Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Modern society is dependent on different devices in which the fundamental behavior is deeply attached to the magnetic and electrical properties of the components used to build them. Until now, the development of new materials guarantees the improvement of the efficiency of these devices. However, new functionalized materials are necessary to the development of the next generation considering not only efficiency, but low environmental impact, durability, and low toxicity. One important concern is material weight and mild synthesis methods. In this sense, since the discovery of conducting polymers, in 1977, there are many and important applications of these materials. These compounds have as special properties the possibility to have their conductivity modulated between 10−6 up to 103 S cm−1. Besides, most of them are redox materials, meaning they can be reversibly changed between the reduced (dielectric) and oxidized states (semiconductor). On the other hand, fundamental aspects of their behavior are still a challenge to researchers of many areas due to the very drastic changes associated with the redox behavior, such as conductivity, spectral absorbance, ionic intercalation, volume change, and more recently, magnetic properties. Specifically, this chapter presents a review about those works which have investigated the magnetic properties, its correlation with synthesis methods and redox behavior as well as the morphological effect. The concern of this chapter is to analyze the different magnetic phases present in conducting polymers, in particularly, antiferromagnetic, ferromagnetic phases observed at room temperature in some of these materials, which open many possibilities for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shirakawa, H., Louis, J., Macdiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Comm. 16, 578–580 (1977)

    Article  Google Scholar 

  2. Chiang, C.K., et al.: Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977)

    Article  Google Scholar 

  3. Fukutome, H., Takahashi, A., Ozaki, M.: Design of conjugated polymers with polaronic ferromagnetism. Chem. Phys. Lett. 133(1), 34–38 (1987)

    Article  Google Scholar 

  4. Bredas, J.L., Street, G.B.: Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985)

    Article  Google Scholar 

  5. Fisher, A.J., Hayes, W., Wallace, D.S.: J. Phys. Condens. Matter 1, 5567 (1989)

    Article  Google Scholar 

  6. Bertho, D., Jouanin, C., Lussert, J.M.: Phys. Rev. B 37, 4039 (1988)

    Article  Google Scholar 

  7. Wohlgenannt, M., Jiang, X.M., Vardeny, Z.V.: Phys. Rev. B 69, R241204 (2004)

    Article  Google Scholar 

  8. Nalwa, H.S.: Phase transitions in polypyrrole and polythiophene conducting polymers demonstrated by magnetic susceptibility measurements. Phys. Rev. B 39, 5964–5974 (1989)

    Article  Google Scholar 

  9. Mizoguchi, K., Kachi, N., Sakamoto, H., Kume, K., Yoshioka, K., Masubuchi, S., Kazama, S.: Synth. Met. 84, 695 (1997)

    Article  Google Scholar 

  10. Macedo, A.M.S., dos Santos, M.C., Coutinho-Filho, M.D., Macedo, C.A.: Letters 6. Phys. Rev. Lett. 74, 1851–1854 (1995)

    Article  Google Scholar 

  11. Yoshizawa, K., Tanaka, K., Yamabe, T., Yamauchi, J.: Ferromagnetic interaction in poly (m-aniline): electron spin resonance and magnetic susceptibility. J. Chem. Phys. 96, 5516–5522 (1992)

    Article  Google Scholar 

  12. Devine, J.N., Crayston, J.A., Walton, J.C.: Synthesis and design of potential polaronic ferromagnets. Synth. Met. 103, 2294–2295 (1999)

    Article  Google Scholar 

  13. Genies, E., Lapkowski, M.: Electrochemical in situ EPR evidence of twopolaron-bipolaron states in polyaniline. J. Elecrroanal. Chem. 236, 199–208 (1987)

    Article  Google Scholar 

  14. Kulszewicz-BajerAJER, I., et al.: Electrochemical spin response in polyalkylthiophenes and polydialkylbithiophenes. Synth. Met. 35, 129–133 (1990)

