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Abstract

Prostate cancer (PC) is the most commonly diagnosed non-cutaneous cancer and the second 

leading cause of cancer-related to death in men. The major risk factors for PC are age, family 

history, and African American ethnicity. Epidemiological studies have reported large geographical 

variations in PC incidence and mortality, and thus lifestyle and dietary factors influence PC risk. 

High fat diet, dairy products, alcohol and red meats, are considered as risk factors for PC. This 

book chapter provides a comprehensive, literature-based review on dietary factors and their 

molecular mechanisms of prostate carcinogenesis. A large portion of our knowledge is based on 

epidemiological studies where dietary factors such as cancer promoting agents, including high-fat, 

dairy products, alcohol, and cancer-initiating genotoxicants formed in cooked meats have been 

evaluated for PC risk. However, the precise mechanisms in the etiology of PC development remain 

uncertain. Additional animal and human cell-based studies are required to further our 

understandings of risk factors involved in PC etiology. Specific biomarkers of chemical exposures 

and DNA damage in the prostate can provide evidence of cancer-causing agents in the prostate. 

Collectively, these studies can improve public health research, nutritional education and 

chemoprevention strategies

Introduction

The World Health Organization (WHO) has reported that prostate cancer (PC) is the second 

most common cancer in men worldwide, with an estimated 1.1 million incident cases and 

0.3 million deaths occurring in 2012 [1]. PC is more commonly diagnosed in economically 

developed countries, which may be attributed to more extensive PC screening programs. The 

major risk factors identified for PC include increased incidence with age, family history, and 

ethnicity, with African-American men having a two-time higher risk compared to 

Caucasians [2]. The occurrence of PC varies widely worldwide. Many studies of migrant 

populations show a significant increase in the incidence of PC and mortality rates in 

migrants from regions of the world with a low prevalence of PC, following their relocation 

to countries with high risk for PC, suggesting that environmental or dietary factors influence 

the risk factors for PC development [3]. The frequent consumption of high-fat diets from 

dairy products and red meats and alcohol are implicated as risk factors for PC [4]. However, 
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the precise role of dietary factors and specific chemicals in the diet and mechanisms 

involved in the development of this malignancy remain unclear.

The diet as a risk factor for human PC

High-fat diet

Dietary fat and several fatty acids are postulated to play a role in PC etiology and tumor 

progression, although the findings of epidemiologic studies are inconsistent. Some studies 

found a strong positive association between fat consumption, PC incidence and mortality 

[5-10], whereas other investigations have not detected a correlation [11-14].

Several studies conducted in vivo in animal models and in vitro have shown a role for a 

high-fat diet in the development and progression of PC. Tissue culture medium conditioned 

with adipose tissue obtained from mice fed with high-fat Western-style foods enhanced cell 

proliferation, migration, and invasion of human prostate cancer cells in vitro [15, 16]. In the 

transgenic adenocarcinoma mouse prostate (TRAMP) and xenograft models, circulating 

adipokine and cytokine alterations and other factors induced by a high-fat diet contributed to 

PC progression [15-18]. Although strong evidence supports the effects of a high-fat diet on 

PC development and progression, the exact mechanism(s) by which a high-fat diet 

underlines PC etiology remain uncertain. Several hypotheses proposed include intake of 

fatty acids, resulting in inflammation, induction of oxidative stress, and cell signaling 

alteration.

Fatty acids

Fatty acids, such as n-3, and n-6 polyunsaturated fatty acids, and their metabolites are 

involved in numerous pathways that can affect PC development and progression. For 

example, n-6 fatty acids linoleic acid and arachidonic acid enhance proliferation of human 

prostate cell lines [19, 20]. Moreover, n-6 fatty acids are precursors of eicosanoids, which 

are converted to prostaglandins (PGs). The n-6 fatty acid arachidonic acid is metabolized by 

the enzyme cyclooxygenase (Cox-1 and Cox-2) to form prostaglandin E2 (PGE2) [21]. 

PGE2 is a short-lived hormone-like molecule involved in cell proliferation, cell 

differentiation and inflammation [21]. Notably, the growth stimulation of PC cells, by 

treatment with arachidonic acid, is correlated to the induction of COX2 expression and an 

increased synthesis of PGE2 [19, 22]. At the molecular level, PGE2 binds to its EP4 and 

EP2 receptors, resulting in the subsequent activation of the protein kinase A (PKA) pathway, 

which leads to expression of early growth-related response genes including c-fos [23]. 

Arachidonic acid also activates the phosphatidylinositol-4,5-bisphosphate 3-kinase signaling 

pathway (PI3K/Akt) [20]. The PI3K/Akt cascade is involved in the progression and 

aggressiveness of PC. In fact, after long-term androgen deprivation therapy, there is 

constitutive activation of the PI3K/Akt pathway, a mechanism that leads to increased 

resistance of tumor cells to apoptosis [24, 25]. The activation of the PI3K/Akt pathway by 

arachidonic acid in human prostate cells also results in the activation of the Nuclear Factor 

Kappa Beta (NF-κB) cascade [20]. The induction of the NF-κB pathway increases cell 

resistance to chemotherapy and radiation therapy. Moreover, the activation of NF-κB also 
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stimulates tumor cell growth, the inhibition of apoptosis, and enhances tumor invasion, 

metastasis, and angiogenesis [26] (Figure 1).

