Skip to main content

Pollution Remediation by Way of Using Genetically Modified Plants (GMPs)

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

As the process of man’s intervention on the environment is accelerated and enhances the range of industrial activities and the use of chemical agents to improve the yield of agricultural crops, pollution becomes an increasingly evident global problem that challenges the humanity and is difficult to solve. Not only human health is negatively affected but also all the ecosystem, involving other forms of life, soil, water, air, etc. In order to propose solutions to deal with heavy metals, explosives, industrial solvents, herbicides, and related pollutants, the recombinant DNA technology is a very important tool. It allows the development of transgenic organism able to eliminate the toxic residues from the environment. Transgenic plants deserve to be highlighted once their capacity to contribute can surpass the one offered by microorganisms in the uptake, transforming and limiting the toxicity of these contaminants being also a cost-effective strategy. This chapter aims to briefly review phytoremediation to remove, transform, or stabilize contaminants and its relevance to deal with persistent pollution capable of severely damaging life on earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14

    Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev Environ Sci Biotechnol 3:71–90

    CAS  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Voytas DF (2017) Genome engineering and agriculture: opportunities and challenges. Prog Mol Biol Transl Sci 149:1–26

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benbrook CM (2012) Impacts of genetically engineered crops on pesticide use in the U.S.—the first sixteen years. Environ Sci Eur 24:24–29

    Article  CAS  Google Scholar 

  • Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lee Y, Liu JR (2011) Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue Organ Cult 107:69–77

    Article  CAS  Google Scholar 

  • Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36:882–897

    Article  CAS  PubMed  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natal Acad Sci U S A 97:6287–6291

    Article  CAS  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Article  CAS  Google Scholar 

  • Forsyth A, Weeks T, Richael C, Duan H (2016) Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 7:1572–1576

    Article  PubMed  PubMed Central  Google Scholar 

  • French CJ, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  CAS  PubMed  Google Scholar 

  • Gaitán-Solís E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP (2015) Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci 6:492–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles J, Rylott EL (2008) Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bi-functional O and C-glucosyltransferases. Plant J 56:963–974

    Article  CAS  PubMed  Google Scholar 

  • Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing gsh1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JAH, Shanks JV, Bruce NC (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremediation 9:385–401

    Article  CAS  PubMed  Google Scholar 

  • Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury- and Methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509

    Article  CAS  Google Scholar 

  • Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593–599

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Su CC, Hsieh JL, Tseng CP, Lin PJ, Chang JS (2003) Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins. Enzym Microb Technol 33:379–385

    Article  CAS  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inui H, Ohkawa H (2005) Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Pest Manag Sci 61:286–291

    Article  CAS  PubMed  Google Scholar 

  • Jackson EG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 104:16822–16827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari M, Danesh YR, Goltapeh EM, Varma A (2013) Bioremediation and genetically modified organisms. In: Goltapeh E, Danesh Y, Varma AM (eds) Fungi as bioremediators. Springer, Berlin, pp 433–450

    Chapter  Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Phytoremediation of herbicide atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6 and CYP2C19. J Agric Food Chem 54:2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Keshavareddy G, Kumar ARV, Ramu VS (2018) Methods of plant transformation—a review. Int J Curr Microbiol App Sci 7:2656–2668

    Article  CAS  Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  PubMed  Google Scholar 

  • Kurumata M, Takahashi M, Sakamoto A, Ramos JL, Nepovim A, Vanek T, Hirata T, Morikawa H (2005) Tolerance to, and uptake and degradation of 2,4,6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch C 60:272–278

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang CY, Tagmount A, deSouza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    Article  CAS  Google Scholar 

  • Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the ZNT1 zinc transporter from the metal Hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One 11:e0149750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99–108

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Deng X, Quan L, Xia Y, Shen Z (2015) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Technol 11:843–872

    Article  CAS  Google Scholar 

  • Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Müller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355

    Article  CAS  PubMed  Google Scholar 

  • Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Mendes KF, Régo APJ, Takeshita V, Tornisielo VL (2019) Water resource pollution by herbicide residues. IntechOpen. https://doi.org/10.5772/intechopen.85159

    Google Scholar 

  • Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot 65:1551–1564

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    Article  CAS  PubMed  Google Scholar 

  • Mohanty D, Chandra A, Tandon R (2016) Germline transformation for crop improvement. In: Rajpal VR, Rao SR, Raina SN (eds) Molecular breeding for sustainable crop improvement. Springer, Cham, pp 178–183

