Skip to main content

Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases

  • Chapter
  • First Online:
Stem Cells

Abstract

Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

2,4,5-Trihydroxyphenethylamine

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AMP, ADP, ATP:

Adenosine 5′ mono-, di-, triphosphate

Aβ:

Amyloid beta

BBG:

Brilliant Blue G

BM:

Bone marrow

BM-MNC:

Bone marrow–derived mononuclear cell

CNS:

Central nervous system

COX-2:

Cyclooxygenase-2

EAE:

Experimental autoimmune encephalomyelitis

EC:

Endothelial cell

EDSS:

Expanded Disability Status Scale

ESC:

Embryonic stem cell

FGF:

Fibroblast growth factor

FRS:

Functional Rating Scale

GABA:

γ-Aminobutyric acid

GDNF:

Glial cell line–derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HSC:

Hematopoietic stem cell

hUC-MSC:

Human umbilical cord–derived mesenchymal stem cell

IFN-γ:

Interferon gamma

IL-1β/2/6/9/10/17:

Interleukin 1β/2/6/9/10/17

iPSC:

Induced pluripotent stem cell

MNC:

Mononuclear cell

MOG:

Myelin oligodendrocyte glycoprotein

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

MSC:

Mesenchymal stem cell

MSC-NTF:

MSC-secreting neurotrophic factors

NPC:

Neural progenitor cell

NSC:

Neural stem cell

PD:

Parkinson’s disease

PKA/C:

Protein kinase A/C

PLP:

Proteolipid protein

PMS:

Progressive multiple sclerosis

RRMS:

Relapsing-remitting multiple sclerosis

SGZ:

Subgranular zone

SMC:

Smooth muscle cell

SOD1-G93A:

Superoxide dismutase 1 mutant (glycine 93 changed to alanine)

SOD1:

Superoxide dismutase 1

Sox1-GFP ESC:

Sox1-green fluorescent protein embryonic stem cell

SVZ:

Subventricular zone

Tg APP/PS1:

Double transgenic mice expressing a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9)

Tg2576 mice:

Transgenic mice expressing the human amyloid precursor protein gene carrying the Swedish mutation (HuAPP695swe)

TNF-α:

Tumor necrosis factor-alpha

UDP, UTP:

Uridine di-, triphosphate

VEGF:

Vascular endothelial growth factor

References

  1. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581

    CAS  PubMed  Google Scholar 

  2. Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1(4):239–248

    Article  CAS  PubMed  Google Scholar 

  3. Burnstock G (2009) Purinergic cotransmission. Exp Physiol 94(1):20–24

    Article  CAS  PubMed  Google Scholar 

  4. Burnstock G (2008) Purinergic signalling: past, present and future. Braz J Med Biol Res 42(1):3–8

    Article  PubMed  Google Scholar 

  5. Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2:239821281881749

    Article  Google Scholar 

  6. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16(5):433–440

    Article  CAS  PubMed  Google Scholar 

  7. Lustig KD, Shiau AK, Brake AJ, Julius D (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A 90(11):5113–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF et al (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324(2):219–225

    Article  CAS  PubMed  Google Scholar 

  9. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371(6497):519–523

    Article  CAS  PubMed  Google Scholar 

  10. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A et al (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371(6497):516–519

    Article  CAS  PubMed  Google Scholar 

  11. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590

    Article  CAS  PubMed  Google Scholar 

  12. Agboh KC, Webb TE, Evans RJ, Ennion SJ (2004) Functional characterization of a P2X receptor from Schistosoma mansoni. J Biol Chem 279(40):41650–41657

    Article  CAS  PubMed  Google Scholar 

  13. Fountain SJ, Parkinson K, Young MT, Cao L, Thompson CRL, North RA (2007) An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature 448(7150):200–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BJ, Davies JM (2003) Is ATP a signaling agent in plants? Plant Physiol 133(2):456–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim S-Y, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142(3):984–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26(8–9):959–969

    Article  CAS  PubMed  Google Scholar 

  17. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  CAS  PubMed  Google Scholar 

  18. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burnstock G (2016) Short- and long-term (trophic) purinergic signalling. Philos Trans R Soc Lond Ser B Biol Sci 371(1700):20150422

    Article  CAS  Google Scholar 

  20. Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36(9):1127–1139

    Article  CAS  PubMed  Google Scholar 

  21. Burnstock G (2013) Purinergic signalling: pathophysiology and therapeutic potential. Keio J Med 62(3):63–73

    Article  CAS  PubMed  Google Scholar 

  22. Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ et al (2017) Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168(5):867–877.e13

    Article  CAS  PubMed  Google Scholar 

  23. Sun B, Bachhawat P, Chu ML-H, Wood M, Ceska T, Sands ZA et al (2017) Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci U S A 114(8):2066–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z-G et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332(6027):322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eddy MT, Lee M-Y, Gao Z-G, White KL, Didenko T, Horst R et al (2018) Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172(1–2):68–80.e12

    Article  CAS  PubMed  Google Scholar 

  26. Egan TM, Samways DSK, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch 452(5):501–512

    Article  CAS  PubMed  Google Scholar 

  27. Samways DSK, Li Z, Egan TM (2014) Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 8:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A (2012) Molecular and functional properties of P2X receptors – recent progress and persisting challenges. Purinergic Signal 8(3):375–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karasawa A, Kawate T (2016) Structural basis for subtype-specific inhibition of the P2X7 receptor. elife 5:e22153

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kasuya G, Fujiwara Y, Takemoto M, Dohmae N, Nakada-Nakura Y, Ishitani R et al (2016) Structural insights into divalent cation modulations of ATP-gated P2X receptor channels. Cell Rep 14(4):932–944

    Article  CAS  PubMed  Google Scholar 

  32. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460(7255):592–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mansoor SE, Lü W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E (2016) X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature 538(7623):66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heo JS, Han HJ (2006) ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 24(12):2637–2648

    Article  CAS  PubMed  Google Scholar 

  35. Neary JT, Shi Y-F, Kang Y, Tran MD (2008) Opposing effects of P2X(7) and P2Y purine/pyrimidine-preferring receptors on proliferation of astrocytes induced by fibroblast growth factor-2: implications for CNS development, injury, and repair. J Neurosci Res 86(14):3096–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsao H-K, Chiu P-H, Sun SH (2013) PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 4(8):e751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang Y, Illes P (2017) Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 65(2):213–230

    Article  PubMed  Google Scholar 

  38. Díaz-Hernández M, Pintor J, Castro E, Miras-Portugal MT (2002) Co-localisation of functional nicotinic and ionotropic nucleotide receptors in isolated cholinergic synaptic terminals. Neuropharmacology 42(1):20–33

    Article  PubMed  Google Scholar 

  39. Gómez-Villafuertes R, Gualix J, Miras-Portugal MT (2001) Single GABAergic synaptic terminals from rat midbrain exhibit functional P2X and dinucleotide receptors, able to induce GABA secretion. J Neurochem 77(1):84–93

    Article  PubMed  Google Scholar 

  40. Gualix J, Gómez-Villafuertes R, Díaz-Hernández M, Miras-Portugal MT (2003) Presence of functional ATP and dinucleotide receptors in glutamatergic synaptic terminals from rat midbrain. J Neurochem 87(1):160–171

    Article  CAS  PubMed  Google Scholar 

  41. von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61

    Article  CAS  Google Scholar 

  42. von Kügelgen I (2019) Pharmacology of P2Y receptors. Brain Res Bull 151:12–24

    Article  CAS  Google Scholar 

  43. Zhang K, Zhang J, Gao Z-G, Zhang D, Zhu L, Han GW et al (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509(7498):115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang J, Zhang K, Gao Z-G, Paoletta S, Zhang D, Han GW et al (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509(7498):119–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang D, Gao Z-G, Zhang K, Kiselev E, Crane S, Wang J et al (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520(7547):317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffmann C, Moro S, Nicholas RA, Harden TK, Jacobson KA (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J Biol Chem 274(21):14639–14647

    Article  CAS  PubMed  Google Scholar 

  47. Algaier I, Jakubowski JA, Asai F, von Kügelgen I (2008) Interaction of the active metabolite of prasugrel, R-138727, with cysteine 97 and cysteine 175 of the human P2Y12 receptor. J Thromb Haemost 6(11):1908–1914

    Article  CAS  PubMed  Google Scholar 

  48. Ding Z, Bynagari YS, Mada SR, Jakubowski JA, Kunapuli SP (2009) Studies on the role of the extracellular cysteines and oligomeric structures of the P2Y12 receptor when interacting with antagonists. J Thromb Haemost 7(1):232–234

    Article  CAS  PubMed  Google Scholar 

  49. Hillmann P, Ko G-Y, Spinrath A, Raulf A, von Kügelgen I, Wolff SC et al (2009) Key determinants of nucleotide-activated G protein-coupled P2Y(2) receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem 52(9):2762–2775

    Article  CAS  PubMed  Google Scholar 

  50. Zimmermann H (2016) Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release. Purinergic Signal 12(1):25–57

    Article  CAS  PubMed  Google Scholar 

  51. Puchałowicz K, Baranowska-Bosiacka I, Dziedziejko V, Chlubek D (2015) Purinergic signaling and the functioning of the nervous system cells. Cell Mol Biol Lett 20(5):867–918

    Article  PubMed  Google Scholar 

  52. Ringe J, Kaps C, Burmester G-R, Sittinger M (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89(8):338–351

    Article  CAS  PubMed  Google Scholar 

  53. Martínez-Morales PL, Revilla A, Ocaña I, González C, Sainz P, McGuire D et al (2013) Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev 9(5):685–699

    Article  CAS  Google Scholar 

  54. Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A 112(47):14452–14459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    Article  CAS  PubMed  Google Scholar 

  56. Department of Health and Human Services (2001) Stem cells: scientific progress and future research directions | stemcells.nih.gov

  57. Department of Health and Human Services (2006) Regenerative medicine | stemcells.nih.gov

  58. Quiñones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM (2007) The human brain subventricular zone: stem cells in this niche and its organization. Neurosurg Clin N Am 18(1):15–20

    Article  PubMed  Google Scholar 

  59. Walker MR, Patel KK, Stappenbeck TS (2009) The stem cell niche. J Pathol 217(2):169–180

    Article  CAS  PubMed  Google Scholar 

  60. Xi R (2009) Anchoring stem cells in the niche by cell adhesion molecules. Cell Adhes Migr 3(4):396–401

    Article  Google Scholar 

  61. Florian MC, Geiger H (2010) Concise review: polarity in stem cells, disease, and aging. Stem Cells 28(9):1623–1629

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barkho BZ, Zhao X (2011) Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther 6(4):327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kshitiz, Levchenko A, D-HKKJPPKWHAJE, Park J, Kim P, Helen W, Engler AJ et al (2012) Control of stem cell fate and function by engineering physical microenvironments. Integr Biol 4(9):1008–1018

    Article  CAS  Google Scholar 

  64. Lin X, Shi Y, Cao Y, Liu W (2016) Recent progress in stem cell differentiation directed by material and mechanical cues. Biomed Mater 11(1):014109

    Article  PubMed  CAS  Google Scholar 

  65. Titmarsh DM, Chen H, Glass NR, Cooper-White JJ (2014) Concise review: microfluidic technology platforms: poised to accelerate development and translation of stem cell-derived therapies. Stem Cells Transl Med 3(1):81–90

    Article  PubMed  Google Scholar 

  66. Ang XM, Lee MHC, Blocki A, Chen C, Ong LLS, Asada HH et al (2014) Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment. Tissue Eng Part A 20(5–6):966–981

    Article  CAS  PubMed  Google Scholar 

  67. Yuan SH, Shaner M (2013) Bioengineered stem cells in neural development and neurodegeneration research. Ageing Res Rev 12(3):739–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Donega V, van Velthoven CTJ, Nijboer CH, Kavelaars A, Heijnen CJ (2013) The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J Cereb Blood Flow Metab 33(5):625–634

    Article  PubMed  PubMed Central  Google Scholar 

  69. Taylor CJ, Jhaveri DJ, Bartlett PF (2013) The therapeutic potential of endogenous hippocampal stem cells for the treatment of neurological disorders. Front Cell Neurosci 7:5

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chopra H, Hans MK, Shetty S (2013) Stem cells-the hidden treasure: a strategic review. Dent Res J (Isfahan) 10(4):421–427

    Google Scholar 

  71. Castro-Muñozledo F (2013) Review: corneal epithelial stem cells, their niche and wound healing. Mol Vis 19:1600–1613

    PubMed  PubMed Central  Google Scholar 

  72. Sequerra EB, Costa MR, Menezes JRL, Hedin-Pereira C (2013) Adult neural stem cells: plastic or restricted neuronal fates? Development 140(16):3303–3309

    Article  CAS  PubMed  Google Scholar 

  73. So WK, Cheung TH (2018) Molecular regulation of cellular quiescence: a perspective from adult stem cells and its niches. In: Methods Mol Biol 1686:1–25. https://doi.org/10.1007/978-1-4939-7371-2_1

    Google Scholar 

  74. Ramsden CM, Powner MB, Carr A-JF, Smart MJK, da Cruz L, Coffey PJ (2013) Stem cells in retinal regeneration: past, present and future. Development 140(12):2576–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194

    Article  CAS  PubMed  Google Scholar 

  76. Lanthier N, Rubbia-Brandt L, Spahr L (2013) Liver progenitor cells and therapeutic potential of stem cells in human chronic liver diseases. Acta Gastroenterol Belg 76(1):3–9

    PubMed  Google Scholar 

  77. Valtieri M, Sorrentino A (2008) The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol 217(2):296–300

    Article  CAS  PubMed  Google Scholar 

  78. Rastegar S, Parimisetty A, Cassam Sulliman N, Narra SS, Weber S, Rastegar M et al (2019) Expression of adiponectin receptors in the brain of adult zebrafish and mouse: links with neurogenic niches and brain repair. J Comp Neurol 527(14):2317–2333. https://doi.org/10.1002/cne.24669

    Article  CAS  PubMed  Google Scholar 

  79. Bellenchi GC, Volpicelli F, Piscopo V, Perrone-Capano C, di Porzio U (2013) Adult neural stem cells: an endogenous tool to repair brain injury? J Neurochem 124(2):159–167

    Article  CAS  PubMed  Google Scholar 

  80. Christie KJ, Turnley AM (2013) Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 6:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tara S, Rocco KA, Hibino N, Sugiura T, Kurobe H, Breuer CK et al (2014) Vessel bioengineering. Circ J 78(1):12–19

    Article  CAS  PubMed  Google Scholar 

  83. Haque N, Rahman MT, Abu Kasim NH, Alabsi AM (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013:632972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736