In contrast to the n-6 polyunsaturated fatty acids, n-3 long-chain fatty acids protect against 

PC development. For example, a significant decrease in the growth of PC xenografts occurs 

in nude mice fed with a diet containing high levels of eicosapentaenoic and docosahexaenoic 

acids [27]. These effects have been supported by in vitro studies where both 

eicosapentaenoic acid and docosahexaenoic acid inhibit the proliferation of human PC cell 

lines [19, 28]. Moreover, eicosapentaenoic acid and docosahexaenoic acid prevent the 

progression of human prostate cells toward an aggressive androgen-independent phenotype. 

At the molecular level, eicosapentaenoic and docosahexaenoic acid treatments inhibit the 

PI3K/Akt signaling pathway and decrease expression of the androgen receptor (AR), a 

master regulator of prostate cell proliferation and PC development [29].

Inflammation

Inflammation often occurs in the prostates of aging men, and plays a critical role in the 

development of benign prostatic hyperplasia and PC incidence [30-32]. Androgen levels, 

genetic predisposition, obesity, and a high-fat diet are associated with prostatic hyperplasia 

and PC [33].

The association between a high-fat diet, the induction of inflammation, and PC markers have 

been reported in several in vivo studies. Prostatic inflammation correlates with cell 

proliferation and an increase in prostate gland size of mice consuming a high-fat diet [34, 

35]. Consumption of a high-fat diet also elevates ataxin levels in the adipose tissue, leading 

to a significant increase in the production of lysophosphatidic acid, which can act directly on 

the prostate and induce hyperplasia and cell proliferation [36].

While inflammation is associated with an enhancement of PC development, there is not a 

clear understanding of the mechanisms involved in this effect. Several studies have reported 

the involvement of immune cells and the production of pro-inflammatory cytokines. In 

clinical studies, patients with benign prostatic hyperplasia contain infiltrates of 

macrophages, T-lymphocytes, and B-lymphocytes that are chronically activated [37]. These 

infiltrating cells produce cytokines including IL-2, IFN-γ IL-6, IL-8, IL-17, and TGF-β that 

maintain a chronic immune response and induce persistent intra-prostatic inflammation and 

fibromuscular growth by an autocrine or paracrine effect [38, 39]. These pro-inflammatory 

cytokines can modulate prostate growth in mice fed a high-fat diet [40] and correlate with 

the production of pro-inflammatory cytokines such as IL-1α, IL-1β, IL-6, IL-17 and TNF-α 
[41, 42]. These cytokines can induce prostate growth through induction of secondary 

mediators such as Cox-2. For example, IL-17 serves to stabilize and increase the enzymatic 

activity of Cox-2 [43]. Of note, the induction of Cox-2 expression in the prostate epithelium 

is associated with increased cell proliferation and apoptotic resistance [44]. Furthermore, the 

treatment of human prostate cells in vitro with serum obtained from obese mice containing 

elevated levels of pro-inflammatory cytokines promotes cell proliferation, invasion, 

migration and, epithelial-mesenchymal transition [45].
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Oxidative stress

A disproportionate generation of reactive oxygen species (ROS) causes tissue injury, DNA 

damage, and post-translational DNA modifications, which can lead to neoplasia in the 

human prostate [46, 47]. ROS are generated from the mitochondrial respiratory chain, an 

uncontrolled arachidonic acid cascade, and NADPH oxidase [33]. The expression of 

NADPH oxidase subunits such as gp91phox, p47phox, and p22phox is increased in the 

prostates of mice fed a high-fat diet, [34]. Also of note, human PC cells harbor an increased 

level of ROS compared to normal prostate cells [48]. The ROS activity correlates with 

dysregulation of the NADPH oxidase system, which is a critical event for the malignant 

phenotype of human PC cells [47, 49-52].

At the molecular level, continual oxidative stress leads to the activation of two critical 

signaling pathways: the signal transducer and activator of transcription (STAT-3) and NF-κB 

pathways [33]. The activation of both cascades leads to the expression of transcription 

factors required for regulating genes involved in proliferation, survival, angiogenesis, 

invasion, and inflammation [53] (Figure 2).

A high-fat diet also leads to increased activation of NF-κB in many organs of mice, 

including prostate [54]. In humans, there is constitutive activation of NF-κB in prostate 

adenocarcinoma [55]. Moreover, this constitutive activation is associated with upregulation 

of pro-survival molecules including Bcl-2, Bcl-XL, and Mcl-1 [56]. Similarly, increased 

STAT-3 activation and its DNA binding occur in the prostate of mice fed a high-fat diet [57]. 

In human PC cells, the inhibition of STAT-3 results in the inhibition of cell proliferation and 

a significant decrease in cell viability [58].

