Skip to main content

The Regulation of Reactive Neuroblastosis, Neuroplasticity, and Nutraceuticals for Effective Management of Autism Spectrum Disorder

  • Chapter
  • First Online:
Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management

Abstract

Autism spectrum disorder (ASD) encompasses a cluster of neurodevelopmental and genetic disorders that has been characterized mainly by social withdrawal, repetitive behavior, restricted interests, and deficits in language processing mainly in children. ASD has been known to severely impair behavioral patterns and cognitive functions including learning and memory due to defects in neuroplasticity. The biology of the ASD appears to be highly complex and heterogeneous, and thus, finding a therapeutic target for autism remains obscure. There has been no complete prevention or disease-modifying cure for this disorder. Recently, individuals with autism have been characterized by reactive neurogenesis, obstructions in axonal growth, heterotopia, resulting from dysplasia of neuroblasts in different brain regions. Therefore, it can be assumed that the aforementioned neuropathological correlates seen in the autistic individuals might originate from the defects mainly in the regulation of neuroblasts in the developing as well as adult brain. Nutrient deficiencies during early brain development and intake of certain allergic foods have been proposed as main reasons for the development of ASD. However, the integrated understanding of neurodevelopment and functional aspects of neuroplasticity working through neurogenesis in ASD is highly limited. Moreover, neurogenesis at the level of neuroblasts can be regulated by nutrition. Hence, defects in neuroblastosis underlying the severity of autism potentially could be rectified by appropriate implementation of nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, B. (2013). How autism became autism. History of the Human Sciences, 26(3), 3–31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Olmsted, D., & Blaxill, M. (2016). Leo Kanner’s mention of 1938 in his report on autism refers to his first patient. Journal of Autism and Developmental Disorders, 46(1), 340–341.

    Article  PubMed  Google Scholar 

  3. N. C. C. for M. Health (UK). (2012). Introduction to autism in adults. Leicester: British Psychological Society.

    Google Scholar 

  4. Lai, M.-C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383(9920), 896–910.

    Article  PubMed  Google Scholar 

  5. Yaylaci, F., & Miral, S. (2017). A comparison of DSM-IV-TR and DSM-5 diagnostic classifications in the clinical diagnosis of autistic spectrum disorder. Journal of Autism and Developmental Disorders, 47(1), 101–109.

    Article  PubMed  Google Scholar 

  6. Ozonoff, S., Heung, K., Byrd, R., Hansen, R., & Hertz-Picciotto, I. (2008). The onset of autism: Patterns of symptom emergence in the first years of life. Autism Research, 1(6), 320–328.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frye, R. E., & Rossignol, D. A. (2016). Identification and treatment of pathophysiological comorbidities of autism spectrum disorder to achieve optimal outcomes. Clinical Medicine Insights. Pediatrics, 10, 43–56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park, H. R., Lee, J. M., Moon, H. E., Lee, D. S., Kim, B. N., Kim, J., et al. (2016). A short review on the current understanding of autism spectrum disorders. Experimental Neurobiology, 25(1), 1–13.

    Google Scholar 

  9. Boat, T. F., Wu, J. T., eds (2015). Prevalence of autism spectrum disorder. Washington, DC: National Academies Press (US).

    Google Scholar 

  10. Halladay, A. K., Bishop, S., Constantino, J. N., Daniels, A. M., Koenig, K., Palmer, K., et al. (2015). Sex and gender differences in autism spectrum disorder: Summarizing evidence gaps and identifying emerging areas of priority. Molecular Autism, 6, 36.

    Google Scholar 

  11. Smith, S. E. P., Zhou, Y.-D., Zhang, G., Jin, Z., Stoppel, D. C., & Anderson, M. P. (2011). Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Science Translational Medicine, 3(103), 103ra97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Xu, N., Li, X., & Zhong, Y. (2015). Inflammatory cytokines: Potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators of Inflammation, 2015, 531518.