    Article  CAS  PubMed  Google Scholar 

  85. Warren H (2016) Embryonic stem cell research. Plast Surg Nurs 36(4):157–161

    Article  PubMed  Google Scholar 

  86. Brooks RW, Robbins PD (2018) Treating age-related diseases with somatic stem cells. Adv Exp Med Biol 1056:29–45

    Article  CAS  PubMed  Google Scholar 

  87. Choi SW, Lee JY, Kang K-S (2017) miRNAs in stem cell aging and age-related disease. Mech Ageing Dev 168:20–29

    Article  CAS  PubMed  Google Scholar 

  88. Cianflone E, Torella M, Chimenti C, De Angelis A, Beltrami AP, Urbanek K et al (2019) Adult cardiac stem cell aging: a reversible stochastic phenomenon? Oxidative Med Cell Longev 2019:1–19

    Article  CAS  Google Scholar 

  89. Giacoppo S, Bramanti P, Mazzon E (2017) The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy. Arch Immunol Ther Exp 65(5):363–379

    Article  Google Scholar 

  90. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    Article  CAS  PubMed  Google Scholar 

  91. Debnath T, Chelluri LK (2019) Standardization and quality assessment for clinical grade mesenchymal stem cells from human adipose tissue. Hematol Transfus Cell Ther 41(1):7

    Article  PubMed  Google Scholar 

  92. Rebelatto CK, Aguiar AM, Moretão MP, Senegaglia AC, Hansen P, Barchiki F et al (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 233(7):901–913

    Article  CAS  Google Scholar 

  93. Iwatani S, Yoshida M, Yamana K, Kurokawa D, Kuroda J, Thwin KKM et al (2019) Isolation and characterization of human umbilical cord-derived mesenchymal stem cells from preterm and term infants. J Vis Exp (143):e58806

    Google Scholar 

  94. Bharti D, Shivakumar SB, Park J-K, Ullah I, Subbarao RB, Park J-S et al (2018) Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 372(1):51–65

    Article  CAS  PubMed  Google Scholar 

  95. Chen L, Qu J, Xiang C (2019) The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res Ther 10(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Liu Y, Niu R, Yang F, Yan Y, Liang S, Sun Y et al (2018) Biological characteristics of human menstrual blood-derived endometrial stem cells. J Cell Mol Med 22(3):1627–1639

    Article  CAS  PubMed  Google Scholar 

  97. Wu C, Chen L, Huang Y, Huang Y, Parolini O, Zhong Q et al (2018) Comparison of the proliferation and differentiation potential of human urine-, placenta decidua basalis-, and bone marrow-derived stem cells. Stem Cells Int 2018:1–11

    CAS  Google Scholar 

  98. Campagnoli C, Roberts IAG, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2403

    Article  CAS  PubMed  Google Scholar 

  99. Fan CG, Tang FW, Zhang QJ, Lu SH, Liu HY, Zhao ZM et al (2005) Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 14(5):311–321

    Article  PubMed  Google Scholar 

  100. Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J et al (2006) Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol 17(11):3028–3040

    Article  CAS  PubMed  Google Scholar 

  101. Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65(1):22–26

    CAS  PubMed  Google Scholar 

  102. Miceli V, Pampalone M, Vella S, Carreca AP, Amico G, Conaldi PG (2019) Comparison of immunosuppressive and angiogenic properties of human amnion-derived mesenchymal stem cells between 2D and 3D culture systems. Stem Cells Int 2019:1–16

    Article  CAS  Google Scholar 

  103. Chalisserry EP, Nam SY, Park SH, Anil S (2017) Therapeutic potential of dental stem cells. J Tissue Eng 8:1–17

    Article  CAS  Google Scholar 

  104. Yamada Y, Nakamura-Yamada S, Kusano K, Baba S (2019) Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: a concise review. Int J Mol Sci 20(5):1132

    Article  CAS  PubMed Central  Google Scholar 

  105. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315

    Article  CAS  PubMed  Google Scholar 

  106. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395

    Article  CAS  PubMed  Google Scholar 

  107. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596

    CAS  PubMed  Google Scholar 

  108. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9(1):204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Yeo GC, Weiss AS (2019) Soluble matrix protein is a potent modulator of mesenchymal stem cell performance. Proc Natl Acad Sci 116(6):2042–2051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299

    Article  PubMed  Google Scholar 

  111. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217(2):318–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13(5):828–838

    Article  CAS  PubMed  Google Scholar 

  113. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229

    Article  CAS  PubMed  Google Scholar 

  114. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  115. Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232

    Article  CAS  PubMed  Google Scholar 

  116. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    Article  CAS  PubMed  Google Scholar 

  117. James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M et al (2012) Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 1(6):510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Askarinam A, James AW, Zara JN, Goyal R, Corselli M, Pan A et al (2013) Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein. Tissue Eng Part A 19(11–12):1386–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen C-W, Montelatici E, Crisan M, Corselli M, Huard J, Lazzari L et al (2009) Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 20(5–6):429–434

    Article  CAS  PubMed  Google Scholar 

  120. Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T et al (2011) Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci 52(12):9005–9010

    Article  PubMed  PubMed Central  Google Scholar 

  121. Crocker DJ, Murad TM, Geer JC (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp Mol Pathol 13(1):51–65

    Article  CAS  PubMed  Google Scholar 

  122. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dalkara T, Gursoy-Ozdemir Y, Yemisci M (2011) Brain microvascular pericytes in health and disease. Acta Neuropathol 122(1):1–9

    Article  PubMed  Google Scholar 

  124. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561

    Article  CAS  PubMed  Google Scholar 

  127. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  CAS  PubMed  Google Scholar 

  128. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX et al (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59(4):514–523

    Article  CAS  PubMed  Google Scholar 

  129. Zhang W, Ge W, Li C, You S, Liao L, Han Q et al (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13(3):263–271

    Article  CAS  PubMed  Google Scholar 

  130. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M et al (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11(1):96–104

    Article  CAS  PubMed  Google Scholar 

  131. Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6(4):435–441

    Article  CAS  PubMed  Google Scholar 

  132. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102(50):18171–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barbosa da Fonseca LM, Battistella V, de Freitas GR, Gutfilen B, dos Santos Goldenberg RC, Maiolino A et al (2009) Early tissue distribution of bone marrow mononuclear cells after intra-arterial delivery in a patient with chronic stroke. Circulation 120(6):539–541

    Article  PubMed  Google Scholar 

  134. Assis ACM, Carvalho JL, Jacoby BA, Ferreira RLB, Castanheira P, Diniz SOF et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19(2):219–230

    Article  PubMed  Google Scholar 

  135. Kang SK, Shin IS, Ko MS, Jo JY, Ra JC (2012) Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012:342968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M (2015) Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol 293:113

    Article  CAS  PubMed  Google Scholar 

  137. Zhi-Gang Z, Wei-Ming L, Zhi-Chao C, Yong Y, Ping Z (2008) Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases. Leuk Lymphoma 49(11):2187–2195

    Article  PubMed  CAS  Google Scholar 

  138. Ye Z, Wang Y, Xie H-Y, Zheng S-S (2008) Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+CD25+ regulatory T cells. Hepatobiliary Pancreat Dis Int 7(6):608–614

    PubMed  Google Scholar 

  139. Glennie S, Soeiro I, Dyson PJ, Lam EW-F, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827

    Article  CAS  PubMed  Google Scholar 

  140. Rasmusson I, Ringdén O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208–1213

    Article  PubMed  Google Scholar 

  141. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26(5):1474–1483

    Article  CAS  PubMed  Google Scholar 

  142. Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6(4):481–492

    Article  PubMed  Google Scholar 

  143. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L et al (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22(6):845–854

    Article  CAS  PubMed  Google Scholar 

  145. Prockop DJ (2012) Mitochondria to the rescue. Nat Med 18(5):653–654

    Article  CAS  PubMed  Google Scholar 

  146. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS et al (2012) Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. Moran M, editor. PLoS One 7(3):e32778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lin H-Y, Liou C-W, Chen S-D, Hsu T-Y, Chuang J-H, Wang P-W et al (2015) Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 22:31–44

    Article  CAS  PubMed  Google Scholar 

  149. Hsu Y-C, Wu Y-T, Yu T-H, Wei Y-H (2016) Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol 52:119–131

    Article  CAS  PubMed  Google Scholar 

  150. Newell C, Sabouny R, Hittel DS, Shutt TE, Khan A, Klein MS et al (2018) Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation in recipient cells. Front Physiol 9:1572

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. Lewin A, editor. PLoS One 4(3):e4722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5(7):e11803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27(8):3037–3042

    Article  CAS  PubMed  Google Scholar 

  154. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  155. Akers JC, Gonda D, Kim R, Carter BS, Chen CC (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncol 113(1):1–11

    Article  Google Scholar 

  156. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson DA et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  PubMed  Google Scholar 

  157. Conover JC, Allen RL (2002) The subventricular zone: new molecular and cellular developments. Cell Mol Life Sci 59(12):2128–2135

    Article  CAS  PubMed  Google Scholar 

  158. Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41(1):2–13

    Article  CAS  PubMed  Google Scholar 

  159. Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19(11):4462–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  CAS  PubMed  Google Scholar 

  161. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134

    Article  CAS  PubMed  Google Scholar 

  162. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16(9):1681–1689

    Article  PubMed  Google Scholar 

  163. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21(18):7153–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  166. Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J et al (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci U S A 105(3):1026–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Luo J, Shook BA, Daniels SB, Conover JC (2008) Subventricular zone-mediated ependyma repair in the adult mammalian brain. J Neurosci 28(14):3804–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lledo P-M, Saghatelyan A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 28(5):248–254

    Article  CAS  PubMed  Google Scholar 

  169. Lledo P-M, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193

    Article  CAS  PubMed  Google Scholar 

  170. Magavi SSP, Mitchell BD, Szentirmai O, Carter BS, Macklis JD (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci 25(46):10729–10739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Santarelli L (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    Article  CAS  PubMed  Google Scholar 

  172. Samuels BA, Hen R (2011) Neurogenesis and affective disorders. Eur J Neurosci 33(6):1152–1159

    Article  PubMed  Google Scholar 

  173. Ferreira AC, Novais A, Sousa N, Sousa JC, Marques F (2019) Voluntary running rescues the defective hippocampal neurogenesis and behaviour observed in lipocalin 2-null mice. Sci Rep 9(1):1649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Toda T, Gage FH (2018) Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res 373(3):693–709

    Article  PubMed  Google Scholar 

  175. Zhou H, Wang B, Sun H, Xu X, Wang Y (2018) Epigenetic regulations in neural stem cells and neurological diseases. Stem Cells Int 2018:1–10

    Google Scholar 

  176. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  177. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663

    Article  CAS  PubMed  Google Scholar 

  178. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  179. Chhabra A (2017) Derivation of human induced pluripotent stem cell (iPSC) lines and mechanism of pluripotency: historical perspective and recent advances. Stem Cell Rev Rep 13(6):757–773

    Article  CAS  PubMed  Google Scholar 

  180. Xu H, Jiao Y, Qin S, Zhao W, Chu Q, Wu K (2018) Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol 7(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ben M’Barek K, Monville C (2019) Cell therapy for retinal dystrophies: from cell suspension formulation to complex retinal tissue bioengineering. Stem Cells Int 2019:1–14

    Article  CAS  Google Scholar 

  182. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kameoka S, Babiarz J, Kolaja K, Chiao E (2014) A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci 137(1):76–90

    Article  CAS  PubMed  Google Scholar 

  184. Colasuonno F, Borghi R, Niceforo A, Muzzi M, Bertini E, Di Giulio A et al (2017) Senescence-associated ultrastructural features of long-term cultures of induced pluripotent stem cells (iPSCs). Aging (Albany NY) 9(10):2209–2222

    Article  CAS  Google Scholar 

  185. Zarzeczny A, Caulfield T (2009) Emerging ethical, legal and social issues associated with stem cell research & and the current role of the moral status of the embryo. Stem Cell Rev 5(2):96–101

    Article  Google Scholar 

  186. Donovan PJ, Gearhart J (2001) The end of the beginning for pluripotent stem cells. Nature 414(6859):92–97

    Article  CAS  PubMed  Google Scholar 

  187. Rezanejad H, Matin MM (2012) Induced pluripotent stem cells: progress and future perspectives in the stem cell world. Cell Reprogram 14(6):459–470

    Article  CAS  PubMed  Google Scholar 

  188. Kirkpatrick B, Hercher L, Facio F, Fonda J, Hahn S, Sapp J et al (2013) Stem cell research and therapy: the position of the National Society of Genetic Counselors. J Genet Couns 22(4):407–410

    Article  PubMed  Google Scholar 

  189. Sharma R (2019) Stem cells and tissue engineering in medical practice: ethical and regulatory policies. Curr Drug Targets 20(4):388–398

    Article  CAS  PubMed  Google Scholar 

  190. Abad M, Mosteiro L, Pantoja C, Cañamero M, Rayon T, Ors I et al (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502(7471):340–345

    Article  CAS  PubMed  Google Scholar 

  191. Lukovic D, Stojkovic M, Moreno-Manzano V, Bhattacharya SS, Erceg S (2014) Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Geron’s clinical trial for spinal cord injury. Stem Cells Dev 23(1):1–4

    Article  PubMed  Google Scholar 

  192. Geuss LR, Suggs LJ (2013) Making cardiomyocytes: how mechanical stimulation can influence differentiation of pluripotent stem cells. Biotechnol Prog 29(5):1089–1096

    Article  CAS  PubMed  Google Scholar 

  193. Chiang C-H, Huo T-I, Sun C-C, Hsieh J-H, Chien Y, Lu K-H et al (2013) Induced pluripotent stem cells and hepatic differentiation. J Chin Med Assoc 76(11):599–605

    Article  CAS  PubMed  Google Scholar 

  194. Walczak MP, Drozd AM, Stoczynska-Fidelus E, Rieske P, Grzela DP (2016) Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors. J Transl Med 14(1):341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Velmurugan BK, Bharathi Priya L, Poornima P, Lee L, Baskaran R (2019) Biomaterial aided differentiation and maturation of induced pluripotent stem cells. J Cell Physiol 234(6):8443–8454

    Article  CAS  PubMed  Google Scholar 

  196. Lim M-S, Ko SH, Kim MS, Lee B, Jung H-S, Kim K et al (2019) Hybrid nanofiber scaffold-based direct conversion of neural precursor cells/dopamine neurons. Int J Stem Cells 12:340