Dairy products

Several epidemiological studies have reported that frequent intake of high-fat dairy products 

is associated with an increased risk of developing PC [59-61]; however, other studies failed 

to observe this association [62, 63]. The role of high-dairy fat intake in PC risk is supported 

by studies conducted in vitro where milk modulated and promoted the proliferation of the 

human prostate LNCaP and PC-3 cancer cell lines [64, 65]. Saturated fat intake, high-

calcium intake, decreased circulating levels of 1,25-dihydroxy-vitamin D (the active form of 

vitamin D), and increasing levels of insulin-like growth factor-1 (IGF-1) are several potential 

mechanisms by which milk and dairy product intake may impact the incidence and the 

progression of PC.

Saturated fat intake

Saturated fat is another likely factor in dairy products that may influence the development 

and the aggressiveness of PC. A higher intake of low-fat milk is associated with a greater 

risk of non-aggressive PC, whereas whole-fat milk intake is frequently associated with a 

higher incidence of aggressive PC phenotypes [63, 66-69].

High-calcium intake

Intake of calcium above the recommended daily doses (~1000 mg/day) is associated with 

increased risk of developing PC but also with aggressive and highly malignant PC [70-75]. 
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The underlying mechanisms of high calcium intake and the risk of PC are not yet elucidated. 

Over-activation of the calcium-sensing receptor and calcium-dependent voltage-gated 

channel expressed in human prostate cells by the high levels of ionized calcium circulating 

in the bloodstream are two potential mechanisms involved in PC etiology [76-79]. The 

stimulation of these receptors by extracellular calcium increases PC cell proliferation, 

apoptosis resistance, and metastatic potential in vitro and in vivo [80-83].

Vitamin D

Several epidemiological studies have reported an association between low levels of vitamin 

D and higher risk for PC [84-86]. The modulation of vitamin D metabolism and the decrease 

of 1,25-dihydroxyvitamin D levels are associated with an increased risk of PC [87]. Once 

ingested, vitamin D is metabolized to its biologically active form 1,25-dihydroxyvitamin D 

through a two-step oxidation. The first oxidation reaction catalyzed by CYP2R1 occurs in 

the liver leading to the formation of 25-hydroxyvitamin D, and the second oxidation 

catalyzed by CYP27B1 occurs in the kidney, producing the 1,25-dihydroxyvitamin D [88]. 

1,25-Dihydroxy vitamin D has anti-proliferative effects that are driven through the nuclear 

Vitamin D receptor (VDR) pathway, leading to the expression of genes involved in cell cycle 

arrest, cell apoptosis and differentiation [89]. VDR is expressed in both normal and cancer 

prostate cells [90-92]. In human prostate cells, 1,25-dihydroxyvitamin D produces anti-

proliferative effects [92-96], reduces oxidative stress [97], and up-regulates pro-apoptotic 

genes [98]. More than 2000 genes are modulated by 1,25-dihydroxy vitamin D, including 

genes encoding for androgen metabolism [99]. More detailed studies are required to 

elucidate the critical roles of vitamin D in PC development.

IGF-1

The IGF system includes three ligands (insulin, IGF-1, IGF-2), their receptors (insulin 

receptor (INSR), IGF-1 receptor (IGF-1R), the mannose 6-phosphate receptor (M6P/

IGF-2R), and six circulating IGF-binding proteins (IGFBP1–6) [100]. In the human prostate, 

every element of this system is expressed in normal, hyperplastic, and neoplastic prostate 

tissues, as well as in primary and prostate cell lines [101-110]. The IGF system plays a 

critical role in normal gland growth and development of the prostate [104, 108, 111, 112]. A 

higher serum IGF-1 concentration is correlated with an increased risk of PC [113-119]. The 

biological functions of IGF-I are mediated primarily through the IGF-IR, a tyrosine kinase 

transmembrane receptor that binds IGF-I with higher affinity than IGF-II [120]. 

Interestingly, inhibition of IGF-1R is associated with decreased androgen-dependent and 

androgen-independent growth in vitro as well as a suppression of in vivo tumor growth and 

PC cell invasiveness [108, 121-123]. Conversely, activation of IGF-1R by its ligand IGF-1 

leads to the activation of several signaling pathways including mitogen-activated protein 

kinase (MAPK) and PI3K/Akt [124]. The activation of these signaling pathways induces 

proliferation and migration, and inhibits apoptosis in the PC cell [125-128] (Figure 3).

The IGFBPs provide an additional, extracellular mechanism to regulate IGF activity. The 

IGFBPs bind to IGF-1 and IGF-2 with high affinity and thereby diminish their binding to 

IGF-R, resulting in the inhibition of the IGF signaling pathway [100]. Altered IGFBP 

plasma levels are found in PC patients, and a decrease in IGFBP-3 is associated with higher 
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risk and progression of PC [113, 114, 129, 130]. IGFBP-3 is a substrate for the serum 

protease PSA [104]. Therefore, high levels of PSA in PC patients may result in a decrease in 

circulating levels of IGFBP-3 by proteolytic cleavage, leading to an increase in IGFs 

including IGF-1, thus facilitating disease progression (Figure 3).

Alcohol

Alcohol consumption accounts for about 5% of all cancer deaths worldwide [131]. In the 

USA, 92% of adult males self-report a long-term use of alcohol [132], and up to 3.7% of 

total cancer deaths are linked to alcohol [133]. Elevated alcohol consumption can contribute 

to a number of malignancies, including cancer of the oral cavity, pharynx, larynx, 

esophagus, and liver of both sexes and colorectal cancer in women. However, findings from 

epidemiological studies on the role of alcohol consumption in PC risk are inconsistent. 

Several studies found that alcohol consumption is a risk factor for PC [134-136], whereas 

other studies reported a decreased risk of PC [137]. The compilation of meta-analyses are 

also inconsistent: several reports found no association between alcohol consumption and PC 

risk [138-140], whereas others reported a significantly increased risk of PC with alcohol 

[141-144]. One meta-analysis reported an increased risk for PC for men drinking more than 

50 g of alcohol per day, with the risk becoming slightly higher for men who consume more 

than 100 g per day [141]. Three other meta-analyses also reported a significantly increased 

risk in PC for light and moderate drinking (one to four drinks per day) [142, 143] or the 

equivalent of up 24 g of alcohol per day [144]. An association between alcohol intake and 

the degree of aggressiveness of PC was reported in some studies [145-148], but not other 

studies [135, 149, 150].

Ethanol is the primary form of alcohol in alcoholic beverages. Ethanol is classified as a 

human carcinogen [151]. The genotoxic effects and carcinogenicity of ethanol are thought to 

be driven by its major metabolite, acetaldehyde. Acetaldehyde forms DNA adducts in human 

cells in vitro and in vitro [152]. In humans, levels of acetaldehyde DNA adducts present in 

lymphocytes are seven times higher in alcohol users compared non-users [153]. In vivo 
studies demonstrated that ethanol is efficiently bioactivated into acetaldehyde in rat prostate 

by different enzymatic pathways involving xanthine oxidoreductase and cytochrome P450 

2E1 [154, 155]. Moreover, acetaldehyde formation is linked to an increase in prostate 

epithelial cell death and ultrastructural alterations in epithelial cells including chromatin 

condensation around the perinuclear membrane and endoplasmic reticulum dilatation, an 

ultra-structural marker of endoplasmic reticulum stress [156]. The rat prostate lacks alcohol 

dehydrogenase and aldehyde dehydrogenase activities, resulting in an accumulation of 

acetaldehyde and thus, an increase in genomic damage in the prostate of rats exposed to 

ethanol [156]. Chronic ethanol exposure also leads to oxidative stress and a diminution in 

the antioxidant defense system in the rat ventral prostate [156, 157].

An association of PC risk with cancer aggressiveness was observed with high intake of beer 

[145, 146, 148]; while modest protective effects were observed for red wine consumption in 

some but not all studies [158-160]. The protective effect of wine, especially red wine, is 

likely attributed to its high contents of polyphenols such as flavonoids and resveratrol [161]. 

Polyphenolic compounds harbor antioxidant and anti-androgenic activities and therefore are 
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thought to act as anti-carcinogens [162]. In vitro, nanomolar concentrations polyphenols 

inhibit cell growth in a dose and time-dependent manner in both androgen-dependent 

LNCaP and androgen-independent DU145 and PC3 PC cell lines. Treatment of LNCaP and 

PC3 cells with flavonoids, including catechin, epicatechin, and quercetin, inhibites cell 

proliferation, whereas resveratrol is the most potent inhibitor of DU145 cell growth. The 

proposed mechanism for the antiproliferative effect of polyphenols is through the 

modulation of NO production [163].

Red and processed meat

Many epidemiological studies have focused on the role of red and processed meats in PC 

risk. Some meta-analyses report an elevated risk for PC with frequent consumption of meats, 

whereas other studies failed to find an overall effect on risk [164, 165]. It is hypothesized 

that DNA damaging agents, including heme iron, N-nitroso compounds (NOCs) formed in 

processed meats [166], polycyclic aromatic hydrocarbons (PAHs) formed in smoked meats 

and meats cooked under flame [167], and heterocyclic aromatic amines (HAAs) formed in 

well-done grilled meats [168, 169], contribute to PC risk. Of note, the risk of PC for African 

American men is ~2-fold greater than for Caucasians [2]. One paradigm proposed for the 

increased risk of PC in African American men is based on their preference for frequent 

consumption of well-done cooked meats containing the HAA 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP). PhIP is a rodent prostate carcinogen and potential 

human prostate carcinogen [170, 171], and may explain the higher risk of PC for African-

American men compared to white men [172].

Heme iron

Once ingested, heme-containing proteins such as myoglobin or hemoglobin are hydrolyzed 

to peptides, amino acids, and heme iron. Feeding ferriheme to rodents induces cytotoxicity, 

enhances cell proliferation of colonic mucosa, promotes oxidative stress, and thus, may 

contribute to colorectal cancer [173]. Heme iron is transported through the bloodstream to 

all organs of the body and can catalyze oxidative reactions, causing DNA, protein and lipid 

oxidation in multiple organs including the prostate [174]. The overall level of free radical 

damage induced by heme-catalyzed oxidation is estimated to be comparable to that resulting 

from ionizing radiation [174]. Two epidemiological studies have examined the role of heme 

iron in PC development [175, 176]. One reported a positive association between total heme 

iron intake and advanced PC risk, whereas another reported no associations of the dietary 

factors with PC risk irrespective of stage or grade. Thus, additional studies are necessary to 

evaluate any potential associations between heme iron consumption and PC.