    PubMed  PubMed Central  Google Scholar 

  13. Jyonouchi, H. (2009). Food allergy and autism spectrum disorders: Is there a link? Current Allergy and Asthma Reports, 9(3), 194–201.

    Article  PubMed  Google Scholar 

  14. Li, Y.-J., Ou, J.-J., Li, Y.-M., & Xiang, D.-X. (2017). Dietary supplement for core symptoms of autism spectrum disorder: Where are we now and where should we go? Frontiers in Psychiatry, 8, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium. (2017). Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Molecular Autism, 8, 21.

    Article  CAS  Google Scholar 

  16. Blatt, G. J. (2012). The neuropathology of autism. Scientifica (Cairo), 2012, 703675.

    Google Scholar 

  17. Pickett, J., & London, E. (2005). The neuropathology of autism: A review. Journal of Neuropathology and Experimental Neurology, 64(11), 925–935.

    Article  PubMed  Google Scholar 

  18. Ha, S., Sohn, I.-J., Kim, N., Sim, H. J., & Cheon, K.-A. (2015). Characteristics of brains in autism spectrum disorder: Structure, function and connectivity across the lifespan. Experimental Neurobiology, 24(4), 273–284.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10(2), 106–111.

    Article  PubMed  Google Scholar 

  20. Ming, G.-L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kandasamy, M., & Aigner, L. (2018). Neuroplasticity, limbic neuroblastosis and neuro-regenerative disorders. Neural Regeneration Research, 13(8), 1322–1326.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaushik, G., & Zarbalis, K. S. (2016). Prenatal neurogenesis in autism spectrum disorders. Frontiers in Chemistry, 4, 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kandasamy, M., & Aigner, L. (2018). Reactive neuroblastosis in Huntington’s disease: A putative therapeutic target for striatal regeneration in the adult brain. Frontiers in Cellular Neuroscience, 12, 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Packer, A. (2016). Neocortical neurogenesis and the etiology of autism spectrum disorder. Neuroscience and Biobehavioral Reviews, 64, 185–195.

    Article  PubMed  Google Scholar 

  25. Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., et al. (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 2001–2010.

    Google Scholar 

  26. Wang, S. S.-H., Kloth, A. D., & Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wegiel, J., Kuchna, I., Nowicki, K., Imaki, H., Wegiel, J., Marchi, E., et al. (2010). The neuropathology of autism: Defects of neurogenesis and neuronal migration and dysplastic changes. Acta Neuropathologica, 119(6), 755–770.

    Google Scholar 

  28. Mercadante, M. T., Cysneiros, R. M., Schwartzman, J. S., Arida, R. M., Cavalheiro, E. A., & Scorza, F. A. (2008). Neurogenesis in the amygdala: A new etiologic hypothesis of autism? Medical Hypotheses, 70(2), 352–357.

    Article  CAS  PubMed  Google Scholar 

  29. Casanova, E. L., & Casanova, M. F. (2014). Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism. Frontiers in Cellular Neuroscience, 8, 397.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gilbert, J., & Man, H.-Y. (2017). Fundamental elements in autism: From neurogenesis and neurite growth to synaptic plasticity. Frontiers in Cellular Neuroscience, 11, 359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Beattie, R., & Hippenmeyer, S. (2017). Mechanisms of radial glia progenitor cell lineage progression. FEBS Letters, 591(24), 3993–4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutsler, J. J., Love, T., & Zhang, H. (2007). Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biological Psychiatry, 61(4), 449–457.

    Article  PubMed  Google Scholar 

  33. Frazier, T. W., Embacher, R., Tilot, A. K., Koenig, K., Mester, J., & Eng, C. (2015). Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Molecular Psychiatry, 20(9), 1132–1138.

    Article  CAS  PubMed  Google Scholar 

  34. Kalkman, H. O. (2012). A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Molecular Autism, 3, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chuang, H.-C., Huang, T.-N., & Hsueh, Y.-P. (2015). T-Brain-1—A potential master regulator in autism spectrum disorders. Autism Research, 8(4), 412–426.

    Article  PubMed  Google Scholar 

  36. Wang, Z., Hong, Y., Zou, L., Zhong, R., Zhu, B., Shen, N. et al. (2014). Reelin gene variants and risk of autism spectrum disorders: An integrated meta-analysis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 165B(2), 192–200.

    Google Scholar 

  37. Lammert, D. B., & Howell, B. W. (2016). RELN mutations in autism spectrum disorder. Frontiers in Cellular Neuroscience, 10, 84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Liska, A., Bertero, A., Gomolka, R., Sabbioni, M., Galbusera, A., Barsotti, N., et al. (2018). Homozygous loss of autism-risk gene CNTNAP2 results in reduced local and long-range prefrontal functional connectivity. Cerebral Cortex, 28(4), 1141–1153.

    Google Scholar 

  39. Liu, X., Novosedlik, N., Wang, A., Hudson, M. L., Cohen, I. L., Chudley, A. E., et al. (2009). The DLX1and DLX2 genes and susceptibility to autism spectrum disorders. European Journal of Human Genetics, 17(2), 228–235.

    Google Scholar 

  40. Lionel, A. C., Tammimies, K., Vaags, A. K., Rosenfeld, J. A., Ahn, J. W., Merico, D., et al. (2014). Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Human Molecular Genetics, 23(10), 2752–2768.

    Google Scholar 

  41. Oksenberg, N., Stevison, L., Wall, J. D., & Ahituv, N. (2013). Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genetics, 9(1), e1003221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Napoli, E., Song, G., Panoutsopoulos, A., Riyadh, M. A., Kaushik, G., Halmai, J., et al. (2018). Beyond autophagy: A novel role for autism-linked Wdfy3 in brain mitophagy. Scientific Reports, 8, 11348.

    Google Scholar 

  43. Paciorkowski, A. R., Keppler-Noreuil, K., Robinson, L., Sullivan, C., Sajan, S., Christian, S. L., et al. (2013). Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption. American Journal of Medical Genetics. Part A, 161(7), 1523–1530.

    Google Scholar 

  44. Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q., et al. (2011). Harnessing neuroplasticity for clinical applications. Brain, 134(6), 1591–1609.

    Google Scholar 

  45. Yuen, R. K. C., Merico, D., Bookman, M., Howe, L. J., Thiruvahindrapuram, B., Patel, R. V., et al. (2017). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience, 20(4), 602–611.

    Google Scholar 

  46. Buxbaum, J. D. (2009). Multiple rare variants in the etiology of autism spectrum disorders. Dialogues in Clinical Neuroscience, 11(1), 35–43.

    PubMed  PubMed Central  Google Scholar 

  47. Wang, J., Gong, J., Li, L., Chen, Y., Liu, L., Gu, H., et al. (2018). Neurexin gene family variants as risk factors for autism spectrum disorder. Autism Research, 11(1), 37–43.

    Google Scholar 

  48. Greco, B., Managò, F., Tucci, V., Kao, H.-T., Valtorta, F., & Benfenati, F. (2013). Autism-related behavioral abnormalities in synapsin knockout mice. Behavioural Brain Research, 251, 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gauthier, J., Siddiqui, T. J., Huashan, P., Yokomaku, D., Hamdan, F. F., Champagne, N., et al. (2011). Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Human Genetics, 130(4), 563–573.

    Google Scholar 

  50. Fassio, A., Patry, L., Congia, S., Onofri, F., Piton, A., Gauthier, J., et al. (2011). SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Human Molecular Genetics, 20(12), 2297–2307.

    Google Scholar 

  51. Südhof, T. C. (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215), 903–911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Leblond, C. S., Nava, C., Polge, A., Gauthier, J., Huguet, G., Lumbroso, S., et al. (2014). Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impairments. PLoS Genetics, 10(9), e1004580.

    Google Scholar 

  53. Chen, J., Yu, S., Fu, Y., & Li, X. (2014). Synaptic proteins and receptors defects in autism spectrum disorders. Frontiers in Cellular Neuroscience, 8, 276.