    Article  PubMed  PubMed Central  Google Scholar 

  197. Tan RP, Chan AHP, Lennartsson K, Miravet MM, Lee BSL, Rnjak-Kovacina J et al (2018) Integration of induced pluripotent stem cell-derived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis. Stem Cell Res Ther 9(1):70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Chen H-F, Yu C-Y, Chen M-J, Chou S-H, Chiang M-S, Chou W-H et al (2015) Characteristic expression of major histocompatibility complex and immune privilege genes in human pluripotent stem cells and their derivatives. Cell Transplant 24(5):845–864

    Article  PubMed  Google Scholar 

  199. Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    Article  CAS  PubMed  Google Scholar 

  200. Paulsen B da S, de Moraes Maciel R, Galina A, Souza da Silveira M, dos Santos Souza C, Drummond H et al (2012) Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 21(7):1547–1559

    Article  Google Scholar 

  201. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S et al (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533

    Article  CAS  PubMed  Google Scholar 

  202. Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2(3):230–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA et al (2019) MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nat Commun 10(1):1695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Chronis C, Fiziev P, Papp B, Butz S, Bonora G, Sabri S et al (2017) Cooperative binding of transcription factors orchestrates reprogramming. Cell 168(3):442–459.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Simic MS, Moehle EA, Schinzel RT, Lorbeer FK, Halloran JJ, Heydari K et al (2019) Transient activation of the UPR ER is an essential step in the acquisition of pluripotency during reprogramming. Sci Adv 5(4):eaaw0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702

    Article  CAS  PubMed  Google Scholar 

  208. Francesconi M, Di Stefano B, Berenguer C, de Andrés-Aguayo L, Plana-Carmona M, Mendez-Lago M et al. (2019) Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming. elife 8

    Google Scholar 

  209. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    Article  CAS  PubMed  Google Scholar 

  210. Barrero MJ, Berdasco M, Paramonov I, Bilic J, Vitaloni M, Esteller M et al (2012) DNA hypermethylation in somatic cells correlates with higher reprogramming efficiency. Stem Cells 30(8):1696–1702

    Article  CAS  PubMed  Google Scholar 

  211. Zhou J, Sun J (2019) A revolution in reprogramming: small molecules. Curr Mol Med 19:77

    Article  CAS  PubMed  Google Scholar 

  212. Wang J, Gu Q, Hao J, Bai D, Liu L, Zhao X et al (2013) Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells. Genomics Proteomics Bioinformatics 11(5):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sfougataki I, Grafakos I, Varela I, Mitrakos A, Karagiannidou A, Tzannoudaki M et al (2019) Reprogramming of bone marrow derived mesenchymal stromal cells to human induced pluripotent stem cells from pediatric patients with hematological diseases using a commercial mRNA kit. Blood Cells Mol Dis 76:32–39

    Article  CAS  PubMed  Google Scholar 

  214. Yau TM, Pagani FD, Mancini DM, Chang HL, Lala A, Woo YJ et al (2019) Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure. JAMA 321(12):1176

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kang JM, Yeon BK, Cho S-J, Suh Y-H (2016) Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J Alzheimers Dis 54(3):879–889

    Article  PubMed  Google Scholar 

  216. Higuchi A, Ku N-J, Tseng Y-C, Pan C-H, Li H-F, Kumar SS et al (2017) Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Investig 97(10):1167–1179

    Article  CAS  PubMed  Google Scholar 

  217. Katarzyna R (2017) Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure: an overview of evidence from the recent clinical trials. Curr Cardiol Rev 13(3):223–231

    Article  PubMed  PubMed Central  Google Scholar 

  218. Yu H, Lu K, Zhu J, Wang J (2017) Stem cell therapy for ischemic heart diseases. Br Med Bull 121(1):135–154

    Article  PubMed  CAS  Google Scholar 

  219. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35(4):851–858

    Article  CAS  PubMed  Google Scholar 

  221. Liu C, Su C (2019) Design strategies and application progress of therapeutic exosomes. Theranostics 9(4):1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Moghaddam AS, Afshari JT, Esmaeili S-A, Saburi E, Joneidi Z, Momtazi-Borojeni AA (2019) Cardioprotective microRNAs: lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 285:1–9

    Article  CAS  PubMed  Google Scholar 

  223. Peters EB (2018) Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng Part B Rev 24(1):1–24

    Article  PubMed  PubMed Central  Google Scholar 

  224. Hébert JM, Vijg J (2018) Cell replacement to reverse brain aging: challenges, pitfalls, and opportunities. Trends Neurosci 41(5):267–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Urrutia DN, Caviedes P, Mardones R, Minguell JJ, Vega-Letter AM, Jofre CM (2019) Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: an approach for their use in neural regeneration therapies. Papaccio G, editor. PLoS One 14(3):e0213032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Han C, Zhang L, Song L, Liu Y, Zou W, Piao H et al (2014) Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration. Chin Med J 127(2):329–337

    CAS  PubMed  Google Scholar 

  227. Li H, Yahaya BH, Ng WH, Yusoff NM, Lin J (2019) Conditioned medium of human menstrual blood-derived endometrial stem cells protects against MPP+-induced cytotoxicity in vitro. Front Mol Neurosci 12:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Chen S, Dong C, Zhang J, Tang B, Xi Z, Cai F et al (2019) Human menstrual blood–derived stem cells protect H9c2 cells against hydrogen peroxide–associated apoptosis. In Vitro Cell Dev Biol Anim 55(2):104–112

    Article  PubMed  Google Scholar 

  229. Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V et al (2013) Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells 31(6):1136–1148

    Article  PubMed  CAS  Google Scholar 

  230. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders – time for clinical translation? J Clin Invest 120(1):29–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70(3):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Franchi F, Rollini F, Cho JR, King R, Phoenix F, Bhatti M et al (2016) Effects of dabigatran on the cellular and protein phase of coagulation in patients with coronary artery disease on dual antiplatelet therapy with aspirin and clopidogrel. Results from a prospective, randomised, double-blind, placebo-controlled study. Thromb Haemost 115(3):622–631

    Article  PubMed  Google Scholar 

  233. Wonodi I, Gopinath HV, Liu J, Adami H, Hong LE, Allen-Emerson R et al (2011) Dipyridamole monotherapy in schizophrenia. Psychopharmacology 218(2):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ferreiro JL, Ueno M, Tomasello SD, Capodanno D, Desai B, Dharmashankar K et al (2011) Pharmacodynamic evaluation of pantoprazole therapy on clopidogrel effects. Circ Cardiovasc Interv 4(3):273–279

    Article  CAS  PubMed  Google Scholar 

  235. World Health Organization (WHO) (2018) The top 10 causes of death [Internet]. [cited 2019 May 3]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  236. Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM (2017) Vascular cells in blood vessel wall development and disease. Adv Pharmacol 78:323–350

    Article  CAS  PubMed  Google Scholar 

  237. Leeper NJ, Hunter AL, Cooke JP (2010) Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122(5):517–526

    Article  PubMed  PubMed Central  Google Scholar 

  238. Klein D (2018) iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 75(8):1411–1433

    Article  CAS  PubMed  Google Scholar 

  239. Yoder MC (2015) Differentiation of pluripotent stem cells into endothelial cells. Curr Opin Hematol 22(3):252–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wang G, Jacquet L, Karamariti E, Xu Q (2015) Origin and differentiation of vascular smooth muscle cells. J Physiol 593(14):3013–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68(3):213–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204(2):317–322

    Article  CAS  PubMed  Google Scholar 

  243. Toda N, Okunishi H, Taniyama K, Miyazaki M (1982) Responses to adenine nucleotides and related compounds of isolated dog cerebral, coronary and mesenteric arteries. J Vasc Res 19(5):226–236

    Article  CAS  Google Scholar 

  244. Green HN, Stoner HB (1950) The effect of purine derivatives on the cardiovascular system. In: Biological actions of the adenine nucleotides. Lewis, London, pp 65–103

    Google Scholar 

  245. Gillespie JH (1934) The biological significance of the linkages in adenosine triphosphoric acid. J Physiol 80(4):345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Gaddum JH, Holtz P (1933) The localization of the action of drugs on the pulmonary vessels of dogs and cats. J Physiol 77(2):139–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Minic Z, O’Leary DS, Goshgarian HG, ST (2013) Immunohistochemistry confirms the functional evidence that the cardiopulmonary chemoreflex (CCR) pathways in the caudal nucleus of the solitary tract (cNTS) are directly inhibited by A1 adenosine receptors and indirectly inhibited by A2a receptors via GAB. FASEB J 27:1118

    Google Scholar 

  248. Schindler CW, Karcz-Kubicha M, Thorndike EB, Müller CE, Tella SR, Ferré S et al (2005) Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists. Br J Pharmacol 144(5):642–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Dinelli CA The clinical use of adenosinetriphosphate. Minerva Med 44:1338–1344

    Google Scholar 

  250. Olivet J, Grund G (1953) Heart therapy with adenylic acid. Munch Med Wochenschr 95:1205–1206

    CAS  PubMed  Google Scholar 

  251. Tursi F (1954) The use of A.T.P. in circulatory insufficiency and angina pectoris. Rass Int Clin Ter 34:604–606

    CAS  PubMed  Google Scholar 

  252. Cadario F, Porretti FRA (1956) Use of adenosinetriphosphate (ATP) in cardiovascular diseases; clinical contribution. Minerva Med 47:2000–2006

    CAS  PubMed  Google Scholar 

  253. Kraucher GK (1955) Treatment of circulatory disorders with adenine compounds. Wien Med Wochenschr 105:303–305

    Google Scholar 

  254. Heidelmann G (1956) [Management of cardiovascular diseases with muscle adenylic acid]. Munch Med Wochenschr 98(47):1631–1633

    Google Scholar 

  255. Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194(3):335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38(6):900–908

    Article  CAS  PubMed  Google Scholar 

  257. Vassort G (2001) Adenosine 5′-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81(2):767–806

    Article  CAS  PubMed  Google Scholar 

  258. Wan J, Forsyth AM, Stone HA (2011) Red blood cell dynamics: from cell deformation to ATP release. Integr Biol 3(10):972

    Article  CAS  Google Scholar 

  259. Burnstock G (2014) The Erasmus Lecture 2012. The concept of cotransmission: focus on ATP as a cotransmitter and its significance in health and disease. Eur Rev 22:1–17

    Article  Google Scholar 

  260. Ralevic V, Burnstock G (2014) Purinergic signalling and blood vessels in health and disease. Pharmacol Rev 66:102–192

    Article  PubMed  CAS  Google Scholar 

  261. Williams CA, Forrester T (1983) Possible source of adenosine triphosphate released from rat myocytes in response to hypoxia and acidosis. Cardiovasc Res 17(5):301–312

    Article  CAS  PubMed  Google Scholar 

  262. Forrester T, Williams CA (1977) Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia. J Physiol 268(2):371–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Vial C, Owen P, Opie LH, Posel D (1987) Significance of release of adenosine triphosphate and adenosine induced by hypoxia or adrenaline in perfused rat heart. J Mol Cell Cardiol 19(2):187–197

    Article  CAS  PubMed  Google Scholar 

  264. Paddle BM, Burnstock G (1974) Release of ATP from perfused heart during coronary vasodilatation. J Vasc Res 11(3):110–119

    Article  CAS  Google Scholar 

  265. Darius H, Stahl GL, Lefer AM (1987) Pharmacologic modulation of ATP release from isolated rat hearts in response to vasoconstrictor stimuli using a continuous flow technique. J Pharmacol Exp Ther 240(2):542–547

    CAS  PubMed  Google Scholar 

  266. Vials AJ, Burnstock G (1996) ATP release from the isolated perfused guinea pig heart in response to increased flow. J Vasc Res 33(1):1–4

    Article  CAS  PubMed  Google Scholar 

  267. Lu D, Soleymani S, Madakshire R, Insel PA (2012) ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 26(6):2580–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Burnstock G (1990) Noradrenaline and ATP as cotransmitters insympathetic nerves. Neurochem Int 17:357

    Article  CAS  PubMed  Google Scholar 

  269. Borst MM, Schrader J (1991) Adenine nucleotide release from isolated perfused guinea pig hearts and extracellular formation of adenosine. Circ Res 68(3):797–806

    Article  CAS  PubMed  Google Scholar 

  270. Kuzmin AI, Lakomkin VL, Kapelko VI, Vassort G (1998) Interstitial ATP level and degradation in control and postmyocardial infarcted rats. Am J Physiol 275(3):C766–C771

    Article  CAS  PubMed  Google Scholar 

  271. White PJ, Nguyen TT (2002) Chronic caffeine treatment causes changes in cardiac adenosine receptor function in rats. Pharmacology 65(3):129–135

    Article  CAS  PubMed  Google Scholar 

  272. Yang J-N, Tiselius C, Daré E, Johansson B, Valen G, Fredholm BB (2007) Sex differences in mouse heart rate and body temperature and in their regulation by adenosine A1 receptors. Acta Physiol 190(1):63–75

    Article  CAS  Google Scholar 

  273. Lee HT, Thompson CI, Linden J, Belloni FL (1993) Differential sensitization of cardiac actions of adenosine in rats after chronic theophylline treatment. Am J Phys 264(5 Pt 2):H1634–H1643

    CAS  Google Scholar 

  274. Avkiran M, Yokoyama H (2000) Adenosine A 1 receptor stimulation inhibits α 1 -adrenergic activation of the cardiac sarcolemmal Na + /H + exchanger. Br J Pharmacol 131(4):659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Sterin-Borda L, Gómez RM, Borda E (2002) Role of nitric oxide/cyclic GMP in myocardial adenosine A1 receptor-inotropic response. Br J Pharmacol 135(2):444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Xu Z, Park SS, Mueller RA, Bagnell RC, Patterson CBP (2005) Adenosine produces nitric oxide and prevents mitochondrial oxidant damage in rat cardiomyocytes. Cardiovasc Res 65:803–812

    Article  CAS  PubMed  Google Scholar 

  277. Monahan TS, Sawmiller DR, Fenton RA, Dobson JG (2000) Adenosine A2a -receptor activation increases contractility in isolated perfused hearts. Am J Physiol Circ Physiol 279(4):H1472–H1481

    Article  CAS  Google Scholar 

  278. Liang BT, Morley JF (1996) A new cyclic AMP-independent, Gs-mediated stimulatory mechanism via the adenosine A2a receptor in the intact cardiac cell. J Biol Chem 271(31):18678–18685