    Article  Google Scholar 

  15. Onoda, M., Nakayama, H., Morita, S., Yoshino, K.: Electronic properties of polythiophene derivatives. Synth. Met. 55, 275–280 (1993)

    Article  Google Scholar 

  16. Bacskai, J., Inzelt, G., Bartl, A., Dunsch, L., Paasch, G.: In situ electrochemical ESR investigations of the growth of one- and two-dimensional polypyrrole films. Synth. Met. 67, 227–230 (1994)

    Article  Google Scholar 

  17. Sun, Z.W., Frank, A.J.: Characterization of the intrachain charge-generation mechanism of electronically conductive poly (3-methylthiophene). J. Chem. Phys. 94, 4600–4608 (1991)

    Article  Google Scholar 

  18. Pereira, E., et al.: Thermal-history-dependent transition in pressed pellets ofC104 -doped poly(3-methylthiophene). Phys. Rev. B 50, 3648–3651 (1994)

    Article  Google Scholar 

  19. Nascimento, O.R., et al.: Kinetics of crystallization in conducting polymers observed from electron spin resonance. J. Chem. Phys. 109, 8729–8730 (1998)

    Article  Google Scholar 

  20. Nascimento, O.R., de Oliveira, A.J.A., Pereira, E.C., Correa, A.A., Walmsley, L.: The ferromagnetic behaviour of conducting polymers revisited. J. Phys.: Condens. Matter 20, 035214–035221 (2008)

    Google Scholar 

  21. Barta, P., Niziol, S., Le Guennec, P., Pron, A.: Doping-induced magnetic phase transition in poly(3-alkylthiophenes). Phys. Rev. B 50, 3016–3024 (1994)

    Article  Google Scholar 

  22. Čík, G., Sersen, F., Dlhan, L., Szabo, L., Bartus, J.: Anomaly in magnetic properties of poly (3-alkylthiophene)s depending on alkyl chain length. Synth. Met. 75, 43–48 (1995)

    Article  Google Scholar 

  23. Genoud, F., Nechtscheina, M., Plancheb, M., Thieblemontb, J.: ESR and conductivity on polypyrrole: effect of ageing. Synth. Met. 69, 339–340 (1995)

    Article  Google Scholar 

  24. Sersen, F., Čík, G., Szabo, L., Dlhan, L.: Role of polarons in the antiferromagnetic behaviour of poly(3-dodecylthiophene). Synth. Met. 80, 297–300 (1996)

    Article  Google Scholar 

  25. Sanjai, B., Raghunathan, A., Natarajan, T.S., Rangarajan, G.: Charge transport and magnetic properties in polyaniline doped with methane sulphonic acid and polyaniline-polyurethane blend. Phys. Rev. B 55, 734–744 (1997)

    Article  Google Scholar 

  26. Trivedi, D.C.: Observation of ferromagnetism in polyaniline. Synth. Met. 121, 1780 (2001)

    Article  Google Scholar 

  27. Zaidi, N.A., Giblin, S.R., Terry, I., Monkman, A.P.: Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer (Guildf). 45, 5683–5689 (2004)

    Article  Google Scholar 

  28. Long, Y., et al.: Magnetic properties of conducting polymer nanostructures. J. Phys. Chem. B 110, 23228–23233 (2006)

    Article  Google Scholar 

  29. Kompan, M.E., Sapurina, I.Y., Babayan, V., Kazantseva, N.E.: Electrically conductive polyaniline—a molecular magnet with the possibility of chemically controlling the magnetic properties. Phys. Solid State 54, 2400–2406 (2012)

    Article  Google Scholar 

  30. Walmsley, L., et al.: Crystallization observed from the spin behavior in poly(3-methylthiophene). Synth. Met. 101, 355 (1999)

    Article  Google Scholar 

  31. Sercheli, M.S., et al.: Polarons, bipolarons, and crystallization in conducting polymers: an ESR study. Phys. Status Solidi B Basic Res. 220, 631 (2000)