    PubMed  PubMed Central  Google Scholar 

  54. Moessner, R., Marshall, C. R., Sutcliffe, J.S., Skaug, J., Pinto, D., Vincent, J., et al. (2007). Contribution of SHANK3 mutations to autism spectrum disorder. American Journal of Human Genetics, 81(6), 1289–1297.

    Google Scholar 

  55. Mei, Y., Monteiro, P., Zhou, Y., Kim, J. A., Gao, X., Fu, Z., et al. (2016). Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature, 530(7591), 481–484.

    Google Scholar 

  56. Schmeisser, M. J., Ey, E., Wegener, S., Bockmann, J., Stempel, A. V., Kuebler, A., et al. (2012). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 486(7402), 256–260.

    Google Scholar 

  57. Muller, C. L., Anacker, A. M. J., & Veenstra-VanderWeele, J. (2016). The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience, 321, 24–41.

    Article  CAS  PubMed  Google Scholar 

  58. Polšek, D., Jagatic, T., Cepanec, M., Hof, P. R., & Šimić, G. (2011). Recent developments in neuropathology of autism spectrum disorders. Translational Neuroscience, 2(3), 256–264.

    Article  PubMed  Google Scholar 

  59. Rojas, D. C. (2014). The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. Journal of Neural Transmission, 121(8), 891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng, H.-F., Wang, W.-Q., Li, X.-M., Rauw, G., & Baker, G. B. (2017). Body fluid levels of neuroactive amino acids in autism spectrum disorders: A review of the literature. Amino Acids, 49(1), 57–65.

    Article  CAS  PubMed  Google Scholar 

  61. Gerhard, S. D., Evelien, M. B., Albert, P. A., Tamar, M. V. V., Nicolaas, P., Richard, A. E. E., et al. (2016). Altered neurotransmitter metabolism in adolescents with high-functioning autism. Psychiatry Research, 256, 44–49.

    Google Scholar 

  62. Zafeiriou, D., Ververi, A., & Vargiami, E. (2009). The serotonergic system: Its role in pathogenesis and early developmental treatment of autism. Current Neuropharmacology, 7(2), 150–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kałużna-Czaplińska, J., Jóźwik-Pruska, J., Chirumbolo, S., & Bjørklund, G. (2017). Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metabolic Brain Disease, 32(5), 1585–1593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Schubert, D., Martens, G. J. M., & Kolk, S. M. (2015). Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Molecular Psychiatry, 20(7), 795–809.

    Article  CAS  PubMed  Google Scholar 

  65. Rogers, T. D., Dickson, P. E., McKimm, E., Heck, D. H., Goldowitz, D., Blaha, C. D., et al. (2013). Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum, 12(4), 547–556.

    Google Scholar 

  66. Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman, M. L., Blaha, C. D., Blatt, G. J., et al. (2012). Consensus paper: Pathological role of the cerebellum in autism. Cerebellum, 11(3), 777–807.

    Google Scholar 

  67. Coghlan, S., Horder, J., Inkster, B., Mendez, M. A., Murphy, D. G., & Nutt, D. J. (2012). GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neuroscience and Biobehavioral Reviews, 36(9), 2044–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Quaak, I., Brouns, M. R., & de Bor, M. V. (2013). The dynamics of autism spectrum disorders: How neurotoxic compounds and neurotransmitters interact. International Journal of Environmental Research and Public Health, 10(8), 3384–3408.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Krakowiak, P., Walker, C. K., Bremer, A. A., Baker, A. S., Ozonoff, S., Hansen, R. L., et al. (2012). Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics, 129(5), e1121–e1128.

    Google Scholar 

  70. Kawicka, A., & Regulska-Ilow, B. (2013). How nutritional status, diet and dietary supplements can affect autism. A review. Roczniki Państwowego Zakładu Higieny, 64(1), 1–12.

    CAS  PubMed  Google Scholar 

  71. Hyman, S. L., Stewart, P. A., Schmidt, B., Cain, U., Lemcke, N., Foley, J. T., et al. (2012). Nutrient intake from food in children with autism. Pediatrics, 130(Suppl 2), S145–S153.