    Article  CAS  PubMed  Google Scholar 

  279. Teng B, Ledent C, Mustafa SJ (2008) Up-regulation of A 2B adenosine receptor in A2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 44(5):905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Gurden MF, Coates J, Ellis F, Evans B, Foster M, Hornby E et al (1993) Functional characterization of three adenosine receptor types. Br J Pharmacol 109(3):693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Meester BJ, Shankley NP, Welsh NJ, Wood J, Meijler FL, Black JW (1998) Pharmacological classification of adenosine receptors in the sinoatrial and atrioventricular nodes of the guinea-pig. Br J Pharmacol 124(4):685–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. De Young MB, Scarpa A (1989) ATP receptor-induced Ca2+ transients in cardiac myocytes: sources of mobilized Ca2+. Am J Phys 257(4 Pt 1):C750–C758

    Article  Google Scholar 

  283. Zheng JS, Christie A, Levy MN, Scarpa A (1992) Ca2+ mobilization by extracellular ATP in rat cardiac myocytes: regulation by protein kinase C and A. Am J Phys 263(5 Pt 1):C933–C940

    Article  CAS  Google Scholar 

  284. Legssyer A, Poggioli J, Renard D, Vassort G (1988) ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. J Physiol 401:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Yamada M, Hamamori Y, Akita H, Yokoyama M (1992) P2-purinoceptor activation stimulates phosphoinositide hydrolysis and inhibits accumulation of cAMP in cultured ventricular myocytes. Circ Res 70(3):477–485

    Article  CAS  PubMed  Google Scholar 

  286. Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A et al (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci 93(15):8063–8067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stühmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51(1):109–118

    Article  CAS  PubMed  Google Scholar 

  288. Garcia-Guzman M, Stühmer W, Soto F (1997) Molecular characterization and pharmacological properties of the human P2X3 purinoceptor. Brain Res Mol Brain Res 47(1–2):59–66

    Article  CAS  PubMed  Google Scholar 

  289. Bogdanov Y, Rubino A, Burnstock G (1998) Characterisation of subtypes of the P2X and P2Y families of receptors in the foetal human heart. Life Sci 62:697–703

    Article  CAS  PubMed  Google Scholar 

  290. Burnstock G, Pelleg A (2015) Cardiac purinergic signalling in health and disease. Purinergic Signal 11(1):1–46

    Article  CAS  PubMed  Google Scholar 

  291. Liao X, Wang X, Gu Y, Chen Q, Chen L-Y (2005) Involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis. Life Sci 77(2):160–174

    Article  CAS  PubMed  Google Scholar 

  292. Mei Q, Liang BT (2001) P2 purinergic receptor activation enhances cardiac contractility in isolated rat and mouse hearts. Am J Physiol Heart Circ Physiol 281(1):H334–H341

    Article  CAS  PubMed  Google Scholar 

  293. Hu B, Mei Q-B, Yao X-J, Smith E, Barry WH, Liang BT (2001) A novel contractile phenotype with cardiac transgenic expression of the human P2X 4 receptor. FASEB J 15(14):2739–2741

    Article  CAS  PubMed  Google Scholar 

  294. Hu B, Senkler C, Yang A, Soto F, Liang BT (2002) P2X4 receptor is a glycosylated cardiac receptor mediating a positive inotropic response to ATP. J Biol Chem 277(18):15752–15757

    Article  CAS  PubMed  Google Scholar 

  295. Shen J-B, Pappano AJ, Liang BT (2006) Extracellular ATP-stimulated current in wild-type and P2X 4 receptor transgenic mouse ventricular myocytes: implications for a cardiac physiologic role of P2X 4 receptors. FASEB J 20(2):277–284

    Article  CAS  PubMed  Google Scholar 

  296. Liang W, McDonald P, McManus B, van Breemen C, Wang X (2008) P2Y2 receptor-mediated Ca2+ signaling and spontaneous Ca2+ releases in human valvular myofibroblasts. Int Heart J 49:221–236

    Article  CAS  PubMed  Google Scholar 

  297. Anikina TA, Anisimova IN, Zverev AA, Sitdikov FG, Zefirov TL (2014) Involvement of P2Y2,4 receptors in the regulation of myocardial contractility in growing rats. Bull Exp Biol Med 156(3):299–302

    Article  CAS  PubMed  Google Scholar 

  298. Alvarez J, Coulombe A, Cazorla O, Ugur M, Rauzier J-M, Magyar J et al (2008) ATP/UTP activate cation-permeable channels with TRPC3/7 properties in rat cardiomyocytes. Am J Physiol Circ Physiol 295(1):H21–H28

    Article  CAS  Google Scholar 

  299. Talasila A, Germack R, Dickenson JM (2009) Characterization of P2Y receptor subtypes functionally expressed on neonatal rat cardiac myofibroblasts. Br J Pharmacol 158:339–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Braun OO, Lu D, Aroonsakool N, Insel PA (2010) Uridine triphosphate (UTP) induces profibrotic responses in cardiac fibroblasts by activation of P2Y2 receptors. J Mol Cell Cardiol 49(3):362–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M et al (2008) P2Y6 receptor-Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J 27(23):3104–3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Lu D, Insel PA (2013) Hydrolysis of extracellular ATP by ectonucleoside triphosphate diphosphohydrolase (ENTPD) establishes the set point for fibrotic activity of cardiac fibroblasts. J Biol Chem 288(26):19040–19049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Wedd AM (1931) The action of adenosine and certain related compounds on the coronary flow of the perfused heart of the rabbit. J Pharmacol Exp Ther 41:355–366

    CAS  Google Scholar 

  304. Yang S, Cheek DJ, Westfall DP, Buxton IL (1994) Purinergic axis in cardiac blood vessels. Agonist-mediated release of ATP from cardiac endothelial cells. Circ Res 74(3):401–407

    Article  CAS  PubMed  Google Scholar 

  305. Kato M, Shiode N, Teragawa H, Hirao H, Yamada T, Yamagata T et al (1999) Adenosine 5′-triphosphate induced dilation of human coronary microvessels in vivo. Intern Med 38(4):324–329

    Article  CAS  PubMed  Google Scholar 

  306. Nees S (1989) Coronary flow increases induced by adenosine and adenine nucleotides are mediated by the coronary endothelium: a new principle of the regulation of coronary flow. Eur Heart J 10 Suppl F:28–35

    Article  CAS  PubMed  Google Scholar 

  307. Opgaard OS, Edvinsson L (1997) Mechanical properties and effects of sympathetic co-transmitters on human coronary arteries and veins. Basic Res Cardiol 92(3):168–180

    Article  Google Scholar 

  308. Takata YKH (1980) ATP-induced hyperpolarization of smooth muscle cells of the guinea-pig coronary artery. J Pharmacol Exp Ther 212:519–526

    CAS  PubMed  Google Scholar 

  309. Vials AJ, Burnstock G (1994) The effect of suramin on vasodilator responses to ATP and 2-methylthio-ATP in the Sprague-Dawley rat coronary vasculature. Eur J Pharmacol 251(2–3):299–302

    Article  CAS  PubMed  Google Scholar 

  310. Korchazhkina O, Wright G, Exley C (1999) Intravascular ATP and coronary vasodilation in the isolated working rat heart. Br J Pharmacol 127(3):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Moccia F, Baruffi S, Spaggiari S, Coltrini D, Berra-Romani R, Signorelli S et al (2001) P2Y1 and P2Y2 receptor-operated Ca2+ signals in primary cultures of cardiac microvascular endothelial cells. Microvasc Res 61(3):240–252

    Article  CAS  PubMed  Google Scholar 

  312. Yang S, Buxton ILO, Probert CB, Talbot JN, Bradley ME (1996) Evidence for a discrete UTP receptor in cardiac endothelial cells. Br J Pharmacol 117(7):1572–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Zünkler BJ, Gräfe M, Henning B, Kühne S, Ott T, Fleck E et al (1999) Effects of P2 purinoceptor agonists on membrane potential and intracellular Ca2+ of human cardiac endothelial cells. Pharmacol Toxicol 85(1):7–15

    Article  PubMed  Google Scholar 

  314. Malmsjö M, Hou M, Harden TK, Pendergast W, Pantev E, Edvinsson L et al (2000) Characterization of contractile P2 receptors in human coronary arteries by use of the stable pyrimidines uridine 5′-O-thiodiphosphate and uridine 5′-O-3-thiotriphosphate. J Pharmacol Exp Ther 293(3):755–760

    PubMed  Google Scholar 

  315. Rayment SJ, Latif ML, Ralevic V, Alexander SPH (2007) Evidence for the expression of multiple uracil nucleotide-stimulated P2 receptors coupled to smooth muscle contraction in porcine isolated arteries. Br J Pharmacol 150(5):604–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Farias M, Gorman MW, Savage MV, Feigl EO (2005) Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Physiol Heart Circ Physiol 288(4):H1586–H1590

    Article  CAS  PubMed  Google Scholar 

  317. Gorman MW, Rooke GA, Savage MV, Jayasekara MPS, Jacobson KA, Feigl EO (2010) Adenine nucleotide control of coronary blood flow during exercise. Am J Physiol Heart Circ Physiol 299(6):H1981–H1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Gorman MW, Feigl EO (2012) Control of coronary blood flow during exercise. Exerc Sport Sci Rev 40(1):37–42

    Article  PubMed  Google Scholar 

  319. Rubio R, Ceballos G (2003) Sole activation of three luminal adenosine receptor subtypes in different parts of coronary vasculature. Am J Physiol Heart Circ Physiol 284(1):H204–H214

    Article  CAS  PubMed  Google Scholar 

  320. Hinschen AK, Rose’Meyer RB, Headrick JP (2003) Adenosine receptor subtypes mediating coronary vasodilation in rat hearts. J Cardiovasc Pharmacol 41(1):73–80

    Article  CAS  PubMed  Google Scholar 

  321. Flood A, Headrick JP (2001) Functional characterization of coronary vascular adenosine receptors in the mouse. Br J Pharmacol 133(7):1063–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Talukder MAH, Morrison RR, Ledent C, Mustafa SJ (2003) Endogenous adenosine increases coronary flow by activation of both A2A and A2B receptors in mice. J Cardiovasc Pharmacol 41(4):562–570

    Article  CAS  PubMed  Google Scholar 

  323. Pelleg A, Belardinelli L (2008) The first second-generation adenosine drug enters the US market. Purinergic Signal 4(4):407–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Xiao Z, Yang M, Fang L, Lv Q, He Q, Deng M et al (2012) Extracellular nucleotide inhibits cell proliferation and negatively regulates Toll-like receptor 4 signalling in human progenitor endothelial cells. Cell Biol Int 36(7):625–633

    Article  CAS  PubMed  Google Scholar 

  325. Rocha R, Torres Á, Ojeda K, Uribe D, Rocha D, Erices J et al (2018) The adenosine A3 receptor regulates differentiation of glioblastoma stem-like cells to endothelial cells under hypoxia. Int J Mol Sci 19(4)

    Article  PubMed Central  CAS  Google Scholar 

  326. Siddaramappa Umapathy N, Kaczmarek E, Fatteh N, Burns N, Lucas R, Stenmark KR et al (2013) Adenosine A1 receptors promote vasa vasorum endothelial cell barrier integrity via Gi and Akt-dependent actin cytoskeleton remodeling. Eltzschig HK, editor. PLoS One 8(4):e59733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Dubey RK, Gillespie DG, Mi Z, Jackson EK (1998) Adenosine inhibits growth of human aortic smooth muscle cells via A2B receptors. Hypertension 31(1 Pt 2):516–521

    Article  CAS  PubMed  Google Scholar 

  328. Dubey RK, Fingerle J, Gillespie DG, Mi Z, Rosselli M, Imthurn B et al (2015) Adenosine attenuates human coronary artery smooth muscle cell proliferation by inhibiting multiple signaling pathways that converge on cyclin D. Hypertension 66(6):1207

    Article  CAS  PubMed  Google Scholar 

  329. Harper S, Webb TE, Charlton SJ, Ng LL, Boarder MR (1998) Evidence that P2Y4 nucleotide receptors are involved in the regulation of rat aortic smooth muscle cells by UTP and ATP. Br J Pharmacol 124(4):703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Erlinge D (1998) Extracellular ATP: a growth factor for vascular smooth muscle cells. Gen Pharmacol 31(1):1–8

    Article  CAS  PubMed  Google Scholar 

  331. Hou M, Harden TK, Kuhn CM, Baldetorp B, Lazarowski E, Pendergast W et al (2002) UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y 6 receptors. Am J Physiol Heart Circ Physiol 282(2):H784–H792

    Article  CAS  PubMed  Google Scholar 

  332. Bar I, Guns P-J, Metallo J, Cammarata D, Wilkin F, Boeynams J-M et al (2008) Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial cells, and vascular smooth muscle cells. Mol Pharmacol 74(3):777–784

    Article  CAS  PubMed  Google Scholar 

  333. Wihlborg A-K, Wang L, Braun OO, Eyjolfsson A, Gustafsson R, Gudbjartsson T et al (2004) ADP receptor P2Y 12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24(10):1810–1815

    Article  CAS  PubMed  Google Scholar 

  334. Mitchell C, Syed N -i-H, Tengah A, Gurney AM, Kennedy C (2012) Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands. J Pharmacol Exp Ther 343(3):755–762

    Article  CAS  PubMed  Google Scholar 

  335. Haanes KA, Edvinsson L (2014) Characterization of the contractile P2Y14 receptor in mouse coronary and cerebral arteries. FEBS Lett 588(17):2936–2943

    Article  CAS  PubMed  Google Scholar 

  336. Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46:250–256

    Article  CAS  PubMed  Google Scholar 

  337. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Article  CAS  PubMed  Google Scholar 

  338. Psaltis PJ, Zannettino ACW, Worthley SG, Gronthos S (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26(9):2201–2210

    Article  PubMed  Google Scholar 

  339. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Article  PubMed  Google Scholar 

  340. Amado LC, Saliaris AP, Schuleri KH, St. John M, Xie J-S, Cattaneo S et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci 102(32):11474–11479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Valina C, Pinkernell K, Song Y-H, Bai X, Sadat S, Campeau RJ et al (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28(21):2667–2677

    Article  PubMed  Google Scholar 

  342. Silva GV, Litovsky S, Assad JAR, Sousa ALS, Martin BJ, Vela D et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111(2):150–156

    Article  CAS  PubMed  Google Scholar 

  343. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18(4):696–704

    Article  PubMed  Google Scholar 

  344. Zannettino ACW, Paton S, Arthur A, Khor F, Itescu S, Gimble JM et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421

    Article  CAS  PubMed  Google Scholar 

  345. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  CAS  PubMed  Google Scholar 

  346. Shim WSN, Jiang S, Wong P, Tan J, Chua YL, Seng Tan Y et al (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 324(2):481–488

    Article  CAS  PubMed  Google Scholar 

  347. Yoon J, Min BG, Kim Y-H, Shim WJ, Ro YM, Lim D-S (2005) Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol 60(3):277–284

    Article  PubMed  Google Scholar 

  348. Rangappa S, Entwistle JWC, Wechsler AS, Kresh JY (2003) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126(1):124–132

    Article  CAS  PubMed  Google Scholar 

  349. Valiunas V, Doronin S, Valiuniene L, Potapova I, Zuckerman J, Walcott B et al (2004) Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 555(Pt 3):617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Martens TP, See F, Schuster MD, Sondermeijer HP, Hefti MM, Zannettino A et al (2006) Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 3(S1):S18–S22

    Article  CAS  PubMed  Google Scholar 

  351. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73(6):1919–1926

    Article  PubMed  Google Scholar 

  352. Davani S, Marandin A, Mersin N, Royer B, Kantelip B, Hervé P et al (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(90101):II253–II258

    Article  PubMed  Google Scholar 

  353. Hou M, Yang K, Zhang H, Zhu W-Q, Duan F, Wang H et al (2007) Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. Int J Cardiol 115(2):220–228

    Article  PubMed  Google Scholar 

  354. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):968–973

    Article  CAS  PubMed  Google Scholar 

  355. Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W, Hescheler J et al (2004) Bone marrow–derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10(5):494–501

    Article  CAS  PubMed  Google Scholar 

  356. Bussolino F, Ziche M, Wang JM, Alessi D, Morbidelli L, Cremona O et al (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87(3):986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Fan Z, Cai H, Ge Z, Wang L, Zhang X, Li L et al (2015) The efficacy and safety of granulocyte colony-stimulating factor for patients with stroke. J Stroke Cerebrovasc Dis 24(8):1701–1708

    Article  PubMed  Google Scholar 

  358. Covas D, Piccinato C, Orellana M, Siufi J, Silvajr W, Protosiqueira R et al (2005) Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res 309(2):340–344

    Article  CAS  PubMed  Google Scholar 

  359. Fang S-M, Du D-Y, Li Y-T, Ge X-L, Qin P-T, Zhang Q-H et al (2013) Allogeneic bone marrow mesenchymal stem cells transplantation for stabilizing and repairing of atherosclerotic ruptured plaque. Thromb Res 131(6):e253–e257

    Article  CAS  PubMed  Google Scholar 

  360. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549

    Article  CAS  PubMed  Google Scholar 

  361. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC et al (2006) Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of Hindlimb ischemia. Cell Physiol Biochem 17(5–6):279–290

    Article  CAS  PubMed  Google Scholar 

  362. Katare R, Riu F, Rowlinson J, Lewis A, Holden R, Meloni M et al (2013) Perivascular delivery of encapsulated mesenchymal stem cells improves postischemic angiogenesis via paracrine activation of VEGF-A. Arterioscler Thromb Vasc Biol 33(8):1872–1880

    Article  CAS  PubMed  Google Scholar 

  363. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S et al (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92(1):26–36

    Article  PubMed  Google Scholar 

  364. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669

    Article  CAS  PubMed  Google Scholar 

  365. Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y et al (2005) Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke 36(4):853–858

    Article  CAS  PubMed  Google Scholar 

  366. Piao W, Wang H, Inoue M, Hasegawa M, Hamada H, Huang J (2010) Transplantation of Sendai viral angiopoietin-1-modified mesenchymal stem cells for ischemic limb disease. Angiogenesis 13(3):203–210

    Article  CAS  PubMed  Google Scholar 

  367. Wahid FSA, Ismail NA, Wan Jamaludin WF, Muhamad NA, Mohamad Idris MA, Lai NM (2018) Efficacy and safety of autologous cell-based therapy in patients with no-option critical limb ischaemia: a meta-analysis. Curr Stem Cell Res Ther 13(4):265–283

    Article  PubMed  Google Scholar 

  368. Lai W-H, Ho JCY, Chan Y-C, Ng JHL, Au K-W, Wong L-Y et al (2013) Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells. Ushio-Fukai M, editor. PLoS One 8(3):e57876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Rufaihah AJ, Huang NF, Jamé S, Lee JC, Nguyen HN, Byers B et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31(11):e72–e79

    Article  CAS  PubMed  Google Scholar 

  370. Clayton ZE, Yuen GSC, Sadeghipour S, Hywood JD, Wong JWT, Huang NF et al (2017) A comparison of the pro-angiogenic potential of human induced pluripotent stem cell derived endothelial cells and induced endothelial cells in a murine model of peripheral arterial disease. Int J Cardiol 234:81–89

    Article  PubMed  Google Scholar 

  371. Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123

    Article  PubMed  Google Scholar 

  372. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2):358–404

    Article  CAS  PubMed  Google Scholar 

  373. Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79(12A):2–10

    Article  CAS  PubMed  Google Scholar 

  374. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87(2–3):161–173

    Article  CAS  PubMed  Google Scholar 

  375. Jacobson KA, Gao Z-G (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5(3):247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Evans BA, Elford C, Pexa A, Francis K, Hughes AC, Deussen A et al (2006) Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J Bone Miner Res 21:228–236

    Article  CAS  PubMed  Google Scholar 

  377. Sun LL, Xu LL, Nielsen TB, Rhee P, Burris D (1999) Cyclopentyladenosine improves cell proliferation, wound healing, and hair growth. J Surg Res 87:14

    Article  CAS  PubMed  Google Scholar 

  378. Shimegi S (1996) ATP and adenosine act as a mitogen for osteoblast-like cells (MC3T3-E1). Calcif Tissue Int 58:109

    Article  CAS  PubMed  Google Scholar 

  379. Walker BA, Rocchini C, Boone RH, Ip S, Jacobson MA (1997) Adenosine A2a receptor activation delays apoptosis in human neutrophils. J Immunol 158(6):2926–2931

    CAS  PubMed  Google Scholar 

  380. Zhao ZQ, Budde JM, Morris C, Wang NP, Velez DA, Muraki S et al (2001) Adenosine attenuates reperfusion-induced apoptotic cell death by modulating expression of Bcl-2 and Bax proteins. J Mol Cell Cardiol 33:57

    Article  CAS  PubMed  Google Scholar 

  381. Napieralski R, Kempkes B, Gutensohn W (2003) Evidence for coordinated induction and repression of Ecto-5’-Nucleotidase (CD73) and the A2a adenosine receptor in a human B cell line. Biol Chem 384(3):483–487

    Article  CAS  PubMed  Google Scholar 

  382. Scarfì S (2014) Purinergic receptors and nucleotide processing ectoenzymes: their roles in regulating mesenchymal stem cell functions. World J Stem Cells 6:153

    Article  PubMed  PubMed Central  Google Scholar 

  383. Kawano S, Otsu K, Kuruma A, Shoji S, Yanagida E, Muto Y et al (2006) ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 39(4):313–324

    Article  CAS  PubMed  Google Scholar 

  384. Ichikawa J, Gemba H (2009) Cell density-dependent changes in intracellular Ca 2+ mobilization via the P2Y 2 receptor in rat bone marrow stromal cells. J Cell Physiol 219:372

    Article  CAS  PubMed  Google Scholar 

  385. Chen J-B, Liu W-J, Che H, Liu J, Sun H-Y, Li G-R (2012) Adenosine-5′-triphosphate up-regulates proliferation of human cardiac fibroblasts. Br J Pharmacol 166(3):1140–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Hinze AV, Mayer P, Harst A, von Kügelgen I (2013) P2X1 receptor-mediated inhibition of the proliferation of human coronary smooth muscle cells involving the transcription factor NR4A1. Purinergic Signal 9:677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Dubey RK, Gillespie DG, Zacharia LC, Mi Z, Jackson EK (2001) A 2B receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts. Hypertension 37(2):716–721

    Article  CAS  PubMed  Google Scholar 

  388. Chen Y, Epperson S, Makhsudova L, Ito B, Suarez J, Dillmann W et al (2004) Functional effects of enhancing or silencing adenosine A 2b receptors in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 287:H2478

    Article  CAS  PubMed  Google Scholar 

  389. Goldenberg I, Shainberg A, Jacobson KA, Shneyvays V, Grossman E (2003) Adenosine protects against angiotensin II-induced apoptosis in rat cardiocyte cultures. Mol Cell Biochem 252:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Kaebisch C, Schipper D, Babczyk P, Tobiasch E (2015) The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J 13:75–84

    Article  CAS  PubMed  Google Scholar 

  391. Howard J, Trevick S, Younger DS (2016) Epidemiology of multiple sclerosis. Neurol Clin 34:919

    Article  PubMed  Google Scholar 

  392. Leray E, Moreau T, Fromont A, Edan G (2016) Epidemiology of musisltiple sclero. Rev Neurol (Paris) 172:3

    Article  CAS  Google Scholar 

  393. Sawcer S, Hellenthal G, Pirinen M, Spencer CCA, Patsopoulos NA, Moutsianas L et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki I (2015) Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol 14:263

    Article  PubMed  Google Scholar 

  395. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000 Nov 16;343(20):1430-8

    Article  CAS  PubMed  Google Scholar 

  396. Scalfari A, Neuhaus A, Daumer M, DeLuca GC, Muraro PA, Ebers GC (2013) Early relapses, onset of progression, and late outcome in multiple sclerosis. JAMA Neurol 70:214

    Article  PubMed  Google Scholar 

  397. Rahn AC, Köpke S, Stellmann JP, Schiffmann I, Lukas C, Chard D et al (2019) Magnetic resonance imaging as a prognostic disability marker in clinically isolated syndrome: a systematic review. Acta Neurol Scand 139:18

    Article  PubMed  Google Scholar 

  398. Simone IL, Carrara D, Tortorella C, Ceccarelli A, Livrea P. Early onset multiple sclerosis. Neurol Sci. 2000;21(4 Suppl 2):S861-3. Essa referência está errada no capítulo. Esta é a correta, provavelmente o Mendeley importou errado, porque ao fazer o search agora, ele buscou o certo

    Article  CAS  PubMed  Google Scholar 

  399. Kobelt G, Eriksson J, Phillips G, Berg J (2017) The burden of multiple sclerosis 2015: methods of data collection, assessment and analysis of costs, quality of life and symptoms. Mult Scler 23(2_suppl):4–16

    Article  PubMed  Google Scholar 

  400. Nafee T., Watanabe R., Fregni F. (2018) Multiple Sclerosis. In: Fregni F. (eds) Clinical Trials in Neurology. Neuromethods, vol 138. Humana Press, New York, NY

    Google Scholar 

  401. Butt AM (2006) Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia 54:666

    Article  PubMed  Google Scholar 

  402. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C et al (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  403. Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF (2005) The cytokine IL-1beta transiently enhances P2X7 receptor expression and function in human astrocytes. Glia [Internet]. 49(2):245–258. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15472991

    Article  PubMed  PubMed Central  Google Scholar 

  404. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E et al (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Caragnano M, Tortorella P, Bergami A, Ruggieri M, Livrea P, Specchio LM et al (2012) Monocytes P2X7 purinergic receptor is modulated by glatiramer acetate in multiple sclerosis. J Neuroimmunol 245:93

    Article  CAS  PubMed  Google Scholar 

  406. Oyanguren-Desez O, Rodríguez-Antigüedad A, Villoslada P, Domercq M, Alberdi E, Matute C (2011) Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium 50:468

    Article  CAS  PubMed  Google Scholar 

  407. Gu BJ, Field J, Dutertre S, Ou A, Kilpatrick TJ, Lechner-Scott J et al (2015) A rare P2X7 variant Arg307Gln with absent pore formation function protects against neuroinflammation in multiple sclerosis. Hum Mol Genet 24:5644

    Article  CAS  PubMed  Google Scholar 

  408. Chen L, Brosnan CF. Exacerbation of experimental autoimmune encephalomyelitis in P2X7R-/- mice: evidence for loss of apoptotic activity in lymphocytes. J Immunol. 2006 Mar 1;176(5):3115–26. O ano dessa referência está errado no capítulo

    Article  CAS  PubMed  Google Scholar 

  409. Witting A, Chen L, Cudaback E, Straiker A, Walter L, Rickman B et al (2006) Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc Natl Acad Sci 103:6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. ágatha O-G, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM et al (2018) Purinergic receptors in neurological diseases with motor symptoms: targets for therapy. Front Pharmacol 9:325

    Article  CAS  Google Scholar 

  411. Förster D, Reiser G (2015) Supportive or detrimental roles of P2Y receptors in brain pathology?—the two faces of P2Y receptors in stroke and neurodegeneration detected in neural cell and in animal model studies. Purinergic Signal 11:441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  412. Amadio S, Montilli C, Magliozzi R, Bernardi G, Reynolds R, Volonté C (2010) P2Y12 receptor protein in cortical gray matter lesions in multiple sclerosis. Cereb Cortex 20:1263

    Article  PubMed  Google Scholar 

  413. Zhang J, Li Z, Hu X, Su Q, He C, Liu J et al (2017) Knockout of P2Y12 aggravates experimental autoimmune encephalomyelitis in mice via increasing of IL-23 production and Th17 cell differentiation by dendritic cells. Brain Behav Immun 62:245

    Article  CAS  PubMed  Google Scholar 

  414. Probert L1, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G. Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11294–8. O ano dessa referência está errado no capítulo

    Article  CAS  Google Scholar 

  415. Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM et al (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49:650

    Article  CAS  PubMed  Google Scholar 

  416. Tsutsui S (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24:1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Hedström AK, Mowry EM, Gianfrancesco MA, Shao X, Schaefer CA, Shen L et al (2016) High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies. J Neurol Neurosurg Psychiatry 87:454

    Article  PubMed  Google Scholar 

  418. Olsson T, Barcellos LF, Alfredsson L (2017) Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 13(1):25–36

    Article  CAS  PubMed  Google Scholar 

  419. Clanet M, Radue EW, Kappos L, Hartung HP, Hohlfeld R, Sandberg-Wollheim M et al (2002) A randomized, double-blind, dose-comparison study of weekly interferon β-1a in relapsing MS. Neurology 59:1507

    Article  CAS  PubMed  Google Scholar 

  420. Garg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5:e00362

    Article  PubMed  PubMed Central  Google Scholar 

  421. Sloka JS, Stefanelli M (2005) The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult Scler 11:425

    Article  CAS  PubMed  Google Scholar 

  422. Sarkar P, Rice CM, Scolding NJ (2017) Cell therapy for multiple sclerosis. CNS Drugs 31:453

    Article  CAS  PubMed  Google Scholar 

  423. Plemel JR, Liu WQ, Yong VW (2017) Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 16:617

    Article  CAS  PubMed  Google Scholar 

  424. Ng AP, Alexander WS (2017) Haematopoietic stem cells: past, present and future. Cell Death Discov 3:17002

    Article  PubMed  PubMed Central  Google Scholar 

  425. Swart JF, Delemarre EM, Van Wijk F, Boelens JJ, Kuball J, Van Laar JM et al (2017) Haematopoietic stem cell transplantation for autoimmune diseases. Nat Rev Rheumatol 13:244