    Article  Google Scholar 

  32. Souza, V.M., Walmsley, L., Correa, A.A., Pereira, E.C., Gobbi, A.L.: Evidence of room temperature charge-density wave behavior and glass-like states in pressed pellets of lightly doped poly (3-methyl thiophene). Mol. Cryst. Liq. Cryst. 374, 119–124 (2002)

    Article  Google Scholar 

  33. Souza, V.M., Walmsley, L., Correa, A.A., Pereira, E.C.: Field-dependent conductivity at low electric fields in pressed pellets of doped poly(3-methylthiophene): evidence of charge-density wave depinning. Solid State Commun. 126, 141–145 (2003)

    Article  Google Scholar 

  34. Kondo, J.M., et al.: Simultaneous observation of the magnetic and electric behavior in a correlated system near a metal-semiconductor transition: ESR in pellets of conducting polymers. Phys. Rev. B 80, 014410–014416 (2009)

    Article  Google Scholar 

  35. Dormann, E.: Magnetism in organic materials. Synth. Met. 71, 1781–1784 (1995)

    Article  Google Scholar 

  36. Rajca, A., Wongsriratanakul, J., Rajca, S.: Magnetic ordering in an organic. Polymer 294, 1503–1506 (2001)

    Google Scholar 

  37. Correa, A.A., et al.: Weak ferromagnetism in poly(3-methylthiophene)(PMTh). Synth. Met. 121, 1836–1837 (2001)

    Article  Google Scholar 

  38. Pereira, E.C., et al.: Polaronic ferromagnetism in conducting polymers. J. Magn. Magn. Mater. 226, 2023–2025 (2001)

    Article  Google Scholar 

  39. Nascimento, O.R., et al.: Magnetic behavior of poly (3-methylthiophene): metamagnetism and room-temperature weak ferromagnetism. Phys. Rev. B 67, 144422 (2003)

    Article  Google Scholar 

  40. De Paula, F.R., Pereira, E.C., De Oliveira, A.J.A.: The influence of the morphology on the magnetic properties of poly (3-hexylthiophene). J. Supercond. Nov. Magn. 23, 127–129 (2010)

    Article  Google Scholar 

  41. Kahol, P.K., McCormick, B.J., Epstein, A.J., Pandey, S.S.: Effects of disorder on the magnetic state of poly(3-hexyl)thiophene. Synth. Met. 135–136, 343–344 (2003)

    Article  Google Scholar 

  42. de Paula, F.R., Walmsley, L., Pereira, E.C., de Oliveira, A.J.A.: Magnetic properties of poly(3-hexylthiophene). J. Magn. Magn. Mater. 320, 193–195 (2008)

    Article  Google Scholar 

  43. Vandeleene, S., et al.: Magnetic properties of substituted poly(thiophene)s in their neutral state. Macromolecules 43, 2910–2915 (2010)

    Article  Google Scholar 

  44. Čík, G., et al.: Ferromagnetism in poly(N-perfluorophenylpyrrole). J. Magn. Magn. Mater. 391, 116–121 (2015)

    Article  Google Scholar 

  45. Marchesi, L.F.Q.P., de Paula, F.R., de Oliveira, A.J.A., Pereira, E.C.: Magnetic properties of polypyrrole doped with iron. Mol. Cryst. Liq. Cryst. 522, 1–6 (2010)

    Article  Google Scholar 

  46. Hatamie, S., et al.: Cobalt nanoparticles doped emaraldine salt of polyaniline: a promising room temperature magnetic semiconductor. J. Magn. Magn. Mater. 322, 3926–3931 (2010)

    Article  Google Scholar 

  47. Taylan, N.B., Sari, B., Unal, H.I.: Preparation of conducting poly(vinyl chloride)/polyindole composites and freestanding films via chemical polymerization. J. Polym. Sci. Part B Polym. Phys. 48, 1290–1298 (2010)

