Skip to main content

Nanotheranostics Approaches in Antimicrobial Drug Resistance

  • Chapter
  • First Online:

Abstract

The theranostics as a combination of diagnosis and therapy is a trend of personalized medicine that seeks to develop a precision medical care, also this approach has found in nanotechnology a possibility for the conjugation of several molecules with different functionalities that will allow diagnosis, treatment, monitoring, and prediction of the patient condition in the same nanosystem. Equally, fields such as biosensors and novel therapies and thermotherapy have been integrated into the multiple variants that this platform presents. It is thus that as before the technological developments should be the problems where the designed solutions are practiced, and nanotheranostics can be used in a multidisciplinary way to address one of the major public health problems such as antimicrobial resistance. This implies not only developing tools to detect the infectious disease, it also requires introducing medications and treatment alternatives; in the same way the devices implemented must act to prevent the appearance and spread of pathogens. Similarly, by means of nanotheranostic it will be possible to have more sophisticated and effective antimicrobial and vaccination protocols that will allow an adequate control of the microorganisms causing disease. Finally, in this chapter, the different approaches with translational possibility that this exciting field of nanobiotechnology has allowed to face the great health threats of our time will be integrated in a multi-trans-interdisciplinary approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ansari MO, Ahmad MF, Shadab GGHA, Siddique HR. Superparamagnetic iron oxide nanoparticles based cancer theranostics: a double edge sword to fight against cancer. J Drug Deliv Sci Technol. 2018;45:177–83.

    Article  CAS  Google Scholar 

  • Arduini F, Cinti S, Scognamiglio V, Moscone D. Based electrochemical devices in biomedical field: recent advances and perspectives. Compr Anal Chem. 2017;77:385–413.

    Article  Google Scholar 

  • Arnold FH. Directed evolution: bringing new chemistry to life. Angew Chem Int Ed. 2018;57:4143–8.

    Article  CAS  Google Scholar 

  • Ashrafuzzaman M. Aptamers as both drugs and drug-carriers. Biomed Res Int. 2014;2014:697923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avcıbaşı U, Demiroğlu H, Sakarya S, Tekin V, Ateş B. The effect of radiolabeled antibiotics on biofilm and microorganism within biofilm. J Radioanal Nucl Chem. 2018;316:275–87.

    Article  CAS  Google Scholar 

  • Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol. 2018;9:1441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, Puga A, Xia Y, Chadwick L, Yan W, Audouze K, Slama R, Heindel J, Grandjean P, Kawamoto T, Nohara K. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int. 2018;114:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso Á, Grüner M, Forbes T, Denz C, Strassert CA. Spatiotemporally resolved tracking of bacterial responses to ROS-mediated damage at the single-cell level with quantitative functional microscopy. ACS Appl Mater Interfaces. 2016;8:15046–57.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett G, Antoun J, Zgheib NK. Theranostics in primary care: pharmacogenomics tests and beyond. Expert Rev Mol Diagn. 2012;12:841–55.

    Article  CAS  PubMed  Google Scholar 

  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12:143–61.

    Article  CAS  PubMed  Google Scholar 

  • Bueno J. Biosensors in antimicrobial drug discovery: since biology until screening platforms. J Microb Biochem Technol. 2014;S10:2.

    Google Scholar 

  • Bueno J. The future of metabolomics and individual monitoring in antimicrobial therapy. J Microb Biochem Technol. 2017;9:e132.

    Article  CAS  Google Scholar 

  • Burnham CAD, Leeds J, Nordmann P, O’Grady J, Patel J. Diagnosing antimicrobial resistance. Nat Rev Microbiol. 2017;15:697–703.

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Xiao F, Xing D, Hu X. Polyprodrug antimicrobials: remarkable membrane damage and concurrent drug release to combat antibiotic resistance of methicillin-resistant Staphylococcus aureus. Small. 2018;14:1802008.

    Article  CAS  Google Scholar 

  • Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Feng Y, Deveaux JG, Masoud MA, Chandra FS, Chen H, Zhang D, Feng L. Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review. Fortschr Mineral. 2019;9:68.

    Article  Google Scholar 

  • Chitgupi U, Qin Y, Lovell JF. Targeted nanomaterials for phototherapy. Nano. 2017;1:38–58.

    Google Scholar 

  • Col SDL, Brig VKR. Bioterrorism: a public health perspective. Med J Armed Forces India. 2010;66:255–60.