    Article  CAS  PubMed  Google Scholar 

  426. Karussis D, Slavin S (2004) Hematopoietic stem cell transplantation in multiple sclerosis: experimental evidence to rethink the procedures. J Neurol Sci 223:59

    Article  CAS  PubMed  Google Scholar 

  427. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761

    Article  CAS  PubMed  Google Scholar 

  428. Gerdoni E, Gallo B, Casazza S, Musio S, Bonanni I, Pedemonte E et al (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61(3):219–227

    Article  CAS  PubMed  Google Scholar 

  429. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD et al (2009) Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57(11):1192–1203

    Article  PubMed  PubMed Central  Google Scholar 

  430. Scruggs BA, Semon JA, Zhang X, Zhang S, Bowles AC, Pandey AC et al (2013) Age of the donor reduces the ability of human adipose-derived stem cells to alleviate symptoms in the experimental autoimmune encephalomyelitis mouse model. Stem Cells Transl Med 2(10):797–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Strong AL, Bowles AC, Wise RM, Morand JP, Dutreil MF, Gimble JM et al (2016) Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 34(3):614–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Semon JA, Maness C, Zhang X, Sharkey SA, Beuttler MM, Shah FS et al (2014) Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis. Stem Cell Res Ther 5(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  433. Shu J, He X, Li H, Liu X, Qiu X, Zhou T et al (2018) The beneficial effect of human amnion Mesenchymal cells in inhibition of inflammation and induction of neuronal repair in EAE mice. J Immunol Res

    Google Scholar 

  434. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y et al (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2:337–350

    Article  CAS  Google Scholar 

  435. Xiong N, Yang H, Liu L, Xiong J, Zhang Z, Zhang X et al (2013) BFGF promotes the differentiation and effectiveness of human bone marrow mesenchymal stem cells in a rotenone model for Parkinson’s disease. Environ Toxicol Pharmacol 36(2):411–422

    Article  CAS  PubMed  Google Scholar 

  436. Xiong N, Cao X, Zhang Z, Huang J, Chen C, Zhang Z et al (2010) Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats. Biol Blood Marrow Transplant 16(11):1519–1529

    Article  PubMed  Google Scholar 

  437. Xiong N, Zhang Z, Huang J, Chen C, Zhang Z, Jia M et al (2011) VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinsons disease. Gene Ther 18(4):394–402

    Article  CAS  PubMed  Google Scholar 

  438. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Osborn T, Sundberg M et al (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F et al (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci 105(15):5856–5861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Deleidi M, Hargus G, Hallett P, Osborn T, Isacson O (2011) Development of histocompatible primate-induced pluripotent stem cells for neural transplantation. Stem Cells 29(7):1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J et al (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3(3):646–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Suzuki M, McHugh J, Tork C, Shelley B, Hayes A, Bellantuono I et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16(12):2002–2010

    Article  CAS  PubMed  Google Scholar 

  443. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D et al (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31(3):395–405

    Article  CAS  PubMed  Google Scholar 

  444. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N et al (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265(1–2):78–83

    Article  CAS  PubMed  Google Scholar 

  445. Uccelli A, Milanese M, Principato MC, Morando S, Bonifacino T, Vergani L et al (2012) Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med 18(5):1

    Article  CAS  Google Scholar 

  446. Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC et al (2010) Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett 468(3):190–194

    Article  CAS  PubMed  Google Scholar 

  447. Qian K, Huang H, Peterson A, Hu B, Maragakis NJ, Ming G et al (2017) Sporadic ALS astrocytes induce neuronal degeneration in vivo. Stem Cell Rep 8:843–855

    Article  CAS  Google Scholar 

  448. Kondo T, Funayama M, Tsukita K, Hotta A, Yasuda A, Nori S et al (2014) Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Reports 3:242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Ryu JK, Cho T, Wang YT, McLarnon JG (2009) Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. J Neuroinflammation 6(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  450. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, Loring JF et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci 106(32):13594–13599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Misra S, Chopra K, Saikia UN, Sinha VR, Sehgal R, Modi M et al (2016) Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer’s disease. Regen Med 11(7):629–646

    Article  CAS  PubMed  Google Scholar 

  452. Babaei P, Soltani Tehrani B, Alizadeh A (2012) Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer’s disease. Stem Cells Int 2012:369417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  453. Lee JK, Schuchman EH, Jin HK, Bae J-S (2012) Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells 30(7):1544–1555

    Article  CAS  PubMed  Google Scholar 

  454. Garcia KO, Ornellas FLM, Martin PKM, Patti CL, Mello LE, Frussa-Filho R et al (2014) Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease. Front Aging Neurosci 6:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  455. Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D et al (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301

    Article  CAS  PubMed  Google Scholar 

  456. Kim HJ, Ajit D, Peterson TS, Wang Y, Camden JM, Gibson Wood W et al (2012) Nucleotides released from Aβ1-42-treated microglial cells increase cell migration and Aβ1-42 uptake through P2Y2 receptor activation. J Neurochem 121:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Yang H, Xie Z, Wei L, Yang H, Yang S, Zhu Z et al (2013) Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model. Stem Cell Res Ther 4(4):76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J et al (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimer’s Dement (New York, N Y) 1(2):95–102

    Google Scholar 

  459. Park SE, Lee J, Chang EH, Kim JH, Sung J-H, Na DL et al (2016) Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer’s disease: neurogenesis induced by MSCs via activin A. Arch Pharm Res 39(8):1171–1179

    Article  CAS  PubMed  Google Scholar 

  460. Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D (2007) Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol 208(1):26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Costa-Ferro ZSM, Vitola AS, Pedroso MF, Cunha FB, Xavier LL, Machado DC et al (2010) Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy. Seizure 19(2):84–92

    Article  PubMed  Google Scholar 

  462. Costa-Ferro ZSM, Souza BSF, Leal MMT, Kaneto CM, Azevedo CM, da Silva IC et al (2012) Transplantation of bone marrow mononuclear cells decreases seizure incidence, mitigates neuronal loss and modulates pro-inflammatory cytokine production in epileptic rats. Neurobiol Dis 46(2):302–313

    Article  CAS  PubMed  Google Scholar 

  463. Venturin GT, Greggio S, Marinowic DR, Zanirati G, Cammarota M, Machado DC et al (2011) Bone marrow mononuclear cells reduce seizure frequency and improve cognitive outcome in chronic epileptic rats. Life Sci 89(7–8):229–234

    Article  CAS  PubMed  Google Scholar 

  464. Hattiangady B, Rao MS, Shetty AK (2008) Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol 212(2):468–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  465. Waldau B, Hattiangady B, Kuruba R, Shetty AK (2010) Medial ganglionic eminence-derived neural stem cell grafts ease spontaneous seizures and restore GDNF expression in a rat model of chronic temporal lobe epilepsy. Stem Cells 28(7):1153–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  466. Jing M, Shingo T, Yasuhara T, Kondo A, Morimoto T, Wang F et al (2009) The combined therapy of intrahippocampal transplantation of adult neural stem cells and intraventricular erythropoietin-infusion ameliorates spontaneous recurrent seizures by suppression of abnormal mossy fiber sprouting. Brain Res 1295:203–217

    Article  CAS  PubMed  Google Scholar 

  467. Jaiswal MK, Keros S, Zhao M, Inan M, Schwartz TH, Anderson SA et al (2015) Reduction in focal ictal activity following transplantation of MGE interneurons requires expression of the GABAA receptor α4 subunit. Front Cell Neurosci 9:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  468. Huicong K, Zheng X, Furong W, Zhouping T, Feng X, Qi H et al (2013) The imbalanced expression of adenosine receptors in an epilepsy model corrected using targeted mesenchymal stem cell transplantation. Mol Neurobiol 48(3):921–930

    Article  PubMed  CAS  Google Scholar 

  469. Maisano X, Litvina E, Tagliatela S, Aaron GB, Grabel LB, Naegele JR (2012) Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci 32(1):46–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Chu K, Kim M, Jung K-H, Jeon D, Lee S-T, Kim J et al (2004) Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 1023(2):213–221

    Article  CAS  PubMed  Google Scholar 

  471. Abdanipour A, Tiraihi T, Mirnajafi-Zadeh J (2011) Improvement of the pilocarpine epilepsy model in rat using bone marrow stromal cell therapy. Neurol Res 33(6):625–632

    Article  PubMed  Google Scholar 

  472. Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V et al (1997) Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant 20:631

    Article  CAS  PubMed  Google Scholar 

  473. Burman J, Iacobaeus E, Svenningsson A, Lycke J, Gunnarsson M, Nilsson P et al (2014) Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry 85:1116

    Article  PubMed  Google Scholar 

  474. Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K et al (2015) Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA - J Am Med Assoc 313:275

    Article  Google Scholar 

  475. Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC et al (2017) High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology 88:842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  476. Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R et al (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 201:805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Casanova B, Jarque I, Gascón F, Hernández-Boluda JC, Pérez-Miralles F, de la Rubia J et al (2017) Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis. Neurol Sci 38:1213

    Article  PubMed  PubMed Central  Google Scholar 

  478. Mohyeddin Bonab M, Mohajeri M, Sahraian MA, Yazdanifar M, Aghsaie A, Farazmand A et al (2013) Evaluation of cytokines in multiple sclerosis patients treated withmesenchymal stem cells. Arch Med Res 44:266

    Article  CAS  PubMed  Google Scholar 

  479. Liang J, Zhang H, Hua B, Wang H, Wang J, Han Z et al (2009) Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler 15:644

    Article  CAS  PubMed  Google Scholar 

  480. Mohyeddin Bonab M, Ali Sahraian M, Aghsaie A, Ahmadi Karvigh S, Massoud Hosseinian S, Nikbin B et al (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7:407

    Article  Google Scholar 

  481. Li J-F, Zhang D-J, Geng T, Chen L, Huang H, Yin H-L et al (2014) The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant 23 Suppl 1:S113–S122

    Article  PubMed  Google Scholar 

  482. Casati A, Frascoli M, Traggiai E, Proietti M, Schenk U, Grassi F (2011) Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ 18:396

    Article  CAS  PubMed  Google Scholar 

  483. Lemoli RM, Ferrari D, Fogli M, Rossi L, Pizzirani C, Forchap S et al (2004) Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood 104:1662

    Article  CAS  PubMed  Google Scholar 

  484. Rossi L, Manfredini R, Bertolini F, Ferrari D, Fogli M, Zini R et al (2007) The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 109:533

    Article  CAS  PubMed  Google Scholar 

  485. Kermer V, Ritter M, Albuquerque B, Leib C, Stanke M, Zimmermann H (2010) Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett 485(3):208–211

    Article  CAS  PubMed  Google Scholar 

  486. Sak K, Boeynaems J-M, Everaus H (2003) Involvement of P2Y receptors in the differentiation of haematopoietic cells. J Leukoc Biol 73:442

    Article  CAS  PubMed  Google Scholar 

  487. Coppi E, Pugliese AM, Urbani S, Melani A, Cerbai E, Mazzanti B et al (2007) ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells. Stem Cells 25:1840

    Article  CAS  PubMed  Google Scholar 

  488. Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I et al (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109:846

    Article  CAS  PubMed  Google Scholar 

  489. Braak H, Braak E, Yilmazer D, Schultz C, de Vos RA, Jansen EN (1995) Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm 46:15–31

    Google Scholar 

  490. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 122(Pt8):1437–1448

    Article  PubMed  Google Scholar 

  491. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    Article  CAS  PubMed  Google Scholar 

  492. Lees A, Hardy J, Revesz T (2009) Parkinson ’ s disease. Lancet 373(9680):2055–2066

    Article  CAS  PubMed  Google Scholar 

  493. Schapira AHV, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6(6):309–317

    Article  CAS  PubMed  Google Scholar 

  494. Taoufik E, Kouroupi G, Zygogianni O, Matsas R (2018) Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 8(9):180138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  495. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson ’ s disease: a target for neuroprotection ? Lancet 8(April):382–397

    Article  CAS  Google Scholar 

  496. Singleton AB, Farrer MJ, Bonifati V (2013) The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord 28(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16

    Article  CAS  PubMed  Google Scholar 

  498. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1–2):208–210

    Article  CAS  PubMed  Google Scholar 

  499. Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T (1995) Transforming growth factor-β1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett 193(2):129–132

    Article  CAS  PubMed  Google Scholar 

  500. Pereira J, Santos L, Santos R, Campos A, Pimenta A, de Oliveira M et al (2016) IL-6 serum levels are elevated in Parkinson’s disease patients with fatigue compared to patients without fatigue. J Neurol Sci 370:153–156

    Article  CAS  PubMed  Google Scholar 

  501. Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119(1):182–192

    CAS  PubMed  Google Scholar 

  502. Nicoletti A, Fagone P, Donzuso G, Mangano K, Dibilio V, Caponnetto S et al (2011) Parkinson’s disease is associated with increased serum levels of macrophage migration inhibitory factor. Cytokine 55(2):165–167

    Article  CAS  PubMed  Google Scholar 

  503. Brodacki B, Staszewski J, Toczyłowska B, Kozłowska E, Drela N, Chalimoniuk M et al (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFα, and INFγ concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441(2):158–162

    Article  CAS  PubMed  Google Scholar 

  504. Saunders JAH, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR et al (2012) CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol 7(4):927–938

    Article  PubMed  PubMed Central  Google Scholar 

  505. Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MAR, Reed JK et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59(6):663–690

    Article  CAS  PubMed  Google Scholar 

  506. Volonté C, Apolloni S, Skaper SD, Burnstock G (2012) P2X7 receptors: channels, pores and more. CNS Neurol Disord Drug Targets [Internet] 11(6):705–721. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22963440

    Article  Google Scholar 

  507. Marcellino D, Suárez-Boomgaard D, Sánchez-Reina MD, Aguirre JA, Yoshitake T, Yoshitake S et al (2010) On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X 7 receptor antagonist A-438079. J Neural Transm 117(6):681–687

    Article  CAS  PubMed  Google Scholar 

  508. Ferrazoli EG, de Souza HDN, Nascimento IC, Oliveira-Giacomelli Á, Schwindt TT, Britto LR et al (2017) Brilliant blue-G but not fenofibrate treatment reverts hemiparkinsonian behavior and restores dopamine levels in an animal model of Parkinson’s disease. Cell Transplant 26:669–677