    Google Scholar 

  • Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agr 63:299–311

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504–1511

    Article  PubMed Central  CAS  Google Scholar 

  • Pesantes AA, Carpio EP, Vitvar T, López MMM, Menéndez-Aguado JM (2019) A multi-index analysis approach to heavy metal pollution assessment in river sediments in the ponce enríquez area, Ecuador. Water 11:590–596

    Article  CAS  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu Q, Sun JQ, Zhang FF, Wen XY, Liu WH, Huang CM (2019) Effects of copper mining on heavy metal contamination in a rice agrosystem. Acta Geochim 2019:1–21

    Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144–149

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Llorente ID, Lafuente A, Doukkali B, Caviedes MA, Pajuelo E (2012) Engineering copper hyperaccumulation in plants by expressing a prokaryotic cop C gene. Environ Sci Technol 46:12088–12097

    Article  PubMed  CAS  Google Scholar 

  • Rosculete CA, Bonciu E, Rosculete E, Olaru LA (2019) Determination of the environmental pollution potential of some herbicides by the assessment of cytotoxic and genotoxic effects on Allium cepa. Int J Environ Res Public Health 16:75–85

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals—using plants to clean up the environment. Wiley, New York, pp 151–171

    Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particulate Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Shim D, Kim S, Choi YI, Song WY, Park J, Youk ES, Jeong S-C, Martinoia E, Noh E-W, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90:1478–1486

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2013) Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM (2014) AtHMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Park J, Eisenach C, Maeshima M, Lee Y, Martinoia E (2014) ABC transporters and heavy metals. In: Geisler M (ed) Plant ABC transporters, Signaling and communication in plants, vol 22. Springer, Cham, pp 1–17

    Chapter  Google Scholar 

  • Southgate EM, Davey MR, Power JB, Marchant R (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13:631–651

    Article  CAS  PubMed  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K, Suzui N, Kawachi N, Ishii S, Yin YG, Fujimaki S, Yano M, Nishizawa NK, Nakanishi H (2014) From Laboratory to Field: OsNRAMP5-Knockdown Rice Is a Promising Candidate for Cd Phytoremediation in Paddy Fields. PLoS ONE 9(6):1–7. https://doi.org/10.1371/journal.pone.0098816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi P, Singh PK, Mishra S, Gautam N, Dwivedi S, Chakrabarty D, Tripathi RD (2015) Recent advances in the expression and regulation of plant metallothioneins for metal homeostasis and tolerance. In: Chandra R (ed) Environmental waste management. CRC Press, New York, pp 551–564

    Chapter  Google Scholar 

  • Vázquez-Luna D, Cuevas-Díaz MC (2019) Soil contamination and alternatives for sustainable development. In: Vázquez-Luna D, Cuevas-Díaz MC (eds) Soil contamination and alternatives for sustainable development. IntechOpen, London. https://doi.org/10.5772/intechopen.83720

    Chapter  Google Scholar 

  • Wan X, Lei M, Chen T (2016) Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 564:796–802

    Article  CAS  Google Scholar 

  • Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3:475–486

    Article  CAS  PubMed  Google Scholar 

  • Weaver JC (1995) Electroporation theory. In: Nickoloff JA (ed) Methods in molecular biology. Plant cell electroporation and electrofusion protocols. Humana, Totowa, pp 3–28

    Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta Biomembr 1465:104–126

    Article  CAS  Google Scholar 

  • Wordragen MV, Shakya R, Verkerk R, Peytavis R, Kammen AV, Zabel P (1997) Liposome-mediated transfer of YAC DNA to tobacco cells. Plant Mol Biol Rep 15:170–178

    Article  Google Scholar 

  • Xia Y, Qi Y, Yuan Y, Wang G, Cui J, Chen Y, Zhang H, Shen Z (2012) Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. J Hazard Mater 234:65–71

    Article  CAS  Google Scholar 

  • Zaidi SS, Mansoor S (2017) Viral vectors for plant genome engineering. Front Plant Sci 8:539–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang M, Tian S, Lu L, Shohag MJI, Yang X (2014) Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS One 9:e102750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Yu R, Fu S, Wu Z, Chen HYH, Liu H (2019) Spatial heterogeneity of heavy metal contamination in soils and plants in Hefei, China. Sci Rep 1049:2045–2051

    Google Scholar 

  • Zhu Y, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999b) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Ziemienowicz A (2010) Plant transgenesis. Methods Mol Biol 631:253–268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tonelli, F.M.P., Tonelli, F.C.P. (2020). Pollution Remediation by Way of Using Genetically Modified Plants (GMPs). In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_15

Download citation

Publish with us

Policies and ethics