    Article  Google Scholar 

  • Courbet A, Renard E, Molina F. Bringing next-generation diagnostics to the clinic through synthetic biology. EMBO Mol Med. 2016;8:987–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craciun AM, Focsan M, Magyari K, Vulpoi A, Pap Z. Surface plasmon resonance or biocompatibility—key properties for determining the applicability of noble metal nanoparticles. Materials. 2017;10:836.

    Article  PubMed Central  CAS  Google Scholar 

  • Dai X, Fan Z, Lu Y, Ray PC. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Appl Mater Interfaces. 2013;5:11348–54.

    Article  CAS  PubMed  Google Scholar 

  • De Matteis V, Cascione M, Toma C, Leporatti S. Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nano. 2018;8:319.

    Google Scholar 

  • Drain P, Hyle E, Noubary F, Freedberg K, Wilson D, Bishai W, Rodriguez W, Bassett I. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14:239–49.

    Article  PubMed  Google Scholar 

  • Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, Rundén-Pran E, Smolkova B. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: new strategies for toxicity testing? Food Chem Toxicol. 2017;109:797–811.

    Article  CAS  PubMed  Google Scholar 

  • El Bairi K, Atanasov AG, Amrani M, Afqir S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed Pharmacother. 2019;109:2492–8.

    Article  PubMed  CAS  Google Scholar 

  • Elsabahy M, Wooley KL. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc Chem Res. 2015;48:1620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelopoulos M, Parodi A, Martinez J, Tasciotti E. Trends towards biomimicry in theranostics. Nano. 2018;8:637.

    Google Scholar 

  • Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A, Lynch I, Valsami-Jones E, Alenius H, Savolainen K. Advanced tools for the safety assessment of nanomaterials. Nat Nanotechnol. 2018;13:537–43.

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Zeng H, Xu H, Gao F, Li W, Zhang S, Liu Y, Luo G, Li M, Jiang D, Chen Z, Wu Y, Wang W, Zeng W. Novel self-assembled organic nanoprobe for molecular imaging and treatment of gram-positive bacterial infection. Theranostics. 2018;8:1911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge H, Zhang J, Yuan Y, Liu J, Liu R, Liu X. Preparation of organic–inorganic hybrid silica nanoparticles with contact antibacterial properties and their application in UV-curable coatings. Prog Org Coat. 2017;106:20–6.

    Article  CAS  Google Scholar 

  • Goes A, Fuhrmann G. Biogenic and biomimetic carriers as versatile transporters to treat infections. ACS infectious diseases. 2018;4:881–92.

    Article  CAS  PubMed  Google Scholar 

  • Gomes IB, Meireles A, Gonçalves AL, Goeres DM, Sjollema J, Simões LC, Simões M. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications. Crit Rev Biotechnol. 2018;38:657–70.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Delgado JA, Kennedy PJ, Ferreira M, Tome JP, Sarmento B. Use of photosensitizers in semisolid formulations for microbial photodynamic inactivation: miniperspective. J Med Chem. 2015;59:4428–42.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Hunt C, Wadhwa M, Sanders LH. DNA damage by oxidative stress: measurement strategies for two genomes. Curr Opin Toxicol. 2018;7:87–94.

    Article  Google Scholar 

  • Grumezescu A, Gesta M, Holban A, Grumezescu V, Vasile B, Mogoanta L, Iordache F, Bleotu C, Dan Mogosanu G. Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against gram-positive and gram-negative bacteria. Molecules. 2014;19:5013–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S, Ramesh K, Ahmed S, Kakkar V. Lab-on-Chip Technology: a review on design trends and future scope in biomedical applications. Int J Bio Sci Bio Technol. 2016;8:311–22.

    Article  Google Scholar 

  • Gustafsson OJR, Guinan TM, Rudd D, Kobus H, Benkendorff K, Voelcker NH. Metabolite mapping by consecutive nanostructure and silver-assisted mass spectrometry imaging on tissue sections. Rapid Commun Mass Spectrom. 2017;31:991–1000.

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci. 2018;17:1515–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser M, Li G, Nowack B. Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. J Nanobiotechnol. 2019;17:56.

    Article  Google Scholar 

  • He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8:237–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, McLean J, Guo L, Lux R, Shi W. The social structure of microbial community involved in colonization resistance. ISME J. 2014;8:564–74.

    Article  PubMed  Google Scholar 

  • Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017;12:8211–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillger JM, Lieuw WL, Heitman LH, IJzerman AP. Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today. 2017;22:1808–15.

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Chu SH, Wang LC, Li CH, Lee TR. Bioinspired zwitterionic surface coatings with robust photostability and fouling resistance. ACS Appl Mater Interfaces. 2015;7:23776–86.

    Article  CAS  PubMed  Google Scholar 

  • Huma ZE, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S, Hussain I, Rotello VM. Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria. ACS Omega. 2018;3:16721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Minghui R. Antimicrobial resistance: translating political commitment into national action. Bull World Health Organ. 2017;95:242–242A.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iriya R, Syal K, Jing W, Mo M, Yu H, Haydel SE, Wang S, Tao N. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation. J Biomed Opt. 2017;22:126002.

    PubMed Central  Google Scholar 

  • Jagtap P, Sritharan V, Gupta S. Nanotheranostic approaches for management of bloodstream bacterial infections. Nanomedicine. 2017;13:329–41.

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: a review. J Control Release. 2018;283:1–19.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not? Proc R Soc B Biol Sci. 2017;284:20162562.

    Article  CAS  Google Scholar 

  • Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Goranthia S, Bronich T, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev. 2018; S0169-409X(18): 30261–8

    Google Scholar 

  • Khalid N, Kobayashi I, Nakajima M. Recent lab-on-chip developments for novel drug discovery. Wiley Interdiscip Rev Syst Biol Med. 2017;9:e1381.

    Article  Google Scholar 

  • Kratochvil MJ, Yang T, Blackwell HE, Lynn DM. Nonwoven polymer nanofiber coatings that inhibit quorum sensing in Staphylococcus aureus: toward new nonbactericidal approaches to infection control. ACS Infect Dis. 2017;3:271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krausz A, Adler B, Cabral V, Navati M, Doerner J, Charafeddine R, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S, Friedman J, Nosanchuk J, Friedman A. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine. 2015;11:195–206.

    Article  CAS  PubMed  Google Scholar 

  • Lagarce F. Nanomedicines: are we lost in translation? Eur J Nanomed. 2015;7:77–8.

    Article  Google Scholar 

  • Lai J, Shah BP, Zhang Y, Yang L, Lee KB. Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano. 2015;9:5234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res. 2016;33:1055–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S, Lin M, Lee A, Park Y. Lanthanide-doped nanoparticles for diagnostic sensing. Nano. 2017;7:411.

    Google Scholar 

  • Li Q, Wu Y, Lu H, Wu X, Chen S, Song N, Yang Y, Gao H. Construction of supramolecular nanoassembly for responsive bacterial elimination and effective bacterial detection. ACS Appl Mater Interfaces. 2017;9:10180–9.

    Article  CAS  PubMed  Google Scholar 

  • Liao JF, Lee JC, Lin CK, Wei KC, Chen PY, Yang HW. Self-assembly DNA polyplex vaccine inside dissolving microneedles for high-potency intradermal vaccination. Theranostics. 2017;7(10):2593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linko V, Ora A, Kostiainen MA. DNA nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol. 2015;33:586–94.

    Article  CAS  PubMed  Google Scholar 

  • Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:3702518.

    Article  Google Scholar 

  • Lu R, Zou W, Du H, Wang J, Zhang S. Antimicrobial activity of Ag nanoclusters encapsulated in porous silica nanospheres. Ceram Int. 2014;40:3693–8.

    Article  CAS  Google Scholar 

  • Lundquist CM, Loo C, Meraz IM, Cerda JDL, Liu X, Serda RE. Characterization of free and porous silicon-encapsulated superparamagnetic iron oxide nanoparticles as platforms for the development of theranostic vaccines. Med Sci (Basel). 2014;2:51–69.

    CAS  Google Scholar 

  • Ma W, Cheetham AG, Cui H. Building nanostructures with drugs. Nano Today. 2016;11:13–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madni A, Noreen S, Maqbool I, Rehman F, Batool A, Kashif PM, Rehman M, Tahir N, Khan MI. Graphene-based nanocomposites: synthesis and their theranostic applications. J Drug Target. 2018;26:858–83.

    Article  CAS  PubMed  Google Scholar 

  • Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and limitations in clinical investigation of bacterial biofilms. Clin Microbiol Rev. 2018;31:e00084-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Carmona M, Gun’ko Y, Vallet-Regí M. ZnO nanostructures for drug delivery and theranostic applications. Nano. 2018;8:268.

    Google Scholar 

  • Mauk M, Song J, Liu C, Bau H. Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests. Biosensors. 2018;8:17.

    Article  PubMed Central  CAS  Google Scholar 

  • Meeker DG, Wang T, Harrington WN, Zharov VP, Johnson SA, Jenkins SV, Oyibo SE, Walker CM, Mills WB, Shirtliff ME, Beenken KE, Chen J, Smeltzer MS. Versatility of targeted antibiotic-loaded gold nanoconstructs for the treatment of biofilm-associated bacterial infections. Int J Hyperth. 2018;34:209–19.

    Article  CAS  Google Scholar 

  • Mirahmadi-Zare SZ, Allafchian AR, Jalali SAH. Core–shell fabrication of an extra-antimicrobial magnetic agent with synergistic effect of substrate ligand to increase the antimicrobial activity of Ag nanoclusters. Environ Prog Sustain Energy. 2019;38:237–45.

    Article  CAS  Google Scholar 

  • Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol. 2017;15:25.

    Article  CAS  Google Scholar 

  • Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov. 2017;16:531.

    Article  CAS  PubMed  Google Scholar 

  • Molefe P, Masamba P, Oyinloye B, Mbatha L, Meyer M, Kappo A. Molecular application of aptamers in the diagnosis and treatment of cancer and communicable diseases. Pharmaceuticals. 2018;11:93.

    Article  CAS  PubMed Central  Google Scholar 

  • Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, Saqalein M, Atif M, Sarwar A, Khurshid A, Amin N, Wang Z. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci (Elite Ed). 2018;10:352–74.

    Google Scholar 

  • Narayan R, Nayak U, Raichur A, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118.

    Article  CAS  PubMed Central  Google Scholar 

  • Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neburkova J, Vavra J, Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr Opinion Solid State Mater Sci. 2017;21:43–53.

    Article  CAS  Google Scholar 

  • Nine MJ, Cole MA, Tran DN, Losic D. Graphene: a multipurpose material for protective coatings. J Mater Chem A. 2015;3:12580–602.

    Article  CAS  Google Scholar 

  • Nowlin K, LaJeunesse DR. Fabrication of hierarchical biomimetic polymeric nanostructured surfaces. Mol Syst Design Eng. 2017;2:201–13.

    Article  CAS  Google Scholar 

  • Pang T. Theranostics, the 21st century bioeconomy and ‘one health’. Expert Rev Mol Diagn. 2012;12:807–9.

    Article  CAS  Google Scholar 

  • Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials. 2015;5:1853–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64:323–34.

    Article  PubMed  Google Scholar 

  • Pirmohamed M. Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet. 2014;15:349–70.

    Article  CAS  PubMed  Google Scholar 

  • Pramanik A, Jones S, Pedraza F, Vangara A, Sweet C, Williams M, Ruppa-Kasani V, Risher S, Sardar D, Ray P. Fluorescent, magnetic multifunctional carbon dots for selective separation, identification, and eradication of drug-resistant superbugs. ACS Omega. 2017;2:554–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pranantyo D, Xu LQ, Kang ET, Chan-Park MB. Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Biomacromolecules. 2018;19:2156–65.

    Article  CAS  PubMed  Google Scholar 

  • Primiceri E, Chiriacò MS, Notarangelo FM, Crocamo A, Ardissino D, Cereda M, Bramanti AP, Bianchessi MA, Giannelli G, Maruccio G. Key enabling technologies for point-of-care diagnostics. Sensors. 2018;18:3607.

    Article  CAS  PubMed Central  Google Scholar 

  • Qu W, Li N, Yu R, Zuo W, Fu T, Fei W, Hou Y, Liu Y, Yang J. Cationic DDA/TDB liposome as a mucosal vaccine adjuvant for uptake by dendritic cells in vitro induces potent humoural immunity. Artif Cells Nanomed Biotechnol. 2018;46:852–60.

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int. 2016;2016:1851242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rello J, van Engelen TSR, Alp E, Calandra T, Cattoir V, Kern WV, Netea MG, Nseir S, Opal SM, van de Veerdonk FL, Wilcox MH, Wiersinga WJ. Towards precision medicine in sepsis: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect. 2018;24:1264–72.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro SM, Felício MR, Boas EV, Gonçalves S, Costa FF, Samy RP, Santos NC, Franco OL. New frontiers for anti-biofilm drug development. Pharmacol Ther. 2016;160:133–44.

    Article  CAS  PubMed  Google Scholar 

  • Roco M, Mirkin C, Hersam M. Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res. 2011;13:897–919.

    Article  Google Scholar 

  • Ruiz SI, El-Gendy N, Bowen LE, Berkland C, Bailey MM. Formulation and characterization of nanocluster ceftazidime for the treatment of acute pulmonary melioidosis. J Pharm Sci. 2016;105:3399–408.

    Article  CAS  PubMed  Google Scholar 

  • Sabhachandani P, Sarkar S, Zucchi PC, Whitfield BA, Kirby JE, Hirsch EB, Konry T. Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging. Microchim Acta. 2017;184:4619–28.

    Article  CAS  Google Scholar 

  • Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored approaches in drug development and diagnostics: from molecular design to biological model systems. Adv Healthc Mater. 2017;6:1–34.

    Article  CAS  Google Scholar 

  • Saifi MA, Khan W, Godugu C. Cytotoxicity of nanomaterials: using nanotoxicology to address the safety concerns of nanoparticles. Pharmaceut Nanotechnol. 2018;6:3–16.

    Article  CAS  Google Scholar 

  • Schulte PA, Kuempel ED, Drew NM. Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol. 2018;95:207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Şen Karaman D, Manner S, Rosenholm JM. Mesoporous silica nanoparticles as diagnostic and therapeutic tools: how can they combat bacterial infection? Ther Deliv. 2018;9:241–4.

    Article  PubMed  CAS  Google Scholar 

  • Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6:21822–31.

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zhang C Y, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019:11(5):e1560.

    Google Scholar 

  • Siest G, Schallmeiner E. Pharmacogenomics and theranostics in practice: a summary of the Euromedlab-ESPT (The European Society of Pharmacogenomics and Theranostics) satellite symposium, May 2013. EJIFCC. 2014;24:85.

    PubMed Central  Google Scholar 

  • Silva AF, Borges A, Giaouris E, Graton Mikcha JM, Simões M. Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Crit Rev Microbiol. 2018;44:667–84.

    Article  CAS  PubMed  Google Scholar 

  • Singh AV, Gemmate D, Kanase A, Pandey I, Misra V, Kishore V, Jahnke T, Bill J. Nanobiomaterials for vascular biology and wound management: a review. Veins Lymphat. 2018;7:7196.

    Article  Google Scholar 

  • Smeltzer MS, Zharov V, Galanzha E, Chen J, Meeker D, Beenken K. U.S. Patent Application No. 14/728,849. 2015.

    Google Scholar 

  • Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol. 2017;109:780–96.

    Article  CAS  PubMed  Google Scholar 

  • Syal K, Mo M, Yu H, Iriya R, Jing W, Guodong S, Wang S, Grys TE, Haydel SE, Tao N. Current and emerging techniques for antibiotic susceptibility tests. Theranostics. 2017;7:1795–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. 2015;5:863–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taresco V, Francolini I, Padella F, Bellusci M, Boni A, Innocenti C, Martinelli A, D’Ilario L, Piozzi A. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles. Mater Sci Eng C. 2015;52:72–81.

    Article  CAS  Google Scholar 

  • Tonga GY, Moyano DF, Kim CS, Rotello VM. Inorganic nanoparticles for therapeutic delivery: trials, tribulations and promise. Curr Opin Colloid Interface Sci. 2014;19:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier JN, Peyrefitte CN, Biot F, Merens A, Simon F. The threat of bioterrorism. Lancet Infect Dis. 2019;19:18–9.

    Article  PubMed  Google Scholar 

  • Trandafilović LV, Whiffen RK, Dimitrijević-Branković S, Stoiljković M, Luyt AS, Djoković V. ZnO/Ag hybrid nanocubes in alginate biopolymer: synthesis and properties. Chem Eng J. 2014;253:341–9.

    Article  CAS  Google Scholar 

  • Trivedi U, Madsen JS, Rumbaugh KP, Wolcott RD, Burmølle M, Sørensen SJ. A post-planktonic era of in vitro infectious models: issues and changes addressed by a clinically relevant wound like media. Crit Rev Microbiol. 2017;43:453–65.

    Article  PubMed  Google Scholar 

  • Vangara A, Pramanik A, Gao Y, Gates K, Begum S, Chandra Ray P. Fluorescence resonance energy transfer based highly efficient theranostic nanoplatform for two-photon bioimaging and two-photon excited photodynamic therapy of multiple drug resistance bacteria. ACS Appl Bio Mater. 2018;1:298–309.

    Article  CAS  PubMed  Google Scholar 

  • Ventola CL. Pharmacogenomics in clinical practice: reality and expectations. Pharm Therapeut. 2011;36:412–50.

    Google Scholar 

  • Viana SM, Celes FS, Ramirez L, Kolli B, Ng DK, Chang KP, De Oliveira CI. Photodynamic vaccination of BALB/c mice for prophylaxis of cutaneous leishmaniasis caused by Leishmania amazonensis. Front Microbiol. 2018;9:165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicini P, Fields O, Lai E, Litwack ED, Martin AM, Morgan TM, Pacanowski MA, Papaluca M, Perez OD, Ringel MS, Robson M, Sakul H, Vockley J, Zaks T, Dolsten M, Søgaard M. Precision medicine in the age of big data: the present and future role of large-scale unbiased sequencing in drug discovery and development. Clin Pharmacol Therapeut. 2016;99:198–207.

    Article  CAS  Google Scholar 

  • Vikram Singh A, Sitti M. Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des. 2016;22:1418–28.

    Article  CAS  Google Scholar 

  • Vitiello G, Silvestri B, Luciani G. Learning from nature: bioinspired strategies towards antimicrobial nanostructured systems. Curr Top Med Chem. 2018;18:22–41.

    Article  CAS  PubMed  Google Scholar 

  • Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR. Photoantimicrobials—are we afraid of the light? Lancet Infect Dis. 2017;17:e49–55.

    Article  PubMed  Google Scholar 

  • Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017;110:112–26.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jin Y, Chen W, Wang J, Chen H, Sun L, Li X, Ji J, Yu Q, Shen L, Wang B. Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem Eng J. 2019;358:74–90.

    Article  CAS  Google Scholar 

  • Wiesner MR, Bottero JY. A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus Physique. 2011;12:659–68.

    Article  CAS  Google Scholar 

  • Wolfmeier H, Pletzer D, Mansour SC, Hancock RE. New perspectives in biofilm eradication. ACS Infect Dis. 2017;4:93–106.

    Article  PubMed  CAS  Google Scholar 

  • Wong OA, Hansen RJ, Ni TW, Heinecke CL, Compel WS, Gustafson DL, Ackerson CJ. Structure–activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model. Nanoscale. 2013;5:10525–33.

    Article  CAS  PubMed  Google Scholar 

  • Wypych TP, Marsland BJ. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 2018;39:697–711.

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Manuguri S, Proietti G, Romson J, Fu Y, Inge AK, Wu B, Zhang Y, Häll D, Ramström O, Yan M. Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence. Proc Natl Acad Sci. 2017;114:8464–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Wang Q, Yang T, Cao J, Lin Q, Yuan Z, Li L. Polyethyleneimine capped silver nanoclusters as efficient antibacterial agents. Int J Environ Res Public Health. 2016;13:334.

    Article  PubMed Central  CAS  Google Scholar 

  • Yan J, Chen L, Huang CC, Lung SC, Yang L, Wang WC, Lin PH, Suo G, Lin CH. Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes. Colloids Surf B: Biointerfaces. 2017;153:300–9.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang X, Lou P, Hu Z, Qu P, Li D, Li Q, Xu Y, Niu J, He Y, Zhong J, Huang Z. A nanoparticle-based HCV vaccine with enhanced potency. J Infect Dis. 2019;pii:jiz228

    Google Scholar 

  • Yang B, Chen Y, Shi J. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater. 2019;31:1802896.

    Article  CAS  Google Scholar 

  • Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnosis, and therapy. Acta Biomater. 2018;74:36–55.

    Article  CAS  PubMed  Google Scholar 

  • Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34:7–25.

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014;7:301–7.

    Article  CAS  Google Scholar 

  • Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wan S, Jiang Y, Wang Y, Fu T, Liu Q, Cao Z, Qiu L, Tan W. Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J Am Chem Soc. 2017;139:2532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014;32:327–37.

    Article  PubMed  Google Scholar 

  • Zheng K, Setyawati MI, Lim TP, Leong DT, Xie J. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano. 2016;10:7934–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks to CF Honeypot for her collaboration and invaluable support during the writing of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, J. (2019). Nanotheranostics Approaches in Antimicrobial Drug Resistance. In: Rai, M., Jamil, B. (eds) Nanotheranostics. Springer, Cham. https://doi.org/10.1007/978-3-030-29768-8_3

Download citation

Publish with us

Policies and ethics