    Article  PubMed  PubMed Central  Google Scholar 

  509. Wang XH, Xie X, Luo XG, Shang H, He ZY (2017) Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson’s disease. Mol Med Rep 15(2):768–776

    Article  CAS  PubMed  Google Scholar 

  510. Carmo M, Menezes A, Nunes A, Pliassova A, Rolo A, Palmeira C et al (2014) The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology 81:145–152

    Article  CAS  Google Scholar 

  511. Hracskó Z, Baranyi M, Csölle C, Gölöncser F, Madarász E, Kittel A et al (2011) Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson’s disease. Mol Neurodegener 6:1–18

    Article  CAS  Google Scholar 

  512. Yang X, Lou Y, Liu G, Wang X, Qian Y, Ding J et al (2017) Microglia P2Y6 receptor is related to Parkinson’s disease through neuroinflammatory process. J Neuroinflammation 14(1):1–12

    Article  CAS  Google Scholar 

  513. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79(3):463–484

    Article  CAS  PubMed  Google Scholar 

  514. Lopes LV, Cunha R, Kull B, Fredholm BB, Ribeiro J (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112:319

    Article  CAS  PubMed  Google Scholar 

  515. Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci 88(16):7238–7241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  516. Villar-Menéndez I, Porta S, Buira SP, Pereira-Veiga T, Díaz-Sánchez S, Albasanz JL et al (2014) Increased striatal adenosine A2A receptor levels is an early event in Parkinson’s disease-related pathology and it is potentially regulated by miR-34b. Neurobiol Dis 69:206

    Article  PubMed  CAS  Google Scholar 

  517. Kachroo A, Schwarzschild MA (2012) Adenosine A2A receptor gene disruption protects in an α-synuclein model of Parkinson’s disease. Ann Neurol 71(2):278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  518. Gyoneva S, Shapiro L, Lazo C, Garnier-Amblard E, Smith Y, Miller GW et al (2014) Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson’s disease. Neurobiol Dis 67:191–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  519. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M et al (2011) Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 10(3):221–229

    Article  CAS  PubMed  Google Scholar 

  520. Stocchi F, Rascol O, Hauser R, Huyck S, Tzontcheva A, Capece R et al (2017) Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology 88(23):2198–2206

    Article  CAS  PubMed  Google Scholar 

  521. Hauser RA, Stocchi F, Rascol O, Huyck SB, Capece R, Ho TW et al (2015) Preladenant as an adjunctive therapy with levodopa in Parkinson disease. JAMA Neurol 72(12):1491

    Article  PubMed  Google Scholar 

  522. Tao Y, Liang G (2014) Efficacy of adenosine A2A receptor antagonist istradefylline as augmentation for Parkinson’s disease: a meta-analysis of randomized controlled trials. Cell Biochem Biophys 71(1):57–62

    Article  CAS  Google Scholar 

  523. Vorovenci RJ, Antonini A (2015) The efficacy of oral adenosine A2Aantagonist istradefylline for the treatment of moderate to severe Parkinson’s disease. Expert Rev Neurother 15(12):1383–1390

    Article  CAS  PubMed  Google Scholar 

  524. Stacy M, Silver D, Mendis T, Sutton J, Mori A, Chaikin P et al (2008) A 12-week, placebo-controlled study (6002-US-006) of istradefylline in Parkinson disease. Neurology 70(23):2233–2240

    Article  CAS  PubMed  Google Scholar 

  525. Zhu C, Wang G, Li J, Chen L, Wang C, Wang Y et al (2014) Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson’s disease: a meta-analysis. Neurol Res 36(11):1028–1034

    Article  CAS  PubMed  Google Scholar 

  526. Antonini A, Poewe W (2014) Adenosine A2A receptor antagonists in Parkinson’ s disease: still in the running. Lancet Neurol 13:748–749

    Article  CAS  PubMed  Google Scholar 

  527. Pinna A (2014) Adenosine A2Areceptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28(5):455–474

    Article  CAS  PubMed  Google Scholar 

  528. Heine C, Wegner A, Grosche J, Allgaier C, Illes P, Franke H (2007) P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 149(1):165–181

    Article  CAS  PubMed  Google Scholar 

  529. Gan M, Moussaud S, Jiang P, McLean PJ (2015) Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiol Aging 36(2):1209–1220

    Article  CAS  PubMed  Google Scholar 

  530. Zucchi E, Ticozzi N, Mandrioli J (2019) Psychiatric symptoms in amyotrophic lateral sclerosis: beyond a motor neuron disorder. Front Neurosci 13:1–11

    Article  Google Scholar 

  531. Kirk SE, Tracey TJ, Steyn FJ, Ngo ST (2019) Biomarkers of metabolism in amyotrophic lateral sclerosis. Front Neurol 10:191

    Article  PubMed  PubMed Central  Google Scholar 

  532. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:63–117

    Google Scholar 

  533. Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369:2031–2041

    Article  CAS  PubMed  Google Scholar 

  534. Zoccolella S, Beghi E, Palagano G, Fraddosio A, Guerra V, Samarelli V et al (2007) Riluzole and amyotrophic lateral sclerosis survival: a population-based study in southern Italy. Eur J Neurol 14(3):262–268

    Article  CAS  PubMed  Google Scholar 

  535. Lee CT-C, Chiu Y-W, Wang K-C, Hwang C-S, Lin K-H, Lee I-T et al (2013) Riluzole and prognostic factors in amyotrophic lateral sclerosis long-term and short-term survival: a population-based study of 1149 cases in Taiwan. J Epidemiol 23(1):35–40

    Article  PubMed  PubMed Central  Google Scholar 

  536. Parisi C, Napoli G, Amadio S, Spalloni A, Apolloni S, Longone P et al (2016) MicroRNA-125b regulates microglia activation and motor neuron death in ALS. Cell Death Differ 23(3):531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  538. Cozzolino M, Ferri A, Carrì MT (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10(3):405–443

    Article  CAS  PubMed  Google Scholar 

  539. Henkel JS, Beers DR, Zhao W, Appel SH (2009) Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 4(4):389–398

    Article  PubMed  Google Scholar 

  540. Philips T, Robberecht W (2011) Neuroinfl ammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10:253–263

    Article  CAS  PubMed  Google Scholar 

  541. McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26(4):459–470

    Article  CAS  PubMed  Google Scholar 

  542. Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J et al (2012) Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One 7(12):6–12

    Article  CAS  Google Scholar 

  543. Gerber YN, Sabourin JC, Rabano M, Vivanco M, Perrin FE (2012) Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis. PLoS One 7(4):e36000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  544. Brites D, Vaz AR (2014) Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 8:1–24

    Article  CAS  Google Scholar 

  545. Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M et al (2006) On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal 8(11–12):2075–2087

    Article  CAS  PubMed  Google Scholar 

  546. Sargsyan SA, Monk PN, Shaw PJ (2005) Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 51(4):241–253

    Article  PubMed  Google Scholar 

  547. Nikodemova M, Small AL, Smith SMC, Mitchell GS, Watters JJ (2014) Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol Dis 69:43–53

    Article  CAS  PubMed  Google Scholar 

  548. Calovi S, Mut-Arbona P, Sperlágh B (2019) Microglia and the purinergic signaling system. Neuroscience 405:137–147

    Article  CAS  PubMed  Google Scholar 

  549. D’Ambrosi N, Finocchi P, Apolloni S, Cozzolino M, Ferri A, Padovano V et al (2009) The proinflammatory action of microglial P2 receptors is enhanced in SOD1 models for amyotrophic lateral sclerosis. J Immunol 183(7):4648–4656

    Article  PubMed  CAS  Google Scholar 

  550. Apolloni S, Parisi C, Pesaresi MG, Rossi S, Carri MT, Cozzolino M et al (2013) The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J Immunol 190(10):5187–5195

    Article  CAS  PubMed  Google Scholar 

  551. Gandelman M, Peluffo H, Beckman J, Cassina P, Barbeito L (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:1–9

    Article  CAS  Google Scholar 

  552. Andries M, Van Damme P, Robberecht W, Van Den Bosch L (2007) Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 25(1):8–16

    Article  CAS  PubMed  Google Scholar 

  553. Casanovas A, Hernández S, Tarabal O, Rosselló J, Esquerda JE (2008) Strong P2X4 purinergic receptor-like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis. J Comp Neurol 506(1):75–92

    Article  CAS  PubMed  Google Scholar 

  554. Hernández S, Casanovas A, Piedrafita L, Tarabal O, Esquerda JE (2010) Neurotoxic species of misfolded SOD1G93A recognized by antibodies against the P2X4 subunit of the ATP receptor accumulate in damaged neurons of transgenic animal models of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 69(2):176–187

    Article  PubMed  CAS  Google Scholar 

  555. Yoshida Y, Une F, Utatsu Y, Nomoto M, Furukawa Y, Maruyama Y et al (2008) Adenosine and neopterin levels in cerebrospinal fluid of patients with neurological disorders. Intern Med 38(2):133–139

    Article  Google Scholar 

  556. Vincenzi F, Corciulo C, Targa M, Casetta I, Gentile M, Granieri E et al (2013) A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener 14(5–6):406–413

    Article  CAS  PubMed  Google Scholar 

  557. Mojsilovic-Petrovic J, Jeong G-B, Crocker A, Arneja A, David S, Russell D et al (2006) Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 26(36):9250–9263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  558. Küst BM, Copray JCVM, Brouwer N, Troost D, Boddeke HWGM (2002) Elevated levels of neurotrophins in human biceps brachii tissue of amyotrophic lateral sclerosis. Exp Neurol 177(2):419–427

    Article  PubMed  CAS  Google Scholar 

  559. Ng S k, Higashimori H, Tolman M, Yang Y (2015) Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 267:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  560. Nascimento F, Pousinha PA, Correia AM, Gomes R, Sebastião AM, Ribeiro JA (2014) Adenosine A2A receptors activation facilitates neuromuscular transmission in the pre-symptomatic phase of the SOD1(G93A) ALS mice, but not in the symptomatic phase. PLoS One 9(8):1–10

    Article  Google Scholar 

  561. Potenza RL, Armida M, Ferrante A, Pèzzola A, Matteucci A, Puopolo M et al (2013) Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 91(4):585–592

    Article  CAS  PubMed  Google Scholar 

  562. Nabavi S, Arab L, Jarooghi N, Bolurieh T, Abbasi F, Mardpour S et al (2019) Safety, feasibility of intravenous and intrathecal injection of autologous bone marrow derived mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: an open label phase I clinical trial. Cell J 20(4):592–598

    PubMed  Google Scholar 

  563. Syková E, Rychmach P, Drahorádová I, Ši K, Růžičková K, Voříšek I et al (2017) Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant 26(4):647–658

    Article  PubMed  PubMed Central  Google Scholar 

  564. Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I et al (2016) Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis. JAMA Neurol 73(3):337–344

    Article  PubMed  Google Scholar 

  565. Glaser T, De Oliveira SLB, Cheffer A, Beco R, Martins P, Fornazari M et al (2014) Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One 9(5):e96281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  566. Ulrich H, Illes P (2014) P2X receptors in maintenance and differentiation of neural progenitor cells. Neural Regen Res 9(23):2040–2041

    Article  PubMed  PubMed Central  Google Scholar 

  567. Coppi E, Cellai L, Maraula G, Pugliese AM, Pedata F (2013) Neuropharmacology Adenosine A2A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures. Neuropharmacology 73:301–310

    Article  CAS  PubMed  Google Scholar 

  568. Katebi M, Soleimani M, Cronstein BN (2009) Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol 85(3):438–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  569. Irrera N, Arcoraci V, Mannino F, Vermiglio G, Pallio G, Minutoli L et al (2018) Activation of A2A receptor by PDRN reduces neuronal damage and stimulates WNT/β-CATENIN driven neurogenesis in spinal cord injury. Front Pharmacol 9:506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  570. Moscoso-Castro M, López-Cano M, Gracia-Rubio I, Ciruela F, Valverde O (2017) Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A2A receptors in mice. Neuropharmacology 126:48–57

    Article  CAS  PubMed  Google Scholar 

  571. Oliveros A, Cho CH, Cui A, Choi S, Lindberg D, Hinton D et al (2017) Adenosine A2A receptor and ERK-driven impulsivity potentiates hippocampal neuroblast proliferation. Transl Psychiatry 7(4):e1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  572. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet (London, England). 366(9503):2112–2117

    Article  Google Scholar 

  573. Waldau B, Shetty AK (2008) Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 65(15):2372–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  574. Alzheimer A, Forstl H, Levy R (1991) On certain peculiar diseases of old age. Hist Psychiatry [Internet]. 2(5 Pt 1):71–101. Available from: 544

    Article  CAS  PubMed  Google Scholar 

  575. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120(3):885–890

    Article  CAS  PubMed  Google Scholar 

  576. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med [Internet]. 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  577. Jarrett JT, Berger EP, Lansbury PT (1993) The carboxy terminus of the .beta. amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. American Chemical Society; 32(18):4693–4697

    Article  CAS  PubMed  Google Scholar 

  578. Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science (80- ). 259(5094):514 LP-516

    Article  CAS  PubMed  Google Scholar 

  579. Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, et al (2007) Abeta40 inhibits amyloid deposition in vivo. J Neurosci [Internet]. 27(3):627–633

    Google Scholar 

  580. Ikeda M, Mackay KB, Dewar D, McCulloch J (1993) Differential alterations in adenosine A1 and κ1 opioid receptors in the striatum in Alzheimer’s disease. Brain Res 616(1–2):211–217

    Article  CAS  PubMed  Google Scholar 

  581. Ułas J, Brunner LC, Nguyen L, Cotman CW (1993) Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 52(4):843–854

    Article  PubMed  Google Scholar 

  582. Kalaria RN, Sromek S, Wilcox BJ, Unnerstall JR (1990) Hippocampal adenosine A1 receptors are decreased in Alzheimer’s disease. Neurosci Lett 118(2):257–260

    Article  CAS  PubMed  Google Scholar 

  583. Albasanz JL, Perez S, Barrachina M, Ferrer I, Martín M (2008) Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. Brain Pathol 18(2):211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  584. Onodera H, Sato G, Kogure K (1987) Quantitative autoradiographic analysis of muscarinic cholinergic and adenosine A1 binding sites after transient forebrain ischemia in the gerbil. Brain Res 415(2):309–322

    Article  CAS  PubMed  Google Scholar 

  585. Rudolphi KA, Keil M, Fastbom J, Fredholm BB (1989) Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment. Neurosci Lett 103(3):275–280

    Article  CAS  PubMed  Google Scholar 

  586. Angulo E, Casadó V, Mallol J, Canela EI, Viñals F, Ferrer I et al (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer’s disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13(4):440–451