    Article  Google Scholar 

  48. Umare, S.S., Shambharkar, B.H., Ningthoujam, R.S.: Synthesis and characterization of polyaniline-Fe3O4 nanocomposite: Electrical conductivity, magnetic, electrochemical studies. Synth. Met. 160, 1815–1821 (2010)

    Article  Google Scholar 

  49. Suzuki, K., et al.: Ferromagnetism of polythiophene-capped Au nanoparticles. J. Appl. Phys. 109, 7–10 (2011)

    Google Scholar 

  50. Aydin, M., et al.: Synthesis, magnetic and electrical characteristics of poly(2-thiophen-3-yl- malonic acid)/Fe3O4 nanocomposite. J. Alloys Compd. 514, 45–53 (2012)

    Article  Google Scholar 

  51. Xie, Y., et al.: Preparation and electromagnetic properties of La-doped barium-ferrite/polythiophene composites. Synth. Met. 162, 1643–1647 (2012)

    Article  Google Scholar 

  52. Yano, J., et al.: Magnetization of conductive polymer polyaniline during the electro-oxidation in the presence of chloranil. Mater. Lett. 84, 162–164 (2012)

    Article  Google Scholar 

  53. Yano, J., Fukuoka, H., Kitani, A.: Electro-oxidation of polyaniline in the presence of electronic acceptors and the magnetic properties of the resulting polyaniline. Thin Solid Films 618, 165–171 (2016)

    Article  Google Scholar 

  54. Kim, Y.S., et al.: Multifunctional Fe3O4 nanoparticles-embedded poly(styrene)/poly(thiophene) core/shell composite particles. Synth. Met. 175, 56–61 (2013)

    Article  Google Scholar 

  55. Zhao, J., et al.: Preparation and characterization of an electromagnetic material: the graphene nanosheet/polythiophene composite. Synth. Met. 181, 110–116 (2013)

    Article  Google Scholar 

  56. Singh, D., Misra, R.A.: Electrochemical synthesis and properties of poly (3-methylthiophene) doped with pentachlorostannate anion. Nov. Trends Electroorg. Synth., 153–154 (2013). https://doi.org/10.1007/978-4-431-65924-2_46

    Chapter  Google Scholar 

  57. Nandapure, B., Kondawar, S., Salunkhe, M., Nandapure, A.: Nanostructure cobalt oxide reinforced conductive and magnetic polyaniline nanocomposites. J. Compos. Mater. 47, 559–567 (2013)

    Article  Google Scholar 

  58. Hosseini, S.H., Moghimi, A., Moloudi, M.: Magnetic, conductive, and microwave absorption properties of polythiophene nanofibers layered on MnFe2O4/Fe3O4 core-shell structures. Mater. Sci. Semicond. Process. 24, 272–277 (2014)

    Article  Google Scholar 

  59. Xie, Y., et al.: Preparation and electromagnetic properties of chitosan-decorated ferrite-filled multi-walled carbon nanotubes/polythiophene composites. Compos. Sci. Technol. 99, 141–146 (2014)

    Article  Google Scholar 

  60. Hosseini, S.H., Moloudi, M.: Preparation of nanofiber polythiophene layered on BaxSr1−xFe12O19/Fe3O4/polyacrylic acid core–shell structure and its microwave absorption investigation. Appl. Phys. A Mater. Sci. Process. 120, 1165–1171 (2015)

    Article  Google Scholar 

  61. Hong, X., et al.: A novel ternary hybrid electromagnetic wave-absorbing composite based on BaFe11.92(LaNd)0.04O19-titanium dioxide/multiwalled carbon nanotubes/polythiophene. Compos. Sci. Technol. 117, 215–224 (2015)

    Article  Google Scholar 

  62. Majumdar, S., Lill, J., Rajander, J., Majumdar, H.: Observation of ferromagnetic ordering in conjugated polymers exhibiting OMAR effect. Org. Electron. 21, 66–72 (2015)

