Skip to main content

Role of Supermagnetic Nanoparticles in Alzheimer Disease

  • Chapter
  • First Online:
Nanobiotechnology in Neurodegenerative Diseases

Abstract

Nanoparticles are the major development of nanotechnology and used in different biomedical fields. The nanoparticles are in different forms such as metal, polymer, and composites. In the metal and metal oxide, nanoparticles are used as anticancer, antimicrobial, and in many neurological diseases. The magnetic nanoparticles play an important role in the diagnosis, especially the imaging techniques (magnetic imaging, magnetic resonance imaging MRI scanning) and many sensors and environmental remediation techniques. Recently, the nanoparticles were used in the neural stem cell detection and neurodegenerative diseases, especially the Alzheimer’s disease. We have very limited numbers of research articles in the area of magnetic nanoparticles in neurodegenerative diseases. In this chapter, we have elaborated the synthesis of magnetic nanoparticles using different plant extracts and microorganisms used for magnetic nanoparticles synthesis and characterization of the nanoparticles using different microscopic and spectroscopic techniques and biomedical applications of magnetic nanoparticles. Finally, the magnetic nanoparticles in the Alzheimer’s disease have been explained with graphical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Dief A, Abdel-Fatah S (2018) Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ J Basic Appl Sci 7(1):55–67

    Article  Google Scholar 

  • Aditya J, Rajeshkumar S, Roy A (2019) Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil. Res J Pharm Technol 12(6):2790–2793

    Google Scholar 

  • Al-Asfar A, Zaheer Z, Aazam E (2018) Eco-friendly green synthesis of Ag@Fe bimetallic nanoparticles: antioxidant, antimicrobial and photocatalytic degradation of bromothymol blue. J Photochem Photobiol B Biol 185:143–152

    Article  CAS  Google Scholar 

  • Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2):46

    Article  PubMed Central  CAS  Google Scholar 

  • Asghar M, Zahir E, Shahid S, Khan M, Asghar M, Iqbal J, Walker G (2018) Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT-Food Sci Technol 90:98–107

    Article  CAS  Google Scholar 

  • Asoufi H, Al-Antary T, Awwad A (2018) Green route for synthesis hematite (Fe2O3) nanoparticles: toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environ Nanotechnol Monit Manag 9:107–111

    Google Scholar 

  • Bellova A, Bystrenova E, Koneracka M, Kopcansky P, Valle F, Tomasovicova N, Timko M, Bagelova J, Biscarini F, Gazova Z (2010) Effect of Fe(3)O(4) magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 21(6):065103

    Article  PubMed  CAS  Google Scholar 

  • Bishnoi S, Kumar A, Selvaraj R (2018) Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater Res Bull 97:121–127

    Article  CAS  Google Scholar 

  • Chung TH, Hsu SC, Wu SH, Hsiao JK, Lin CP, Yao M, Huang DM (2018) Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale 10:2998–3007

    Article  CAS  PubMed  Google Scholar 

  • Collingwood JF, Telling ND (2016) Iron oxides in the human brain. In: Faivre D (ed) Iron oxides from nature to applications, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, pp 143–176

    Chapter  Google Scholar 

  • Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel) 12(4). https://doi.org/10.3390/ma12040617

    Article  PubMed Central  Google Scholar 

  • Ebrahimpour S, Esmaeili A, Beheshti S (2018) Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine 13:6311–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eslamian M, Shekarriz M (2009) Recent advances in nanoparticle preparation by spray and microemulsion methods. Recent Pat Nanotechnol 3(2):99–115

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasan D (2018) Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arabian J Gastroenterol 19(2):56–64

    Article  Google Scholar 

  • Ezhilarasan D, Sokal E, Karthikeyan S, Najimi M (2014) Plant derived antioxidants and antifibrotic drugs: past, present and future. J Coast Life Med 2(9):738–745

    Article  Google Scholar 

  • Farshchi H, Azizi M, Jaafari M, Nemati S, Fotovat A (2018) Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatal Agric Biotechnol 16:54–62

    Article  Google Scholar 

  • Freeman A, Platt S, Holmes S, Kent M, Robinson K, Howerth E, Eagleson J, Bouras A, Kaluzova M, Hadjipanayis CG (2018) Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas. J Neuro-Oncol 137(3):653–663

    Article  CAS  Google Scholar 

  • Fu T, Kong Q, Sheng H, Gao L (2016) Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast 2016:2412958

    PubMed  PubMed Central  Google Scholar 

  • Gan L, Lu Z, Cao D, Chen Z (2018) Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater Sci Eng C 82:41–45