    Article  CAS  PubMed  Google Scholar 

  587. Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR et al (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience 142(4):941–952

    Article  CAS  PubMed  Google Scholar 

  588. Arosio B, Casati M, Gussago C, Ferri E, Abbate C, Scortichini V et al (2016) Adenosine type A2A receptor in peripheral cell from patients with Alzheimer’s disease, vascular dementia, and idiopathic Normal pressure hydrocephalus: a new/old potential target. J Alzheimers Dis 54(2):417–425

    Article  CAS  PubMed  Google Scholar 

  589. Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 203(1):241–245

    Article  PubMed  CAS  Google Scholar 

  590. McLarnon JG, Ryu JK, Walker DG, Choi HB (2006) Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol [Internet] 65(11):1090–1097. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17086106

    Article  CAS  Google Scholar 

  591. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S et al (2009) Activation of microglia by amyloid {beta} requires P2X7 receptor expression. J Immunol [Internet] 182(7):4378–4385. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19299738

    Article  CAS  Google Scholar 

  592. Chen X, Hu J, Jiang L, Xu S, Zheng B, Wang C et al (2014) Brilliant Blue G improves cognition in an animal model of Alzheimer’s disease and inhibits amyloid-beta-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience [Internet] 279:94–101. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25193238

    Article  CAS  Google Scholar 

  593. Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL et al (2012) In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3beta and secretases. Neurobiol Aging [Internet] 33(8):1816–1828. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22048123

    Article  CAS  Google Scholar 

  594. León-Otegui M, Gómez-Villafuertes R, Díaz-Hernández JI, Díaz-Hernández M, Miras-Portugal MT, Gualix J (2011) Opposite effects of P2X7 and P2Y2 nucleotide receptors on α-secretase-dependent APP processing in Neuro-2a cells. FEBS Lett 585(14):2255–2262

    Article  PubMed  CAS  Google Scholar 

  595. Miras-Portugal MT, Diaz-Hernandez JI, Gomez-Villafuertes R, Diaz-Hernandez M, Artalejo AR, Gualix J (2015) Role of P2X7 and P2Y2receptors on α-secretase-dependent APP processing: control of amyloid plaques formation “in vivo” by P2X7 receptor. Comput Struct Biotechnol J 13:176–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  596. Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    Article  CAS  PubMed  Google Scholar 

  597. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K et al (2001) An RGD sequence in the P2Y2 receptor interacts with αvβ3 integrins and is required for Go-mediated signal transduction. J Cell Biol 153(3):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  598. Liu J, Liao Z, Camden J, Griffin KD, Garrad RC, Santiago-Pérez LI et al (2004) Src homology 3 binding sites in the P2Y 2 nucleotide receptor interact with Src and regulate activities of Src, Proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279(9):8212–8218

    Article  CAS  PubMed  Google Scholar 

  599. Wang M1, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA. P2Y nucleotide receptor interaction with alpha integrin mediates astrocyte migration. J Neurochem. 2005 Nov;95(3):630-40. Epub 2005 Aug 31

    Article  CAS  PubMed  Google Scholar 

  600. Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY et al (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41(2–3):356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  601. Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI et al (2010) P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 285(10):7545–7555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  602. Camden JM, Schrader AM, Camden RE, González F a, Erb L, Seye CI et al (2005) P2Y2 nucleotide receptors enhance alpha-secretase-dependent amyloid precursor protein processing. J Biol Chem 280(19):18696–18702

    Article  CAS  PubMed  Google Scholar 

  603. Kong Q, Peterson TS, Baker O, Stanley E, Camden J, Seye CI et al (2009) Interleukin-1β enhances nucleotide-induced and α-secretase- dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y2 receptor. J Neurochem 109(5):1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  604. Peterson TS, Thebeau CN, Ajit D, Camden JM, Woods LT, Wood WG et al (2013) Up-regulation and activation of the P2Y 2 nucleotide receptor mediate neurite extension in IL-1β-treated mouse primary cortical neurons. J Neurochem 125(6):885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  605. Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW et al (2014) Loss of P2Y2nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer’s disease. Mol Neurobiol 49(2):1031–1042

    Article  CAS  PubMed  Google Scholar 

  606. Lai MKP, Tan MGK, Kirvell S, Hobbs C, Lee J, Esiri MM et al (2008) Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer’s disease neuropathology. J Neural Transm 115(8):1165–1172

    Article  CAS  PubMed  Google Scholar 

  607. Hollands C, Bartolotti N, Lazarov O (2016) Alzheimer’s disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front Neurosci 10:178

    Article  PubMed  PubMed Central  Google Scholar 

  608. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  609. Fuster-Matanzo A, Llorens-Martín M, Hernández F, Avila J (2013) Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediat Inflamm 2013:260925

    Article  Google Scholar 

  610. Lazarov O, Marr RA (2013) Of mice and men: neurogenesis, cognition and Alzheimer’s disease. Front Aging Neurosci 5:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  611. Gonzalez-Castaneda RE, Galvez-Contreras AY, Luquin S, Gonzalez-Perez O (2011) Neurogenesis in Alzheimers disease: a realistic alternative to neuronal degeneration? Curr Signal Transduct Ther 6(3):314–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  612. Chuang TT (2010) Neurogenesis in mouse models of Alzheimer’s disease. Biochim Biophys Acta 1802(10):872–880

    Article  CAS  PubMed  Google Scholar 

  613. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80(3):588–601

    Article  CAS  PubMed  Google Scholar 

  614. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281

    Article  CAS  PubMed  Google Scholar 

  615. Kuhn HG, Cooper-Kuhn CM, Boekhoorn K, Lucassen PJ (2007) Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant? Eur Arch Psychiatry Clin Neurosci 257(5):281–289

    Article  PubMed  Google Scholar 

  616. Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127(3):601–609

    Article  CAS  PubMed  Google Scholar 

  617. Unger MS, Marschallinger J, Kaindl J, Höfling C, Rossner S, Heneka MT et al (2016) Early changes in hippocampal neurogenesis in transgenic mouse models for Alzheimer’s disease. Mol Neurobiol 53(8):5796–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  618. Kim J-Y, Kim DH, Kim JH, Lee D, Jeon HB, Kwon S-J et al (2011) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ 19(4):680–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  619. Shin JY, Park HJ, Kim HN, Oh SH, Bae J-S, Ha H-J et al (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10(1):32–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  620. Yun H-M, Kim HS, Park K-R, Shin JM, Kang AR, Il Lee K et al (2013) Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1-42-infused mouse model of Alzheimer’s disease. Cell Death Dis 4(12):e958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  621. de Timary P, Fouchet P, Sylin M, Indriets JP, de Barsy T, Lefèbvre A et al (2002) Non-epileptic seizures: delayed diagnosis in patients presenting with electroencephalographic (EEG) or clinical signs of epileptic seizures. Seizure 11(3):193–197

    Article  PubMed  Google Scholar 

  622. Cieślak M, Wojtczak A, Komoszyński M (2017) Role of the purinergic signaling in epilepsy. Pharmacol Rep 69(1):130–138

    Article  PubMed  CAS  Google Scholar 

  623. Jette N, Beghi E, Hesdorffer D, Moshé SL, Zuberi SM, Medina MT et al (2015) ICD coding for epilepsy: past, present, and future—a report by the International League Against Epilepsy Task Force on ICD codes in epilepsy. Epilepsia 56(3):348–355

    Article  PubMed  Google Scholar 

  624. Robel S, Buckingham SC, Boni JL, Campbell SL, Danbolt NC, Riedemann T et al (2015) Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci 35(8):3330–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  625. Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7(4):348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  626. Huguenard J, McCormick DA (1994) Electrophysiology of the neuron: an interactive tutorial. Oxford University Press, New York

    Google Scholar 

  627. Vaillend C, Mason SE, Cuttle MF, Alger BE (2002) Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region. J Neurophysiol 88(6):2963–2978

    Article  CAS  PubMed  Google Scholar 

  628. Fellin T, Haydon PG (2005) Do astrocytes contribute to excitation underlying seizures? Trends Mol Med 11(12):530–533

    Article  CAS  PubMed  Google Scholar 

  629. Duffy S, MacVicar BA (1999) Modulation of neuronal excitability by astrocytes. Adv Neurol 79:573–581. 3 rd ed Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  630. Alyu F, Dikmen M (2017) Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr 29(1):1–16

    Article  PubMed  Google Scholar 

  631. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15(1):144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  632. Fabene PF, Mora GN, Martinello M, Rossi B, Merigo F, Ottoboni L et al (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14(12):1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  633. Calabrese M, De Stefano N, Atzori M, Bernardi V, Mattisi I, Barachino L et al (2008) Extensive cortical inflammation is associated with epilepsy in multiple sclerosis. J Neurol 255(4):581–586

    Article  PubMed  Google Scholar 

  634. Wieraszko A, Seyfried TN (1989) Increased amount of extracellular ATP in stimulated hippocampal slices of seizure prone mice. Neurosci Lett 106(3):287–293

    Article  CAS  PubMed  Google Scholar 

  635. Knutsen LJS (1997) Adenosine and ATP in epilepsy, Purinergic approaches Exp Ther. Wiley-Liss, New York, pp 423–447

    Google Scholar 

  636. Vianna EPM, Ferreira AT, Naffah-Mazzacoratti M d G, Sanabria ERG, Funke M, Cavalheiro EA et al (2002) Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: a fluorimetric, immunohistochemical, and Western blot studies. Epilepsia 43:227–229

    Article  CAS  PubMed  Google Scholar 

  637. Engel T, Jimenez-Pacheco A, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC (2012) P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. Int J Physiol Pathophysiol Pharmacol 4(4):174–187

    CAS  PubMed  PubMed Central  Google Scholar 

  638. Malva JO, Silva AP, Cunha RA (2003) Presynaptic modulation controlling neuronal excitability and epileptogenesis: role of kainate, adenosine and neuropeptide Y receptors. Neurochem Res 28(10):1501–1515

    Article  CAS  PubMed  Google Scholar 

  639. Angelatou F, Pagonopoulou O, Maraziotis T, Olivier A, Villemeure JG, Avoli M et al (1993) Upregulation of A1 adenosine receptors in human temporal lobe epilepsy: a quantitative autoradiographic study. Neurosci Lett 163(1):11–14

    Article  CAS  PubMed  Google Scholar 

  640. Glass M, Faull RLM, Jansen K, Walker EB, Synek BJL, Dragunow M (1996) Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res 710:56–68

    Article  CAS  PubMed  Google Scholar 

  641. Ekonomou A, Angelatou F, Vergnes M, Kostopoulos G (1998) Lower density of A1 adenosine receptors in nucleus reticularis thalami in rats with genetic absence epilepsy. Neuroreport 9(9):2135–2140

    Article  CAS  PubMed  Google Scholar 

  642. Gouder N, Fritschy J, Boison D (2003) Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia 44(7):877–885

    Article  CAS  PubMed  Google Scholar 

  643. Sørensen AT, Kokaia M (2013) Novel approaches to epilepsy treatment. Epilepsia 54(1):1–10

    Article  PubMed  CAS  Google Scholar 

  644. Boison D (2011) Adenosine dysfunction in epilepsy. Glia 60(8):1234–1243

    Article  PubMed  PubMed Central  Google Scholar 

  645. Esmaili Z, Heydari A (2018) Involvement of nitric oxide in the effect of caffeine on the pentylenetetrazole-induced seizure threshold in mice. J Qazvin Univ Med Sci 22(5):4–13

    Article  Google Scholar 

  646. Miranda MF, Hamani C, de Almeida A-CG, Amorim BO, Macedo CE, Fernandes MJS et al (2014) Role of adenosine in the antiepileptic effects of deep brain stimulation. Front Cell Neurosci 8:312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  647. Fisher RS, Engel JJ Jr (2010) Definition of the postictal state: when does it start and end? Epilepsy Behav 19(2):100–104

    Article  PubMed  Google Scholar 

  648. Abood W, Bandyopadhyay S (2018) Seizure, postictal state. In: StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  649. During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32(5):618–624

    Article  CAS  PubMed  Google Scholar 

  650. Zubler F, Steimer A, Gast H, Schindler KA (2014) Seizure termination. Int Rev Neurobiol. Elsevier; 114:187–207

    Article  PubMed  Google Scholar 

  651. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946

    Article  PubMed  Google Scholar 

  652. Cavaliere F, Donno C, D’Ambrosi N (2015) Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 9:211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  653. Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, Battastini AMO et al (2012) Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal 8(3):523–537

    Article  CAS  PubMed  Google Scholar 

  654. Chen J-F, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets – what are the challenges? Nat Rev Drug Discov 12(4):265–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  655. Huber A, Padrun V, Déglon N, Aebischer P, Möhler H, Boison D (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 98(13):7611–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  656. Li T, Steinbeck JA, Lusardi T, Koch P, Lan JQ, Wilz A et al (2007) Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130(5):1276–1288

    Article  PubMed  Google Scholar 

  657. Theofilas P, Brar S, Stewart K-A, Shen H-Y, Sandau US, Poulsen D et al (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52(3):589–601

    Article  PubMed  PubMed Central  Google Scholar 

  658. Fedele DE, Koch P, Scheurer L, Simpson EM, Möhler H, Brüstle O et al (2004) Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett 370(2–3):160–165

    Article  CAS  PubMed  Google Scholar 

  659. Boison D (2013) Role of adenosine in status epilepticus: a potential new target? Epilepsia 54 Suppl 6(0 6):20–22

    Article  PubMed  CAS  Google Scholar 

  660. Li T, Ren G, Kaplan DL, Boison D (2009) Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res 84(2–3):238–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  661. Friedrich MAG, Martins MP, Araújo MD, Klamt C, Vedolin L, Garicochea B et al (2012) Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant 21(1 Suppl):13–21

    Article  Google Scholar 

  662. Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A et al (2017) Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: an open label study. Adv Med Sci 62(2):273–279

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

HU acknowledges grant support from the São Paulo Research Foundation (FAPESP, Project No. 2012/50880-4 and 2018/08426-0). TG (Project No. 2015/13345-1-PD) and RA (Project No. 2019/05384-8-TT) are thankful for FAPESP fellowships. AOG thanks the National Council for Scientific and Technological Development (CNPq, Project No. 154512/2018-4). AG is grateful for CAPES-PNPD fellowship (Project No. 33002010017PO). DER thanks the support provided by the Incentive Program for attracting postdocs Attraction of the University of São Paulo, Brazil. We thank Biorender software where we made the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrejew, R. et al. (2019). Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. In: Ratajczak, M. (eds) Stem Cells. Advances in Experimental Medicine and Biology, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-31206-0_14

Download citation

Publish with us

Policies and ethics