    Google Scholar 

  72. Mazahery, H., Camargo, C. A., Conlon, C., Beck, K. L., Kruger, M. C., & von Hurst, P. R. (2016). Vitamin D and autism spectrum disorder: A literature review. Nutrients, 8(4), 236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ranjan, S., & Nasser, J. A. (2015). Nutritional status of individuals with autism spectrum disorders: Do we know enough? Advances in Nutrition, 6(4), 397–407.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fujiwara, T., Morisaki, N., Honda, Y., Sampei, M., & Tani, Y. (2016). Chemicals, nutrition, and autism spectrum disorder: A mini-review. Frontiers in Neuroscience, 10, 174.

    PubMed  PubMed Central  Google Scholar 

  75. Adams, J. B., Audhya, T., McDonough-Means, S., Rubin, R. A., Quig, D., Geis, E., et al. (2011). Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutrition & Metabolism (London), 8, 34.

    Google Scholar 

  76. Yasuda, H., Yoshida, K., Yasuda, Y., & Tsutsui, T. (2011). Infantile zinc deficiency: Association with autism spectrum disorders. Scientific Reports, 1, 129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Babaknejad, N., Sayehmiri, F., Sayehmiri, K., Mohamadkhani, A., & Bahrami, S. (2016). The relationship between zinc levels and autism: A systematic review and meta-analysis. Iranian Journal of Child Neurology, 10(4), 1–9.

    PubMed  PubMed Central  Google Scholar 

  78. Hagmeyer, S., Sauer, A. K., & Grabrucker, A. M. (2018). Prospects of zinc supplementation in autism spectrum disorders and Shankopathies such as Phelan McDermid Syndrome. Frontiers in Synaptic Neuroscience, 10, 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Velusamy, T., Archana, S. P., Purushottam, M., Anusuyadevi, M., Pal, K. P., Jain, S., et al. (2017). Protective effect of antioxidants on neuronal dysfunction and plasticity in Huntington’s Disease. Oxidative Medicine and Cellular Longevity, 2017, 3279061.

    Google Scholar 

  80. Grabrucker, A. M. (2013). Environmental factors in autism. Frontiers in Psychiatry, 3, 118.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grabrucker, S., Jannetti, L., Eckert, M., Gaub, S., Chhabra, R., Pfaender, S., et al. (2014). Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain, 137(Pt 1), 137–152.

    Google Scholar 

  82. Sun, C., Zou, M., Zhao, D., Xia, W., & Wu, L. (2016). Efficacy of folic acid supplementation in autistic children participating in structured teaching: An open-label trial. Nutrients, 8(6), E337.

    Article  PubMed  CAS  Google Scholar 

  83. Castro, K., Klein, L. d. S., Baronio, D., Gottfried, C., Riesgo, R., & Perry, I. S. (2016). Folic acid and autism: What do we know? Nutritional Neuroscience, 19(7), 310–317.

    Article  CAS  PubMed  Google Scholar 

  84. Wiens, D., & DeSoto, M. C. (2017). Is high folic acid intake a risk factor for autism? A review. Brain Sciences, 7(11), pii: E149.

    Article  CAS  Google Scholar 

  85. Saad, K., Abdel-Rahman, A. A., Elserogy, Y. M. , Al-Atram, A. A. , Cannell, J. J., Bjørklund, G., et al. (2016). Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutritional Neuroscience, 19(8), 346–351.

    Google Scholar 

  86. Cannell, J. J. (2017). Vitamin D and autism, what’s new? Reviews in Endocrine & Metabolic Disorders, 18(2), 183–193.

    Article  CAS  Google Scholar 

  87. Krajcovicova-Kudlackova, M., Valachovicova, M., Mislanova, C., Hudecova, Z., Sustrova, M., & Ostatnikova, D. (2009). Plasma concentrations of selected antioxidants in autistic children and adolescents. Bratislavské Lekárske Listy, 110(4), 247–250.