    Article  CAS  Google Scholar 

  • Gautam A, Rawat S, Verma L, Singh J, Sikarwar S, Yadav B et al (2018) Green synthesis of iron nanoparticle from extract of waste tea: an application for phenol red removal from aqueous solution. Environ Nanotechnol Monit Manag 10:377–387

    Google Scholar 

  • Irshad R, Tahir K, Li B, Ahmad AR, Siddiqui A, Nazir S (2017) Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobiol B Biol 170:241–246

    Article  CAS  Google Scholar 

  • Ito A (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Ivashchenko O, Gapiński J, Peplińska B, Przysiecka Ł, Zalewski T, Nowaczyk G, Jarek M, Marcinkowska-Gapinska A, Jurga S (2017) Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: characterization, biomedical potential and microstructure analysis of hydrocolloids. Mater Des 133:307–324

    Article  CAS  Google Scholar 

  • Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad S, Kalantari K, Taib SHM, Rasouli E (2018) Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab J Chem. (in press)

    Google Scholar 

  • Jagathesan G, Rajiv P (2018) Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal Agric Biotechnol 13:90–94

    Article  Google Scholar 

  • Jain KK (2012) Nanobiotechnology-based strategies for crossing the bloodbrain barrier. Nanomedicine 7:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Kaluzova M, Bouras A, Machaidze R, Hadjipanayis C (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget 6(11):8788–8806

    Article  PubMed  PubMed Central  Google Scholar 

  • Katata-Seru L, Moremedi T, Aremu O, Bahadur I (2018) Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq 256:296–304

    Article  CAS  Google Scholar 

  • Kefeni K, Msagati T, Mamba B (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B 215:37–55

    Article  CAS  Google Scholar 

  • Kharissova O, Dias H, Kharisov B, Pérez B, Pérez V (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi PP, Krishna Mohan G, Venkateswara Rao K, Shanker K (2017) Neuroprotective effect of green synthesized iron oxide nanoparticles using aqueous extract of Convolvulus pluricaulis plant in the management of Alzheimer’s disease. Int J Pharm Phytochem Res 9(5):703–709

    Google Scholar 

  • Li J, Wang S, Shi X, Shen M (2017) Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interf Sci 249:374–385

    Article  CAS  Google Scholar 

  • Malik M, Wani M, Hashim M (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 5(4):397–417

    Article  CAS  Google Scholar 

  • Martinkova P, Brtnicky M, Kynicky J, Pohanka M (2017) Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthc Mater 7(5):1700932

    Article  CAS  Google Scholar 

  • Mehta R (2017) Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C 79:901–916

    Article  CAS  Google Scholar 

  • Minchin RF, Martin DJ (2010) Nanoparticles for molecular imaging – an overview. Endocrinology 151:474–481

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja K, Roy A, Rajeshkumar S, Lakshmi T (2019) Antioxidant activity of cumin oil mediated silver nanoparticles. Pharm J 11(4):787–789

    Google Scholar 

  • Najafabadi RE, Kazemipour N, Esmaeili A, Beheshti S, Nazifi S (2018) Quercetin prevents body weight loss due to the using of superparamagnetic iron oxide nanoparticles in rat. Adv Biomed Res 7:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K (2018) Curcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 108:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V (2017) Iron oxide nanoparticles – in vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interf Sci 249:192–212

    Article  CAS  Google Scholar 

  • Nikitin A, Fedorova M, Naumenko V, Shchetinin I, Abakumov M, Erofeev A, Gorelkin P, Meshkov G, Beloglazkina E, Ivanenkov Y, Klyacho N, Golovin Y, Savchenko A, Majouga A (2017) Synthesis, characterization and MRI application of magnetite water-soluble cubic nanoparticles. J Magn Mater 441:6–13

    Article  CAS  Google Scholar 

  • Nithya K, Sathish A, Senthil Kumar P, Ramachandran T (2018) Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J Ind Eng Chem 59:230–241

    Article  CAS  Google Scholar 

  • Pandey S, Mishra S (2011) Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. J Sol-Gel Sci Technol 59(1):73–94

    Article  CAS  Google Scholar 

  • Parveen S, Wani A, Shah M, Devi H, Bhat M, Koka J (2018) Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 115:287–292

    Article  CAS  PubMed  Google Scholar 

  • Pranati T, Roy A, Rajeshkumar S, Lakshmi T (2019) Preparation of silver nanoparticles using nutmeg oleoresin and its antimicrobial activity against oral pathogens. Res J Pharm Technol 12(6):2799–2803

    Article  Google Scholar 

  • Rajendran N, Kumar S, Houreld N, Abrahamse H (2018) A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 44:421–430

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, Satija S, Gupta G, Chellappan DK, Lakshmi T, Dua K (2019) Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B Biol 197:111531