N-Nitroso compounds (NOCs)

Carcinogenic NOCs include two chemical classes, N-nitrosamines and N-nitrosamides, 

formed by the reaction of nitrosating agents derived from nitrite with amines and amides 

respectively [177]. Nitrites added to processed meat serve as anti-bacterial agents as well as 

curing agents, and they produce the characteristic red-pink color of cured meats. However, 

nitrites also react with amines in processed meats to produce dietary sources of NOCs. 

Moreover, the consumption of processed meat is a significant dietary source of nitrite, 

secondary amines, and amides, which can undergo nitrosation to form NOCs within the 
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gastrointestinal tract [177-179]. The ingestion of heme contained in red meat can stimulate 

the endogenous formation of NOCs in the digestive tract [180-182]. More than 300 NOCs 

have been detected in 39 different animal species, including six species of nonhuman 

primates. Of these, 85% of N-nitrosamines and 92% of N-nitrosamides were reported to 

induce cancer in multiple organs including liver, lung, esophagus, bladder, and pancreas 

[183]. NOCs or their metabolites alkylate DNA. While N-nitrosamides react spontaneously 

with DNA, N-nitrosamines require metabolism by cytochromes, such as by cytochrome 

P450 2E1, which is expressed in the gastrointestinal tract [178]. Among the different types 

of DNA adducts formed with NOCs, the alkylation of the O6-position of guanine is a 

primary lesion that induces G to A transitions [184-186]. The majority of epidemiological 

studies have focused on the role of NOCs in gastric, esophageal, and colorectal cancers 

[187-192]. Two epidemiology studies studied the etiology of NOCs and PC risk: there was 

no significant association between dietary NOCs and risk of development of PC in either 

study [176, 192]. Thus, further studies on the role of processed meats and NOCs in PC risk 

are warranted.

Polycyclic aromatic hydrocarbons (PAHs)

PAHs constitute a broad class of compounds that have two or more fused aromatic rings. 

PAHs arise by the incomplete combustion or high-temperature pyrolysis of organic materials 

[193]. PAHs are ubiquitous environmental pollutants that occur as complex mixtures but 

never as individual components [194]. Several PAHs are classified as human carcinogens by 

the World Health Organization [151, 193]. Apart from occupational exposure, such as the 

case of coke-oven workers [195-197], the general population is exposed primarily to PAHs 

from dietary sources [167] and cigarette smoke [198]. The preparation of meats, mainly by a 

direct open flame, results in pyrolysis of the fat drippings, leading to the formation of PAHs, 

which are deposited through the smoke particulates on the surface of the grilled meats [199, 

200]. Various PAHs occur in some charcoal-broiled, grilled, and smoked meats [194, 

201-203]. The estimates of the daily dietary intake for the general population are imprecise 

and range widely: levels of total daily PAH intake range from 3.7 μg up to 17 μg [167], The 

most well-studied PAH is benzo[a]pyrene (B[a]P). B[a]P occurs in some grilled meats at 

levels up to ~ 4 ng/g [204, 205].

The carcinogenic properties of PAHs are attributed to their ability to form mutation-prone 

DNA adducts [193]. PAHs undergo metabolism by cytochrome P450 enzymes to form 

reactive dihydrodiol epoxides, which react with DNA to form covalent adducts, leading to 

mutations [206]. B[a]P-DNA adducts are formed in human prostate cells in vitro after 

exposure to B[a]P [207-209], B[a]P treatment also leads to an increase in DNA double-

strand breaks when measured by the comet assay [208, 210]. PAH adducts, including B[a]P 

adducts, are frequently detected in human prostate tissues by immunohistochemistry 

(IHC)-[211-215] with an antibody, which was raised against B[a]P-modified DNA, but 

which also cross-reacted with DNA adducts of at least five other PAHs [216]. Levels of 

PAH-DNA adducts is higher in adjacent human non-tumor prostate tissue compared with 

prostate tumor tissue, possibly due a higher cell proliferation rate in the tumor [211, 213, 

217]. The occurrence of putative PAH-DNA adducts is associated with a higher risk for PC 

and cancer recurrence after prostatectomy within one to two years after surgery [211]. This 
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risk was prominent in patients younger than 60 years old, patients with advanced-stage 

disease, and African Americans patients [211]. However, these data should be interpreted 

with caution since IHC is not a specific method of DNA adduct detection, even for assays 

performed with monoclonal antibodies, where possible cross-reactivity of the antibodies 

with other DNA adducts or endogenous cellular components can lead to false positivity. The 

occurrence of DNA adducts of B[a]P was not confirmed in one cohort of PC patients when 

analyzed by liquid chromatography/mass spectrometry (LC/MS), a more specific analytical 

method than IHC [218]. Thus, there is a critical need to characterize DNA adducts on the 

same specimens by IHC and LC/MS to determine the validity of the analyses.

Heterocyclic aromatic amines (HAAs) and PC

HAA formation and sources of exposure

HAAs are a class of more than 25 genotoxic chemicals known to form in cooked meats, fish, 

poultry, and tobacco smoke [168, 169, 219]. HAAs are sub-classified into the 

aminoimidazoarenes (AIAs) and the high-temperature pyrolytic HAAs (Figure 4). AIAs 

contain the N-methyl-2-aminoimidazole moiety derived from creatinine in muscle tissue. 

The AIAs form in meats, fish, and poultry cooked at temperatures above 150 °C and arise 

through the reaction of pyridine or pyrazines, derived from Strecker reactions, and 

condensation with creatine [220, 221]. Pyrolytic HAAs form by high-temperature pyrolysis 

( >250 °C) of protein or amino acids, such as glutamic and tryptophan. Pyrolytic HAAs 

occur when proteinaceous foods are heated at temperatures generally above 250 °C [168, 

222, 223]. Several HAAs are also formed in tobacco smoke [223, 224]. 2-Amino-9H-

pyrido[2,3-b]indole (AαC), a pyrolysis product of tryptophan, is the major carcinogenic 

HAA formed in combusted tobacco and occurs in mainstream tobacco smoke at levels up to 

258 ng per cigarette [225-227]. Unexpectedly, PhIP, an AIA containing the N-methyl-2-

aminoimidazole moiety of creatine, was detected in tobacco smoke [224]; however, the 

mechanism of PhIP formation in tobacco smoke has not been determined. The principal 

sources of exposure to most HAAs occur through the consumption of well-done cooked 

meats and poultry [168, 228]. HAA formation in cooked meats generally occurs at the low 

parts-per-billion (ppb) range, but the levels of some HAAs can approach several hundred 

ppb in well-done cooked meats or poultry [168, 219, 229, 230]. PhIP and 2-amino-3,8-

dimethylimidazo[4,5-f]quinoxaline (MeIQx) are often the most prevalent HAAs formed in 

cooked meats and poultry [219, 221, 230-233]. The average dietary HAAs intake ranges 

from less than 2 to up to 25 ng/kg per day [172, 234].

Bioactivation and Formation of DNA Adducts

HAAs undergo extensive metabolism by hepatic cytochrome P450 1A2 (CYP 1A2)-

catalyzed N-oxidation of the exocyclic amine groups, leading to the formation of N-

hydroxy-HAAs, as reactive intermediates [228, 235, 236]. CYP 1A1 and CYP 1B1 catalyze 

this reaction in extrahepatic tissues [228, 235]. The N-hydroxy-HAAs are further 

bioactivated by acetylation or sulfation catalyzed by N-acetyltransferases (NATs) or 

sulfotransferases (SULTs), respectively, either in the liver or extrahepatic tissues [228]. 

These unstable esters react with DNA to form DNA adducts [228, 237]. HAA-DNA adducts 

Bellamri and Turesky Page 9

Adv Exp Med Biol. Author manuscript; available in PMC 2020 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are mainly formed at C-8 on deoxyguanosine (dG) through the exocyclic amine of the 

HAAs, to produce dG-C8-HAA adducts as the major DNA adducts [238, 239].

Carcinogenesis of HAAs

HAAs are multisite carcinogens in rodents and induce cancers of the oral cavity, liver, 

stomach, colon, pancreas, and the mammary gland in females [168, 170]. Notably, PhIP is 

the only HAA reported to induce PC in rodents [168, 170] Carcinogenesis studies in rodents 

used chronic doses of HAAs ranging between 0.1 to 64 mg/kg/day to induce tumors [168, 

228]. These doses are more a million-fold higher than the daily intake of HAAs. Thus, one 

might surmise that the levels of human exposure are too low to contribute to human cancers. 

However, a linear relationship between HAA dose and HAA-DNA adduct formation occurs 

in rodent tissues for PhIP, MeIQx, and IQ [240-242], signifying mutation-prone DNA 

adducts of HAAs can still form in tissues at dosing regimens approaching human exposure 

levels.

Animal toxicity studies may underestimate the carcinogenic potential of HAAs in humans. 

For example, the levels of HAA-DNA adducts formed in primary human hepatocytes are 

significantly higher than those formed in primary rat hepatocytes, under the same doses and 

times of exposure [243]. Human CYP1A2, which is principally expressed in the liver, is the 

major CYP involved in the metabolism of many HAAs. Human CYP1A2 is catalytically 

more efficient than the rat homolog in the bioactivation of PhIP and MeIQx, and perhaps 

other HAAs [244]. Human CYP1A2 and human liver microsomes preferentially bioactivate 

HAAs through N-oxidation of the exocyclic amine group. In contrast, rat CYP1A2 and rat 

liver microsomes preferentially catalyze the detoxication of HAAs by oxidation of the 

heterocyclic rings [245]. The superior activity (lower Km and higher kcat) and ability of 

human CYP1A2 to catalyze N-oxidation can explain the higher levels of HAA adducts 

formed in human compared to rat hepatocytes. Several HAA-DNA adducts have been 

detected in human tissues by various techniques, indicating that even at low levels of 

exposure, HAAs can form DNA adducts in humans [246-256].

PhIP DNA Damage, Mutation, and Carcinogenicity in Prostate Rodent Studies

PhIP is the only HAA studied thus far that targets the prostate as a principal site for DNA 

adduct formation and carcinogenesis in rodents [168]. PhIP undergoes metabolism to form 

high levels of DNA adducts in the prostate of Wistar and Fischer 344 rats [170, 257-260] 

and induces high levels of mutations in the prostate of the Big Blue lacI transgenic rat [260, 

261]. PhIP is a prostate carcinogen in the Fischer 344 rat [170]. PhIP also induces prostate 

tumors in CYP1A-humanized (hCYP1A) mice but not in wild-type mice [262]. This finding 

reinforces the concept that human CYP1A is superior to the rodent orthologue in the 

bioactivation of PhIP [244, 263].

Extensive inflammation occurs in the dorsolateral prostate lobe marked by CD45+ 

mononuclear leukocyte and CD8+ T lymphocyte infiltration in PhIP-induced tumors in the 

prostates of hCYP1A mice [262]. This inflammation is associated with atrophic glands, 

high-grade prostatic intraepithelial neoplasia, and oxidative stress [262, 264]. In contrast, the 

prostatic intraepithelial neoplasia lesions are significantly less severe and infrequently 
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associated with inflammation and oxidative stress in the ventral prostate glands [262]. These 

observations are noteworthy because the dorsolateral prostate is homologous to the human 

peripheral prostate zone, the most common site of PC development in humans [265]. 

Similarly, PhIP treatment leads to inflammation with a marked increase in mastocyte and 

macrophage infiltration and glandular atrophy of the prostate of Fischer 344 rats [261, 266]. 

These pathologies induced by PhIP in rodent models of PC are significant because 

inflammation, oxidative stress, and glandular atrophy are common features in the pathology 

of human PC [267].

Several key features of cancer biology often reported in human PC occur in PhIP-induced 

prostate tumors in rodents. For example, treatment of hCYP1A mice with PhIP results in a 

time-dependent increase in expression of AR protein in prostate tumor epithelial cells [262]. 

An up-regulation of AR leading to a higher rate of cell proliferation occurs in human PC 

[268]. Furthermore, PhIP-induced tumors in h-CYP1A mice display significant decreases in 

levels of E-Cadherin and p63 expression [262]. E-Cadherin is an epithelial cell adhesion 

molecule involved in the maintenance of normal cell architecture, while the p63 

transcription factor has multiple functions in cancer cell biology. PhIP-treatment in Fisher 

344 and Big Blue rats also results in significant increases in the levels of Ki-67, a well-

established marker of cell proliferation, in the intraepithelial neoplasia regions of the 

prostate [261, 266]. Dysregulated expression and distribution of these proteins are hallmarks 

of epithelial malignancies and serve as major diagnostic criteria for human PC [269-271].

PhIP-induced tumors in the h-CYP1A mice also exhibit increased levels of oxidative stress 

markers, including 8-oxo-dG and nitrotyrosine, markers of oxidative DNA damage and 

reactive nitrogen species. PhIP treatment results in the up-regulation of COX-2 expression, a 

cyclooxygenase that catalyzes the formation of pro-inflammatory prostaglandins and a loss 

of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) a key transcription factor responsible of 

the expression of many cytoprotective proteins [264]. Oxidative stress is a key contributor to 

the development of PC in humans [46, 272]. The PTEN/PI3K/Akt signaling pathway is 

another critical feature of cell proliferation, cell cycle progression, and survival. Activation 

of AKT in response to oxidative stress and the loss of PTEN are critical events in human PC 

progression [273-275]. PhIP-induced prostate tumors in h-CYP1A mice display a significant 

decrease in PTEN expression and an elevation of phospho-AKT, leading to cell proliferation 

[264].

These mechanistic data in rodent models reinforce the biological plausibility that PhIP plays 

an important role in dietary-linked human PC. However, the biological events observed in 

rodents occurred at very high doses of PhIP treatment - up to 200 mg/kg. Humans are 

exposed to one million-fold or lower daily amounts of PhIP [172], and the capacity of such 

lower concentrations of PhIP to induce similar biological effects has not been investigated. 

Therefore, the interpretation of the carcinogenic effects of PhIP in PC of rodents and their 

extrapolation to human PC should be done with caution.

b. Human studies

PhIP is the only HAA reported thus far to form DNA adducts in the prostate of human PC 

patients [218, 255, 276-278] (Figure 5). This biomarker data provides support for some of 
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the epidemiological studies that have linked the frequent consumption of well-done cooked 

red meat containing PhIP with increased risk of PC. [279-281] However, other investigations 

have failed to find an association between cooked red meat and increased PC risk [175, 282, 

283]. The concentrations of PhIP and other HAAs can vary by more than 100-fold in cooked 

meats [169, 219]. There is a critical need to conduct such epidemiological studies with more 

precise exposure measurements of HAAs.

The frequency of detection and the levels of PhIP-DNA adducts in human prostate range 

widely between studies, depending on the analytical method of adduct measurement. For 

example, using a high-resolution LC/MS method, PhIP-DNA adducts were detected in 13 

out of 54 PC patients with levels ranging from 2 to 120 adducts per 109 DNA bases [218, 

278]. However, PhIP-DNA adducts were detected in a very high percentage of prostate 

tissues in another cohort, occurring at levels exceeding several adducts per 107 DNA bases, 

when measured by IHC [255, 276, 277]. These discrepancies in adduct measurements may 

imply a high level of false positivity obtained by IHC, possibly due to cross-reactivity of the 

polyclonal antibodies raised against PhIP-modified DNA with other DNA adducts or 

endogenous cellular components [284].

Cytotoxicity and DNA adduct formation induced by PhIP and other HAAs has been studied 

in primary and PC cell lines. The parent HAAs, PhIP, MeIQx, IQ and AαC were not toxic at 

doses up to 10 μM and formed low levels of DNA adducts in LNCaP cells [285]. However, 

HONH-PhIP, the genotoxic metabolite of PhIP, induced a dose-dependent increase in 

cytotoxicity, whereas HONH-MeIQx, HONH-IQ, and HONH-AαC were not toxic [285, 

286]. Moreover, HONH-PhIP forms DNA adducts at levels that are 20-fold higher than other 

HONH-HAAs in LNCaP cells [285]. These data suggest that the initial bioactivation step of 

PhIP to form HONH-PhIP occurs in the liver through CYP 1A2-catalyzed N-oxidation, 

followed by systemic circulation to reach the prostate, where bioactivation is mediated by 

Phase II enzymes (Figure 6) [285]. Similar data were reported in primary human prostate 

epithelial cells, where HONH-PhIP formed 50- to 100-fold higher levels of DNA adducts 

than IQ, MeIQx, and HONH-MeIQx [207, 287].

HONH-PhIP also induces unscheduled DNA synthesis, and DNA single-strand breaks in 

primary human prostate epithelial cells at 100-time higher levels than HONH-MeIQx [208, 

210]. The higher susceptibility of human prostate cells to the DNA-damaging and genotoxic 

effect of PhIP compared to other prominent HAAs formed in cooked meats recapitulates the 

DNA adduct biomarker data in prostate tissues of PC patients and provides support for the 

possible causal role of PhIP in human PC.

PhIP can also act through non-genotoxic mechanisms via androgenic effects to contribute to 

the development of PC. PhIP binds to the AR and modulates cell proliferation. Using, in 
silico analysis, binding of PhIP and HONH-PhIP to the AR was found to be comparable to 

that of the endogenous AR ligand, dihydrotestosterone (DHT), when based on the predicted 

free energy of binding [288]. Through computational docking studies, both PhIP and 

HONH-PhIP displayed similar binding modes to DHT and docked with high affinity in the 

same cavity of the AR ligand binding domain as DHT [288]. Moreover, treatment of the 
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human prostate epithelial cell line LNCaP with PhIP or HONH-PhIP up-regulated AR and 

PSA expression [288].

PhIP also induces proliferation of human prostate epithelial cells in an AR-independent 

manner, through the activation of pro-proliferation cell signaling pathways. Low 

concentrations of PhIP (10−12–10−8 mol/L) increase the proliferation, migration and 

invasion properties of PC-3, an AR-negative human prostate cell line [289]. Proliferation 

and migration are mediated through the activation of the ERK signal transduction cascade 

and a rapid, transient increase in phosphorylation of both MEK1/2 and ERK1/2. 

Interestingly, mitogenic stimulation with epithelial growth factor (EGF), induces the same 

pattern of activation [290]. Proliferation, migration, and invasiveness are crucial events in 

the oncogenic progression of cells [291]. Thus, all these biological phenomena induced by 

PhIP suggest a carcinogenic potential of PhIP in human prostate. The challenge in risk 

assessment is to determine if the amounts of PhIP in the diet are sufficient to be a significant 

risk for PC.

Conclusion

There is growing mechanistic and epidemiological data supporting a role for the diet in the 

development of PC. Multiple mechanisms and hypotheses have been brought forward for PC 

risk, ranging from different classes of dietary genotoxicants acting as initiators of PC to 

different dietary factors involved in tumor promotion. However, the precise roles of specific 

genotoxicants and nutritional factors in PC remain to be clarified. Prospective 

epidemiological studies on PC risk with improved assessments of dietary habits, including 

protective nutrient biomarkers in plasma and urine are needed [292]. The identification of 

micronutrients that protect against PC [293, 294], and the detection of biomarkers of DNA 

damage in the prostate, such as DNA adducts, by specific mass spectrometric methods and 

their linkage to mutations [218, 285], can advance our understanding of the micronutrients 

and genotoxicants in the diet that impact PC risk.
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Figure 1: 
Effect of Arachidonic acid (AA) and its metabolite prostaglandin E2 (PGE2) on cell 

signaling in human prostate cells
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Figure 2: 
Effect of pro-inflammatory cytokines such as IL-6 and IL-1 on the activation and the cross 

talk of STAT-3 and NF-κB pathways
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Figure 3: 
Insulin/IGF signaling in prostate carcinogenesis.
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Figure 4: 
Chemical structures of prevalent HAAs in cooked meat.
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Figure 5: 
Representative chromatograms at the MS2 scan stage of human prostate samples that were 

negative and positive for dG-C8-PhIP.
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Figure 6: 
Metabolic activation of PhIP and dG-C8-PhIP formation in human prostate.
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