Skip to main content

Carbon Nanotubes: Their Antimicrobial Properties and Applications in Bone Tissue Regeneration

  • Chapter
  • First Online:

Abstract

Carbon nanotubes (CNTs) possess unique physicochemical properties that are suitable for a variety of uses in manufacturing, environmental, and biomedical applications, as well as in the food and agriculture industries. The uses and manufacturing of CNTs are increasing due to advances in the large-scale production of CNTs and the development of various CNT-added composites. The antimicrobial activities and potential applications of CNTs and CNT-based materials as antimicrobials have recently attracted great interest. In this mini review, we first introduce the commonly seen nanotechnology-based antimicrobial materials, especially carbon-based nanomaterials such as CNTs, fullerenes, and graphene. Next, the history of the antimicrobial studies of CNTs is briefly described, followed by an overview of CNT toxicity. The antimicrobial properties of single-walled and multi-walled CNTs and the antimicrobial mechanisms of CNTs are summarized and discussed. The future challenges and potential applications of CNTs in bone tissue engineering and antimicrobial applications are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  2. Rodriguez-Fernandez L, Valiente R, Gonzalez J, Villegas JC, Fanarraga ML (2012) Multiwalled carbon nanotubes display microtubule biomimetic properties in vivo, enhancing microtubule assembly and stabilization. ACS Nano 6(8):6614–6625

    Article  CAS  PubMed  Google Scholar 

  3. Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58(14):1460–1470

    Article  CAS  PubMed  Google Scholar 

  4. Pagona G, Tagmatarchis N (2006) Carbon nanotubes: materials for medicinal chemistry and biotechnological applications. Curr Med Chem 13(15):1789–1798

    Article  CAS  PubMed  Google Scholar 

  5. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413

    Article  CAS  PubMed  Google Scholar 

  6. Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479

    Article  CAS  PubMed  Google Scholar 

  7. Venkatesan J, Jayakumar R, Mohandas A, Bhatnagar I, Kim SK (2014) Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials (Basel) 7(5):3946–3955

    Article  CAS  Google Scholar 

  8. Spizzirri UG, Hampel S, Cirillo G, Mauro MV, Vittorio O, Cavalcanti P, Giraldi C, Curcio M, Picci N, Iemma F (2015) Functional gelatin-carbon nanotubes nanohybrids with enhanced antibacterial activity. Int J Polym Mater Polym Biomater 64(9):439–447

    Article  CAS  Google Scholar 

  9. Chaudhari AA, Jasper SL, Dosunmu E, Miller ME, Arnold RD, Singh SR, Pillai S (2015) Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J Nanobiotechnology 13:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yang C, Mamouni J, Tang Y, Yang L (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20):16013–16019

    Article  CAS  PubMed  Google Scholar 

  11. Azizian J, Hekmati M, Dadras OG (2014) Functionalization of carboxylated multiwall nanotubes with dapsone derivatives and study of their antibacterial activities against E. coli and S. aureus. Orient J Chem 30(2):667–673

    Article  CAS  Google Scholar 

  12. Shahriary L, Nair R, Sabharwal S, Athawale AA (2015) One-step synthesis of Ag–reduced graphene oxide–multiwalled carbon nanotubes for enhanced antibacterial activities. New J Chem 39(6):4583–4590

    Article  CAS  Google Scholar 

  13. Yang X, Ebrahimi A, Li J, Cui Q (2014) Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomedicine 9:77–92

    Article  PubMed  CAS  Google Scholar 

  14. Mizuno K, Zhiyentayev T, Huang L, Khalil S, Nasim F, Tegos GP, Gali H, Jahnke A, Wharton T, Hamblin MR (2011) Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J Nanomed Nanotechnol 2(2):1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mizuno T, Masuda Y, Irie K (2015) The Saccharomyces cerevisiae AMPK, Snf1, negatively regulates the Hog1 MAPK pathway in ER stress response. PLoS Genet 11(9):e1005491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, Hamblin MR (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12(10):1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23