    Article  Google Scholar 

  63. Gulácsi, M., El-Mansy, M.A.M., Gulácsi, Z.: Electron-phonon interactions in conducting polymers. Philos. Mag. Lett. 96, 67–75 (2016)

    Article  Google Scholar 

  64. Gulacsi, M., Gulacsi, Z.: Emergence of ferromagnetism in conducting polymers in the presence of lattice vibrations. Mod. Phys. Lett. B 30, 1650335 (2016)

    Article  MathSciNet  Google Scholar 

  65. Hosseini, S.H., Alamian, A., Mousavi, S.M.: Preparation of magnetic and conductive graphite nanoflakes/SrFe12O19/polythiophene nanofiber-nanocomposites and its radar absorbing application. Fibers Polym. 17, 593–599 (2016)

    Article  Google Scholar 

  66. Onoda, M., Nakayama, H., Morita, S., Yoshino, K.: Electrochemical doping properties and electronic states of poly (3-phenylthiophene). J. Appl. Phys. 73, 2859 (2017)

    Article  Google Scholar 

  67. Peymanfar, R., Javidan, A., Javanshir, S.: Preparation and investigation of structural, magnetic, and microwave absorption properties of aluminum-doped strontium ferrite/MWCNT/polyaniline nanocomposite at KU-band frequency. J. Appl. Polym. Sci. 134(30), 45135 (2017)

    Article  Google Scholar 

  68. Liu, J., et al.: Room-temperature magnetism in carbon dots and enhanced ferromagnetism in carbon dots-polyaniline nanocomposite. Sci. Rep. 7, 1–7 (2017)

    Article  Google Scholar 

  69. Unver, I.S., Durmus, Z.: Magnetic and microwave absorption properties of magnetite (Fe3O4)@conducting polymer (PANI, PPY, PT) composites. IEEE Trans. Magn. 53(10), 1–8 (2017)

    Article  Google Scholar 

  70. Rouhi, M., Mansour Lakouraj, M., Baghayeri, M., Hasantabar, V.: Novel conductive magnetic nanocomposite based on poly (indole-co-thiophene) as a hemoglobin diagnostic biosensor: synthesis, characterization and physical properties. Int. J. Polym. Mater. Polym. Biomater. 66, 12–19 (2017)

    Article  Google Scholar 

  71. Juybaria, F.E., Kamran-Pirzaman, A., Ghorbani, M.: Chemical modification of magnetite with polythiophene and characterization of formed core-shell nanocomposite. Inorg. Nano-Metal Chem. 47, 121–126 (2017)

    Article  Google Scholar 

  72. Bai, D., Feng, H., Chen, N., Tan, L., Qiu, J.: Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites. J. Magn. Magn. Mater. 457, 75–82 (2018)

    Article  Google Scholar 

  73. Xi, X., et al.: Assembling exceptionally-structured Janus nanoribbons into a highly anisotropic electrically conductive array film that exhibits red fluorescence and superparamagnetism. New J. Chem. 42, 18708–18716 (2018)

    Article  Google Scholar 

  74. Singh, B., Doong, R.A., Chauhan, D.S., Dubey, A.K., Anshumali: Synthesis and characterization of Fe3O4/polythiophene hybrid nanocomposites for electroanalytical application. Mater. Chem. Phys. 205, 462–469 (2018)

    Article  Google Scholar 

  75. Tian, J., et al.: High pairing rate Janus-structured microfibers and array: high-efficiency conjugate electrospinning fabrication, structure analysis and co-instantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence. RSC Adv. 9, 10679–10692 (2019)

    Article  Google Scholar 

  76. Iqbal, S., Shah, J., Kotnala, R.K., Ahmad, S.: Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J. Alloys Compd. 779, 487–496 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank financial support from CNPq, CAPES and FAPESP (2013/07296-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. A. de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Correa, A.A., Pereira, E.C., de Oliveira, A.J.A. (2020). Magnetic Properties of Conducting Polymers. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics