Skip to main content

Impact of Nanomaterials on Beneficial Insects in Agricultural Ecosystems

  • Chapter
  • First Online:
Nanotechnology for Food, Agriculture, and Environment

Abstract

Nanotechnology has revolutionized the world with tremendous advancement in many fields of science like engineering, biotechnology, analytical chemistry and agriculture. Nanotechnological principles and concepts can be exploited for early detection, monitoring and management of pests. It is set to offer a platform to transform agriculture sector from production, protection, processing and storage. The key contributions due to application of nanotechnology in agriculture are delivery systems that aid in slow release and efficient delivery of agro-inputs. The need to produce an inexpensive and abundant food supply for a growing population warrants higher use of fertilizers and pesticides. The increasing use of pesticides has a negative impact on farmers, consumers, nontarget organism and the environment. A challenge to balance between crop production and environmental protection can be achieved by adopting nanotechnology. Nanoparticles are effective nanocides against insects and pests. Different types of nanoparticles, viz. nano silica, silver, aluminium oxide, zinc oxide, titanium dioxide and oil in water (nanoemulsions), can be effectively used as nanocides in the management of rice weevil, Sitophilus oryzae; lesser grain borer, Rhyzopertha dominica; red flour beetle, Tribolium castaneum; tobacco caterpillar, Spodoptera litura; oleander aphid, Aphis nerii; bruchid beetle, Callosobruchus maculatus; and diamondback moth, Plutella xylostella. Insect pest management products containing nanomaterials can alter the functionality or risk profile of active ingredients and promise many benefits over conventional pesticide products. These benefits may include improved formulation characteristics, easier application, better targeting of pest species, increased efficacy, lower application rates and enhanced environmental safety. The knowledge on the impacts of nanomaterials on development, parasitism or predatory efficiency and emergence capacity as well as to preserve effective beneficial insects are essential to conserve parasitoids, predators and pollinators from nanotoxicity to suppress the insect pests in the cropping system. This chapter summarized that nanomaterials are not causing deleterious effects to the beneficial insects, and synthetic chemical insecticides even at very low doses caused acute toxicity, feeding inhibition, growth impairment and delayed toxicity to beneficial insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology Applications in Plant Protection. Springer International Publishing (ISBN 978-3-319-91161-8) https://www.springer.com/us/book/9783319911601

  • Abd-Elsalam KA, Prasad R (2019) Nanobiotechnology Applications in Plant Protection. Springer International Publishing

    Google Scholar 

  • Ballal CR, Verghese A (2015) Role of parasitoids and predators in the management of insect pests. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 307–326

    Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica – from medicine to pest control. Parasitol Res 103(2):253

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles – a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Brausch KA, Anderson TA, Smith PN, Maul JD (2011) The effect of fullerenes and functionalized fullerenes on Daphnia magna phototaxis and swimming behavior. Environ Toxicol Chem 30(4):878–884

    Article  CAS  Google Scholar 

  • Bueno AF, Freitas S (2004) Effect of the insecticides abamectin and lufenuron on eggs and larvae of Chrysoperla externa under laboratory conditions. BioControl 49(3):277–283

    Article  CAS  Google Scholar 

  • Capinera JL (2005) Relationships between insect pests and weeds: an evolutionary perspective. Weed Sci 53(6):892–901

    Article  Google Scholar 

  • Chakravarthy AK, Kandakoor SB, Atanu B, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6(3):271–281

    Google Scholar 

  • Chandrashekharaiah M, Kandakoor SB, Gowda GB, Kammar V, Chakravarthy AK (2015) Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 113–126

    Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • El-Wakeil NE, Gaafar NM, Vidal S (2006) Side effect of some neem products on natural enemies of Helicoverpa (Trichogramma spp.) and Chrysoperla carnea. Arch Phytopathol Plant Protect 39(6):445–455

    Article  Google Scholar 

  • Flesar J, Havlik J, Kloucek P, Rada V, Titera D, Bednar M, Stropnicky M, Kokoska L (2010) In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Vet Microbiol 145(1–2):129–133

    Article  CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    Article  CAS  Google Scholar 

  • Gill HK, Garg H (2014) Pesticides: environmental impacts and management strategies. In: Larramendy ML, Soloneski S (eds) Pesticides – toxic aspects. IntechOpen, Croatia. https://doi.org/10.5772/57399

    Chapter  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104

    Article  Google Scholar 

  • Jinguji H, Ohtsu K, Ueda T, Goka K (2018) Effects of short-term, sublethal fipronil and its metabolite on dragonfly feeding activity. PLoS One 13(7):1–23

    Article  Google Scholar 

  • Kannan M, Elango K (2019) Effect of Silica nano particles to egg parasitoids, Trichogramma chilonis Ishii and green lacewing, Chrysoperla zastrowi sillemi (Esben-Peterson) (unpublished data)

    Google Scholar 

  • Karthika S, Nandakumar NB, Gunasekaran K, Subramanian KS (2015) Biosafety of nanoemulsion of hexanal to honey bees and natural enemies. J Sci Technol 8(30):1–7

    CAS  Google Scholar 

  • Liu TX, Chen TY (2001) Effects of the insect growth regulator fenoxycarb on immature Chrysoperla rufilabris (Neuroptera: Chrysopidae). Fla Entomol 84(4):628–633

    Article  CAS  Google Scholar 

  • Lord KA, May MA, Stevenson JH (1968) The secretion of the systemic insecticides dimethoate and phorate into nectar. Ann Appl Biol 61(1):19–27

    Article  CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41(12):4465–4470

    Article  CAS  Google Scholar 

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10(1):11

    Article  Google Scholar 

  • Mandour NS (2009) Influence of spinosad on immature and adult stages of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). BioControl 54(1):93

    Article  CAS  Google Scholar 

  • McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3(3):506–533

    Article  CAS  Google Scholar 

  • Medina P, Budia F, Tirry L, Smagghe G, Vinuela E (2001) Compatibility of spinosad, tebufenozide and azadirachtin with eggs and pupae of the predator Chrysoperla carnea (Stephens) under laboratory conditions. Biocontrol Sci Tech 11(5):597–610

    Article  Google Scholar 

  • Medina P, Budia F, Del Estal PE, Viñuela E (2003) Effects of three modern insecticides, pyriproxyfen, spinosad and tebufenozide, on survival and reproduction of Chrysoperla carnea adults. Ann Appl Biol 142(1):55–61

    Article  CAS  Google Scholar 

  • Mohan C, Sridharan S, Gunasekaran K, Subramanian KS, Natarajan N (2017a) Biosafety of hexanal as nanoemulsion on egg parasitoid Trichogramma spp. J Entomol Zool Stud 5(2):1541–1544

    Google Scholar 

  • Mohan C, Sridharan S, Subramanian KS, Natarajan N, Nakkeeran S (2017b) Effect of nanoemulsion of hexanal on honey bees (Hymenoptera; Apidae). J Entomol Zool Stud 5(3):1415–1418

    Google Scholar 

  • Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32(3):555–563

    Article  CAS  Google Scholar 

  • Murugan K, Dinesh D, Kumar PJ, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A (2015) Datura metal-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114(12):4645–4654

    Article  Google Scholar 

  • Pokhrel LR, Dubey B (2012) Potential impact of low-concentration silver nanoparticles on predator–prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environ Sci Technol 46(14):7755–7762

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: https://doi.org/10.3389/fmicb.2017.01014

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore Pte Ltd. (ISBN: 978-981-10-4573-8)

    Google Scholar 

  • Preetha S, Kannan M, Lokesh S, Gowtham V (2018) Effect of neem oil based nanoemulsion on egg parasitoid, Trichogramma chilonis (Ishii) (Hymenoptera: Trichogrammatidae). J Biol Control 2(2):103–107

    Article  Google Scholar 

  • Rezaei M, Talebi K, Naveh VH, Kavousi A (2007) Impacts of the pesticides imidacloprid, propargite, and pymetrozine on Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae): IOBC and life table assays. BioControl 52(3):385–398

    Article  CAS  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72(4):590–594

    Article  Google Scholar 

  • Sahayaraj K, Madasamy M, Radhika SA (2016) Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). J Biopest 9(1):63

    CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3

    Article  Google Scholar 

  • Shoeb MA (2010) Effect of some insecticides on the immature stages of the egg parasitoid Trichogramma evanescens West. (Hym.; Trichogrammatidae). Egypt Acad J Biol Sci 3(1):31–38

    Google Scholar 

  • Stapel JO, Cortesero AM, Lewis WJ (2000) Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extra floral nectar of cotton treated with systemic insecticides. Biol Control 17(3):243–249

    Article  CAS  Google Scholar 

  • Suh CP, Orr DB, VanDuyn JW (2000) Effect of insecticides on Trichogramma exiguum (Trichogrammatidae: Hymenoptera) preimaginal development and adult survival. J Econ Entomol 93(3):577–583

    Article  CAS  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc: 1–18

    Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  CAS  Google Scholar 

  • Yang EC, Chuang YC, Chen YL, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101(6):1743–1748

    Article  CAS  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 7(21):10156–10162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannan, M., Elango, K., Tamilnayagan, T., Preetha, S., Kasivelu, G. (2020). Impact of Nanomaterials on Beneficial Insects in Agricultural Ecosystems. In: Thangadurai, D., Sangeetha, J., Prasad, R. (eds) Nanotechnology for Food, Agriculture, and Environment. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31938-0_16

Download citation

Publish with us

Policies and ethics