    CAS  PubMed  Google Scholar 

  88. Adams, J. B., Audhya, T., McDonough-Means, S., Rubin, R. A., Quig, D., Geis, E., et al. (2011). Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatrics, 11, 111.

    Google Scholar 

  89. Skalny, A. V., Simashkova N. V., Klyushnik, T. P., Grabeklis, A. R., Radysh, I. V., Skalnaya, M. G., et al. (2017). Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. Journal of Trace Elements in Medicine and Biology, 43, 9–14.

    Google Scholar 

  90. Parletta, N., Niyonsenga, T., & Duff, J. (2016). Omega-3 and Omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PLoS One, 11(5), e0156432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Chaidez, V., Hansen, R. L., & Hertz-Picciotto, I. (2014). Gastrointestinal problems in children with autism, developmental delays or typical development. Journal of Autism and Developmental Disorders, 44(5), 1117–1127.

    Article  PubMed  PubMed Central  Google Scholar 

  92. van De Sande, M. M. H., van Buul, V. J., & Brouns, F. J. P. H. (2014). Autism and nutrition: The role of the gut-brain axis. Nutrition Research Reviews, 27(2), 199–214.

    Article  CAS  Google Scholar 

  93. Tognini, P. (2017). Gut microbiota: A potential regulator of neurodevelopment. Frontiers in Cellular Neuroscience, 11, 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Berding, K., & Donovan, S. M. (2018). Diet can impact microbiota composition in children with autism spectrum disorder. Frontiers in Neuroscience, 12, 515.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sanctuary, M. R., Kain, J. N., Angkustsiri, K., & German, J. B. (2018). Dietary considerations in autism spectrum disorders: The potential role of protein digestion and microbial putrefaction in the gut-brain axis. Frontiers in Nutrition, 5, 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rossignol, D. A., Genuis, S. J., & Frye, R. E. (2014). Environmental toxicants and autism spectrum disorders: A systematic review. Translational Psychiatry, 4(2), e360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alanazi, A. S. (2013). The role of nutraceuticals in the management of autism. Saudi Pharmaceutical Journal, 21(3), 233–243.

    Article  PubMed  Google Scholar 

  98. Nye, C., & Brice, A. (2005). Combined vitamin B6-magnesium treatment in autism spectrum disorder. Cochrane Database of Systematic Reviews, 4, CD003497.

    Google Scholar 

  99. Richard, D. M., Dawes, M. A., Mathias, C. W., Acheson, A., Hill-Kapturczak, N., & Dougherty, D. M. (2009). L-Tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. International Journal of Tryptophan Research, 2, 45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marí-Bauset, S., Zazpe, I., Mari-Sanchis, A., Llopis-González, A., & Morales-Suárez-Varela, M. (2014). Evidence of the gluten-free and casein-free diet in autism spectrum disorders: A systematic review. Journal of Child Neurology, 29(12), 1718–1727.

    Article  PubMed  Google Scholar 

  101. Stangl, D., & Thuret, S. (2009). Impact of diet on adult hippocampal neurogenesis. Genes & Nutrition, 4(4), 271–282.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MK has been supported by the Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India. MK would like to acknowledge a start-up grant from UGC-FRP, a research grant (EEQ/2016/000639) and an Early Career Research Award (ECR/2016/000741) from DST-SERB, New Delhi, India. AY has been supported as JRF from DST SERB-EEQ/2016/000639. RKR has been supported as JRF from DST SERB-ECR/2016/000741. SAR has been supported as JRF from Department of Biotechnology (DBT), New Delhi, India. The authors acknowledge UGC-SAP, DST-FIST, and PURSE for the infrastructure of the Department of Animal Science and Department of Biochemistry, Bharathidasan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anusuyadevi Muthuswamy or Mahesh Kandasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poornimai Abirami, G.P. et al. (2020). The Regulation of Reactive Neuroblastosis, Neuroplasticity, and Nutraceuticals for Effective Management of Autism Spectrum Disorder. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_8

Download citation

Publish with us

Policies and ethics