In: Miguel, C., Dalmay, T., Chaves, I. (eds) Plant microRNAs. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-35772-6_8

Download citation

Publish with us

Policies and ethics