    Article  CAS  Google Scholar 

  • Rajiv P, Bavadharani B, Kumar M, Vanathi P (2017) Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal Agric Biotechnol 12:45–49

    Article  Google Scholar 

  • Ramimoghadam D, Bagheri S, Hamid S (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229

    Article  CAS  Google Scholar 

  • Saeidienik F, Shahraki MR, Fanaei H, Badini F (2018) The effects of iron oxide nanoparticles administration on depression symptoms induced by LPS in male wistar rats. Basic Clin Neurosci 9(3):209–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salazar-Alvarez G, Muhammed M, Zagorodni A (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61(14):4625–4633

    Article  CAS  Google Scholar 

  • Saleh N, Chambers B, Aich N, Plazas-Tuttle J, Phung-Ngoc H, Kirisits M (2015) Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: implications for interactions between nanomaterials and biofilm bacteria. Front Microbiol 17(6):677

    Google Scholar 

  • Saratale R, Karuppusamy I, Saratale G, Pugazhendhi A, Kumar G, Park Y, Godakhe GS, Bharagava RN, Banu RJ, Shin HS (2018) A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf B: Biointerfaces 70:20–35

    Article  CAS  Google Scholar 

  • Sathya K, Saravanathamizhan R, Baskar G (2017) Ultrasound assisted phytosynthesis of iron oxide nanoparticle. Ultrason Sonochem 39:446–451

    Article  CAS  PubMed  Google Scholar 

  • Shamaa AA, Roy A, Rajeshkumar S, Thangavelu L (2019) Synthesis of white pepper oleoresin mediated silver nanoparticles and its antioxidant effect. Biomedicine 31(1):165–169

    Google Scholar 

  • Sherwood J, Xu Y, Lovas K, Qin Y, Bao Y (2017) Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities. J Magn Magn Mater 427:220–224

    Article  CAS  Google Scholar 

  • Slavin Y, Asnis J, Häfeli U, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Article  CAS  Google Scholar 

  • Tartaj P, Morales M, Veintemillas-Verdaguer S, Gonz lez-Carre OT, Serna C (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197

    Article  CAS  Google Scholar 

  • Toraya-Brown S, Sheen M, Zhang P, Chen L, Baird J, Demidenko E, Turk MJ, Hoopes PJ, Conejo-Garcia JR, Fiering S (2014) Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10(6):1273–1285

    Article  CAS  PubMed  Google Scholar 

  • Umarao P, Bose S, Bhattacharyya S, Kumar A, Jain S (2016) Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s disease. J Nanosci Nanotechnol 16(1):261–269

    Article  CAS  PubMed  Google Scholar 

  • Vinzant N, Scholl JL, Wu CM, Kindle T, Koodali R, Forster GL (2017) Iron oxide nanoparticle delivery of peptides to the brain: reversal of anxiety during drug withdrawal. Front Neurosci 11:608

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  CAS  Google Scholar 

  • Warren E, Payne C (2015) Cellular binding of nanoparticles disrupts the membrane potential. RSC Adv 5(18):13660–13666

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Fang Z, Zheng L, Tan L, Tsang E (2016) Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Mater Lett 185:384–386

    Article  CAS  Google Scholar 

  • Wei Y, Fang Z, Zheng L, Tsang E (2017) Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl Surf Sci 399:322–329

    Article  CAS  Google Scholar 

  • Wilczewska A, Niemirowicz K, Markiewicz K, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A (2017) Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 18(1):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu N, Cai T, Sun Y, Jiang C, Xiong H, Li Y, Peng H (2018) A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int J Pharm 552(1–2):277–287

    Article  CAS  PubMed  Google Scholar 

  • Zaloga J, Feoktystov A, Garamus V, Karawacka W, Ioffe A, Brückel T, Tietze R, Alexiou C, Iyer S (2018) Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles. Colloids Surf B: Biointerfaces 161:18–26

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Xie J, Yu J, Lu Z, Liu Y (2017) A novel colorimetric immunoassay strategy using iron(iii) oxide magnetic nanoparticles as a label for signal generation and amplification. J Mater Chem B 5(7):1454–1460

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Ma S, Liu T, Deng X (2018) Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J Clean Prod 174:184–190

    Article  CAS  Google Scholar 

  • Zverova M (2019) Clinical aspects of Alzheimer’s disease. Clin Biochem. (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajeshkumar, S., Ezhilarasan, D., Puyathron, N., Lakshmi, T. (2019). Role of Supermagnetic Nanoparticles in Alzheimer Disease. In: Rai, M., Yadav, A. (eds) Nanobiotechnology in Neurodegenerative Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-30930-5_9

Download citation

Publish with us

Policies and ethics