    PubMed  PubMed Central  Google Scholar 

  18. Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22(1):105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scorciapino MA, Pirri G, Vargiu AV, Ruggerone P, Giuliani A, Casu M, Buerck J, Wadhwani P, Ulrich AS, Rinaldi AC (2012) A novel dendrimeric peptide with antimicrobial properties: structure-function analysis of SB056. Biophys J 102(5):1039–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bertero A, Boni A, Gemmi M, Gagliardi M, Bifone A, Bardi G (2014) Surface functionalisation regulates polyamidoamine dendrimer toxicity on blood–brain barrier cells and the modulation of key inflammatory receptors on microglia. Nanotoxicology 8(2):158–168

    Article  CAS  PubMed  Google Scholar 

  21. Kumar MS, Karthikeyan S, Ramprasad C, Aruna PR, Mathivanan N, Velmurugan D, Ganesan S (2015) Investigation of phloroglucinol succinic acid dendrimer as antimicrobial agent against Staphylococcus Aureus, Escherichia Coli and Candida Albicans. Nano Biomed Eng 7(2):62–74

    Article  CAS  Google Scholar 

  22. Yun H, Kim JD, Choi HC, Lee CW (2013) Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull Korean Chem Soc 34(11):3261–3264

    Article  CAS  Google Scholar 

  23. Shankar S, Teng X, Rhim JW (2014) Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr Polym 114:484–492

    Article  CAS  PubMed  Google Scholar 

  24. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  25. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101

    Article  PubMed  CAS  Google Scholar 

  26. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1):1–16

    Article  CAS  PubMed  Google Scholar 

  27. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sui M, Zhang L, Sheng L, Huang S, She L (2013) Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci Total Environ 452-453:148–154

    Article  CAS  PubMed  Google Scholar 

  29. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine 5:277–283

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43(12):4355–4360

    Article  CAS  PubMed  Google Scholar 

  31. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3(3):351–358

    Article  CAS  PubMed  Google Scholar 

  33. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131

    Article  CAS  PubMed  Google Scholar 

  34. Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M (2008) Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Acta Biomater 4(6):1593–1602

    Article  CAS  PubMed  Google Scholar 

  35. Jain KK (2012) Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin Drug Discov 7(11):1029–1037

    Article  CAS  PubMed  Google Scholar 

  36. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  CAS  PubMed  Google Scholar 

  37. Rangari VK, Mohammad GM, Jeelani S, Hundley A, Vig K, Singh SR, Pillai S (2010) Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications. Nanotechnology 21(9):095102

    Article  PubMed  CAS  Google Scholar 

  38. Afzal MA, Kalmodia S, Kesarwani P, Basu B, Balani K (2013) Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites. J Biomater Appl 27(8):967–978

    Article  PubMed  Google Scholar 

  39. Nie C, Cheng C, Ma L, Deng J, Zhao C (2016) Mussel-inspired antibacterial and biocompatible silver-carbon nanotube composites: green and universal nanointerfacial functionalization. Langmuir 32(23):5955–5965

    Article  CAS  PubMed  Google Scholar 

  40. Sivaraj D, Vijayalakshmi K (2017) Preferential killing of bacterial cells by hybrid carbon nanotube-MnO2 nanocomposite synthesized by novel microwave assisted processing. Mater Sci Eng C Mater Biol Appl 81:469–477

    Article  CAS  PubMed  Google Scholar 

  41. Pandiyan R, Mahalingam S, Ahn YH (2019) Antibacterial and photocatalytic activity of hydrothermally synthesized SnO2 doped GO and CNT under visible light irradiation. J Photochem Photobiol B 191:18–25

    Article  CAS  PubMed  Google Scholar 

  42. Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9(16):2735–2746

    Article  CAS  PubMed  Google Scholar 

  43. Zardini HZ, Davarpanah M, Shanbedi M, Amiri A, Maghrebi M, Ebrahimi L (2014) Microbial toxicity of ethanolamines—multiwalled carbon nanotubes. J Biomed Mater Res A 102(6):1774–1781

    Article  PubMed  CAS  Google Scholar 

  44. Lohan S, Raza K, Singla S, Chhibber S, Wadhwa S, Katare OP, Kumar P, Singh B (2016) Studies on enhancement of anti-microbial activity of pristine MWCNTs against pathogens. AAPS PharmSciTech 17(5):1042–1048

