Skip to main content

Microbial Diversity in Soil: Biological Tools for Abiotic Stress Management in Plants

  • Chapter
  • First Online:
Plant Biotic Interactions

Abstract

Soil is a dynamic and complex biological system comprising of various populations of microbes. These microorganisms enhance soil richness or fertility and water retention ability and have a major impact on the growth of the vegetation present on the ground. The range of diversity of microbes plays an essential role in improvement of soil quality that varies with depth, pH and horizons as well as soil health. Abiotic stresses comprising drought, salinity, high and low temperature and heavy metal (HM) toxicity are the principal restraining factors for microbial inhabitants and agricultural productivity. Several reports have indicated that inoculation of microbes in nutrient-deficient or stressed soil has significantly improved soil as well as plant health and established supportable way of agriculture. Microorganisms interact with plants and regulate systemic and local mechanisms to provide defence under adverse environmental conditions. Besides providing non-nutritional effects such as limiting soil erosion and detoxifying insecticides as well as pesticides, microbes also help in atmospheric nitrogen (N2) fixation; activation of antioxidants, phytohormones and osmolytes; solubilization of mineral phosphates; decomposition of organic wastes; regulation of gene expression; improvement of nutrient cycling and plant-water relation; etc. and assist the plant to survive under unfavourable conditions. In addition, use of harmonious multiple microbial associations (e.g. fungal and bacterial) provides several benefits and is a promising approach towards this direction. This review deals with the potential of soil and its inhabitant microbes to nurture plants, plant-microbe interactions and their roles in abiotic stress management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169:704–709

    Article  CAS  PubMed  Google Scholar 

  • Abd_Allah EF, Egamberdieva D (2016) Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak J Bot 48:37–45

    Google Scholar 

  • Abdel Latef A, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225

    Article  CAS  Google Scholar 

  • Ahanger MA, Akram NA, Ashraf M, Alyemeni MN, Wijaya L, Ahmad P (2017) Plant responses to environmental stresses—from gene to biotechnology. AoB Plants 9(4):plx025. https://doi.org/10.1093/aobpla/plx025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn C, Park U, Park PB (2011) Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 415:669–674

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals in fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. Strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Aliasgharzad N, Shirmohamadi E, Oustan S (2009) Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition. Soil Environ 28:119–123

    CAS  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  • Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol 11:75. https://doi.org/10.1186/1471-2229-11-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Kameoka H, Kyozuka J (2012) Strigolactone positively controls crown root elongation in rice. J Plant Growth Regul 31:165–172

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161

    Article  CAS  PubMed  Google Scholar 

  • