Skip to main content

Application of Nanotechnology in the Bioremediation of Heavy Metals and Wastewater Management

  • Chapter
  • First Online:
Nanotechnology for Food, Agriculture, and Environment

Abstract

Discharge of heavy metals from industrial, municipal, agricultural, and domestic wastewater has become a serious threat for the ecosystem. Various pollutants are released to wastewater, including heavy metal ions, organics, bacteria, viruses, and so on, which are very detrimental to human health. Discharge of heavy metals from these sources is one of the major environmental problems, posing serious threat to living organisms. Among different water pollutants, heavy metal ions, such as Pb2+, Cd2+, Zn2+, Ni2+ Cr(VI), and Hg2+, have high toxic and nonbiodegradable properties and can cause severe health problems in animals and human beings. With the development of nanotechnology, nanoparticles are used as the adsorbents in wastewater treatment. Several researches have proved that nanoparticles are the effective sorbents widely used for the removal of heavy metal ions at low concentrations from wastewater due to their unique structure properties like high selectivity and adsorption capacity. Herein, the possible adsorption mechanism of heavy metal ions and the modification of adsorbents in efficient removal of heavy metal ions are discussed. This chapter intends to bring together all the recent research works on nanoparticle synthesis and its advantages as adsorbents in the treatment of heavy metal-polluted wastewater that have so far been undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Abdel Hameed MSA (2006) Continuous removal and recovery of lead by alginate beads, free and alginate-immobilized Chlorella vulgaris. Afr J Biotechnol 5(19):1819–1823

    CAS  Google Scholar 

  • Abdel Hameed MSA, Ebrahim OH (2007) Biotechnological potentials uses of immobilized algae. Int J Agri Biol 9(1):183–192

    CAS  Google Scholar 

  • Adler RA, Claassen M, Godfrey L, Turton AR (2007) Water, mining and waste: an historical and economic perspective on conflict management in South Africa. Economic Peace Security J 2:32–41

    Article  Google Scholar 

  • Afal A, Wiener SW (2014) Metal toxicity. https://www.medscape.org/ (viewed 21 November 2018)

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:454090. https://doi.org/10.4061/2011/454090

    Article  CAS  PubMed  Google Scholar 

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Al-Rub FAA, El-Naas, Benyahia MHF, Ashour I (2004) Biosorption of nickel on blank alginate beads free and immobilized algal cells process. Biochemist 39:1767–1773

    Google Scholar 

  • Astefanei O, Núñez MT (2015) Galceran characterisation and determination of fullerenes: a critical review. Anul Chim Acta 882:1–21

    Article  CAS  Google Scholar 

  • Baird C, Cann M (2012) Environmental chemistry, 5th edn. WH Freeman, New York

    Google Scholar 

  • Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer PR, Jelezko F, Wrachtrup J (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8(5):383–387

    Article  CAS  PubMed  Google Scholar 

  • Bitton G (2011) Wastewater microbiology, 4th edn. A John Witney and Sons Inc., Hoboken, New Jersey, pp 482–485

    Google Scholar 

  • Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424(6946):246–248

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AD, Pal D, Penta S, Kumar A (2015) Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol 31:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Chehregani A, Malayeri B, Golmohammadi R (2004) Effect of heavy metals on the developmental stages of ovules and embryonic sac in Euphorbia macroclada. Pak J Biol Sci 8:622–625

    Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  PubMed  Google Scholar 

  • Cloete TE (2010) Nanotechnology in water treatment applications. Horizon Scientific Press, New York

    Google Scholar 

  • D’Amore J, Al-Abed S, Scheckel K, Ryan J (2005) Methods for speciation of metals in soils. J Environ Qual 34:1707–1745

    Article  PubMed  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79(1):5–18

    Article  CAS  PubMed  Google Scholar 

  • Di Natale F, Erto A, Lancia A, Musmarra D (2008) Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Res 42:2007–2016

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189

    Article  CAS  Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3(3):195–199

    Google Scholar 

  • Ebrahimi R, Maleki A, Shahmoradi B, Daraei H, Mahvi AH, Barati AH (2013) Elimination of arsenic contamination from water using chemically modified wheat straw. J Desalin Wat Treat 51(10–12):2306–2316

    Article  CAS  Google Scholar 

  • Edelstein AS, Cammaratra RC (1998) Nanomaterials: synthesis, properties and applications, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  • Eduardo SB, Ines TA (1988) Heavy metals in rivers and soils of central Chile. Int J Biosci Biochem Bioinfo 2(37):251–255

    Google Scholar 

  • Edzwald JK (2011) Water quality and treatment: a handbook on drinking water. American Society of Civil Engineers, McGraw-Hill, Las Vegas

    Google Scholar 

  • Fashola M, Ngole-Jeme V, Babalola O (2016) Heavy metal pollution from goldmines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13:1047. https://doi.org/10.3390/ijerph13111047

    Article  CAS  PubMed Central  Google Scholar 

  • Faust SD, Aly OM (2013) Adsorption processes for water treatment. Elsevier, Amsterdam

    Google Scholar 

  • Feng M, Cao X, Ma Y, Zhu C (2012) Super paramagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Article  PubMed  CAS  Google Scholar 

  • Ferroudj N, Nzimoto J, Davidson AD, Talbot E, Briot V, Dupuis S (2013) Abramson maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. App Catal B Environ 136:9–18

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Fulekar M, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8:529–535

    CAS  Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2015) Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Int J Hydrog Energy 40:9942–9951

    Article  CAS  Google Scholar 

  • Gao C, Zhang W, Li H, Lang L, Xu Z (2008) Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst Growth Des 8:3785–3790

    Article  CAS  Google Scholar 

  • Gao Z, Bandosz TJ, Zhao Z, Han M, Qiu J (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater 167(1):357–365

    Article  CAS  PubMed  Google Scholar 

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16:180–193

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Gupta A, Singh S, Kundu SS, Jha N (2011) Evaluation of tropical feedstuffs for carbohydrate and protein fractions by CNCP system. Ind J Anim Sci 81(11):1154–1160

    CAS  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S (2015a) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18

    Article  Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015b) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34(3):195–214

    Article  Google Scholar 

  • Hakim R, Philippe Q (2006) Analytical methods for drinking water: advances in sampling and analysis. John Wiley and Sons Ltd, England

    Google Scholar 

  • Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147:265–274

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wang L (2010) Pan synthesis of monodisperse Fe3O4@silica core–shell microspheres and their application for removal of heavy metal ions from water. J Alloys Compd 492:656–661

    Article  CAS  Google Scholar 

  • Hulakoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes: a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon nature. J Hazard Mater 354:56–58

    CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Soil Heavy Metals (eds. Sherameti I, Varma A) Springer-Verlag Berlin Heidelberg, 19:31–64

    Google Scholar 

  • Kapoor A, Viraraghvan T (1995) Fungal biosorption – an alternative treatment option for heavy metal bearing wastewater: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Khayat Z, Sarkar F (2013) Selective removal of lead (II) ion from wastewater using superparamagnetic monodispersed iron oxide (Fe3O4) nanoparticles as a effective adsorbent. Int J Nanosci Nanotechnol 9(2):109–114

    Google Scholar 

  • Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol 38:924–931

    Article  CAS  PubMed  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25):2434–2443

    Article  CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver based crystalline nanoparticles, microbially fabricated. J Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  Google Scholar 

  • Konishi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–665

    Article  CAS  PubMed  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    Article  CAS  Google Scholar 

  • Kshirsagar DA (2013) Bioremediation of wastewater by using microalgae: an experimental study. Int J Life Sci Biotech Pharma Res 2(3):339–346

    Google Scholar 

  • Kyriacou SV, Brownlow WJ, Xu XN (2004) Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemist 43:140–147

    Article  CAS  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201. https://doi.org/10.1146/annurev.ento.45.1.175

    Article  CAS  PubMed  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44:19–41

    Article  CAS  Google Scholar 

  • Letterman R, Mitsch W (1978) Impact of mine drainage on a mountain stream in Pennsylvania. Environ Pollut 17:53–73

    Article  CAS  Google Scholar 

  • Li Y, Li B (2011) Study on fungi-bacteria consortium bioremediation of petroleum contaminated mangrove sediments amended with mixed biosurfactants. Adv Mater Res 183(185):1163–1167

    Google Scholar 

  • Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC (2011) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86(2):441–447

    Article  CAS  Google Scholar 

  • Li MH, Oberle DF, Lucas PM (2012) Effects of dietary fiber concentrations supplied by corn bran on feed intake, growth, and feed efficiency of channel catfish. N Am J Aquacult 74(2):148–153

    Article  Google Scholar 

  • Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Micropor Mesopor Mater 114(1):431–439

    Article  CAS  Google Scholar 

  • Liu X, Xu W, Pan Y, Du E (2015) Underestimated dissolved organic nitrogen (N) but overestimated total particulate N in wet deposition in China. Sci Total Environ 520(1):300–301. https://doi.org/10.1016/j.scitotenv.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  • Lubick N, Betts K (2008) Silver socks have cloudy lining | Court bans widely used flame retardant. Environ Sci Technol 42(11):3910–3910

    Article  CAS  PubMed  Google Scholar 

  • Mahvi AH, Ebrahimi SJA, Mesdaghinia A, Gharibi H, Sowlat MH (2011) Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation–electroflotation (ECEO–EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. J Hazard Mater 192(3):1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Mann S (2001) Biomineralization, principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Manzer H, Mohamed HS, Whaibi A, Firoz M, Mutahhar Y, Khaishany A (2015) In: Siddiqui MH (ed) Nanotechnology in plant science. Springer Int Publication, Switzerland

    Google Scholar 

  • McGrath SP (1999) Adverse effects of cadmium on soil microflora and fauna. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic, Dordrecht, pp 85–95

    Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222

    Article  CAS  Google Scholar 

  • Mohsenzadeh F, Chehregani A, Yousefi N (2011) Effect of the heavy metals on developmental stages of ovule, pollen, and root proteins in Reseda lutea L. (Resedaceae). Biol Trace Elem Res 140(3):368–376

    Article  CAS  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:1–14

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Ndeddy Aka RJ, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytoremediation 18:200–209

    Article  CAS  PubMed  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozmen M, Can K, Arslan G, Tor A, Cengeloglu Y, Ersoz M (2010) Adsorption of Cu (II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254(1):162–169

    Article  CAS  Google Scholar 

  • Pan B, Qiu H, Pan B, Nie G, Xiao L, Lv L (2010) Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe (III) oxides: behavior and XPS study. Water Res 44(3):815–824

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Saha P, Biswas S, Maiti TK (2011) Characterization of two heavy metal resistant strains isolated from slag disposal site at Burnpur. Ind J Environ Biol 32:773–779

    CAS  Google Scholar 

  • Pang S, Hernandez Y, Feng X, Mullen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23(25):2779–2795

    Article  CAS  PubMed  Google Scholar 

  • Pena M, Meng V, Korfiatis GP, Jing C (2006) Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ Sci Technol 40(4):1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, http://dx.doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: https://doi.org/10.1002/wnan.1363

    PubMed  Google Scholar 

  • Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in Bioremediation. Springer International Publishing https://www.springer.com/de/book/978303002368

  • Prasad R, Kumar V, Kumar M, Wang S (2018a) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3) https://www.springer.com/gb/book/9789811086656

  • Prasad R, Jha A, Prasad K (2018b) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Thirugnanasanbandham K (2019) Advances Research on Nanotechnology for Water Technology. Springer International Publishing https://www.springer.com/us/book/9783030023805

  • Rasmussen LD, Sørensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–646

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Sadegh H, Shahryari-Ghoshekandi R, Kazemi M (2014) Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int Nano Lett 4:129–135

    Article  CAS  Google Scholar 

  • Salmani MH, Ehrampoush MH, Aboueian-Jahromi M, Askarishahi M (2013) Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles. J Environ Health Sci Eng 1:11–21. https://doi.org/10.1186/2052-336X-11-21

    Article  CAS  Google Scholar 

  • Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24:15–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7(4–5):331–342

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, Gunten UV, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136

    Article  Google Scholar 

  • Seiler HG, Sigel H, Sigel A (1988) Handbook on toxicity of inorganic compounds. Marcel Dekker Inc., New York

    Google Scholar 

  • Shankar SS, Ahmed A, Akkamwar B, Sastry M, Rai A, Singh A (2004) Biological synthesis of triangular gold nanoprism. Nat Mater 3(7):482–488

    Article  CAS  PubMed  Google Scholar 

  • Sheela T, Nayaka YA (2012) Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem Eng J 91:123–131

    Article  CAS  Google Scholar 

  • Siegert M, Sonawane JM, Ezugwu CI, Prasad R (2019) Economic assessment of nanomaterials in bio-electrical water treatment. In: Advanced Research in Nanosciences for Water Technology (eds. Prasad R, Thirugnanasanbandham K), Springer International Publishing AG 5–23

    Google Scholar 

  • Singh B, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52. https://doi.org/10.1007/978-1-4614-5577-6_2

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192(1):131–138

    CAS  PubMed  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  PubMed  Google Scholar 

  • Tilley E, Ulrich L, Lüthi C, Reymond PO, Zurbrügg C (2016) Compendium of sanitation systems and technologies, 2nd edn. Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, p 175

    Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  • Tuzen M, Soylak M (2007) Multiwalled carbon nanotubes for speciation of chromium in environmental samples. J Hazard Mater 147:219–225

    Article  CAS  PubMed  Google Scholar 

  • USEPA (2009) Drinking water contaminants. United States Environmental Protection Agency (EPA), Washington, DC

    Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418. https://doi.org/10.1016/j.matlet.2006.07.042

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wei C, Wang W, Li Q, Zhengping H (2012) Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem Eng J 197:34–40

    Article  CAS  Google Scholar 

  • Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347

    Article  CAS  Google Scholar 

  • Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. J Adv Mater 18:1109–1120

    Article  CAS  Google Scholar 

  • Xie FJ, Zhu Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and Bermuda grass genetic variation. Front Plant Sci 7:775. https://doi.org/10.3389/fpls.2016.00755

    Article  Google Scholar 

  • Xu D, Tan X, Chen C, Wang X (2008) Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  PubMed  Google Scholar 

  • Yadanaparthi SK, Graybill R, von Wandruszka R (2009) Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J Hazard Mater 171:1–15

    Article  CAS  PubMed  Google Scholar 

  • Yin P, Xu Q, Qu R, Zhao G, Sun Y (2010) Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic–organic composite material. J Hazard Mater 173:710–716

    Article  CAS  PubMed  Google Scholar 

  • Yousefi N, Chehregani A, Malayeri B, Lorestani B, Cheraghi M (2011) Investigating the effect of heavy metals on developmental stages of anther and pollen in Chenopodium botrys L. (Chenopodiaceae). Biol Trace Elem Res 140:368–376

    Article  CAS  PubMed  Google Scholar 

  • Zare K, Najafi FH, Sadegh (2013) Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J Nanostruct Chem 3:1–8

    Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallikarjunaiah, S., Pattabhiramaiah, M., Metikurki, B. (2020). Application of Nanotechnology in the Bioremediation of Heavy Metals and Wastewater Management. In: Thangadurai, D., Sangeetha, J., Prasad, R. (eds) Nanotechnology for Food, Agriculture, and Environment. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31938-0_13

Download citation

Publish with us

Policies and ethics