    Article  CAS  PubMed  Google Scholar 

  45. Vt A, Paramanantham P, Sb SL, Sharan A, Alsaedi MH, Dawoud TMS, Asad S, Busi S (2018) Antimicrobial photodynamic activity of rose Bengal conjugated multi walled carbon nanotubes against planktonic cells and biofilm of Escherichia coli. Photodiagn Photodyn Ther 24:300–310

    Article  CAS  Google Scholar 

  46. Kim KI, Kim DA, Patel KD, Shin US, Kim HW, Lee JH, Lee HH (2019) Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci Rep 9(1):4921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnology 2012:7

    Google Scholar 

  48. Chaudhari AA, Ashmore D, Nath SD, Kate K, Dennis V, Singh SR, Owen DR, Palazzo C, Arnold RD, Miller ME, Pillai SR (2016) A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J Nanobiotechnology 14(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Booshehri AY, Wang R, Xu R (2013) The effect of re-generable silver nanoparticles/multi-walled carbon nanotubes coating on the antibacterial performance of hollow fiber membrane. Chem Eng J 230:251–259

    Article  CAS  Google Scholar 

  50. Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B Biointerfaces 92:196–202

    Article  CAS  PubMed  Google Scholar 

  51. Qi XB, Gunawan P, Xu R, Chang MW (2012) Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties. Chem Eng Sci 84:552–556

    Article  CAS  Google Scholar 

  52. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  PubMed  Google Scholar 

  53. Alpatova AL, Shan W, Babica P, Upham BL, Rogensues AR, Masten SJ, Drown E, Mohanty AK, Alocilja EC, Tarabara VV (2010) Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res 44(2):505–520

    Article  CAS  PubMed  Google Scholar 

  54. Fadel TR, Steenblock ER, Stern E, Li N, Wang X, Haller GL, Pfefferle LD, Fahmy TM (2008) Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett 8(7):2070–2076

    Article  CAS  PubMed  Google Scholar 

  55. Koyama S, Kim YA, Hayashi T, Takeuchi K, Fujii C, Kuroiwa N, Koyama H, Tsukahara T, Endo M (2009) In vivo immunological toxicity in mice of carbon nanotubes with impurities. Carbon 47(5):1365–1372

    Article  CAS  Google Scholar 

  56. Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171

    Article  CAS  PubMed  Google Scholar 

  57. Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P (2018) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:422

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med 2015:246012

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nederberg F, Zhang Y, Tan JP, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang YY (2011) Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem 3(5):409–414

    Article  CAS  PubMed  Google Scholar 

  60. Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 36(1):22–32

    PubMed  Google Scholar 

  61. Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Ogiwara N, Nakamura K, Ishigaki N, Kato H, Taruta S, Endo M (2008) Carbon nanotubes for biomaterials in contact with bone. Curr Med Chem 15(5):523–527

    Article  CAS  PubMed  Google Scholar 

  62. Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R (2002) Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res 59(3):499–506

    Article  CAS  PubMed  Google Scholar 

  63. Bajaj P, Khang D, Webster TJ (2006) Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane. Int J Nanomedicine 1(3):361–365

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG (2006) Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 7(7):2237–2242

    Article  CAS  PubMed  Google Scholar 

  65. Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q (2011) Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Colloids Surf B Biointerfaces 83(2):367–375

    Article  CAS  PubMed  Google Scholar 

  66. Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115(8):1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, Sun YP, Cheng SH (2009) Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235(2):216–225

    Article  CAS  PubMed  Google Scholar 

  68. Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Ke PC, Rao AM, Klaine SJ (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41(8):3025–3029

    Article  CAS  PubMed  Google Scholar 

  69. Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XS (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3(6):347–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Office of the Assistant Secretary of Defense for Health Affairs, through the Peer Reviewed Medical Research Program, Discovery Awards under Award Nos. W81XWH1710603 and W81XWH1810203. We also acknowledge the financial support from WVU PSCoR and WVCTSI. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the funding agencies. We thank Suzanne Danley for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, P., Xing, M., Li, B. (2020). Carbon Nanotubes: Their Antimicrobial Properties and Applications in Bone Tissue Regeneration. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_9

Download citation

Publish with us

Policies and ethics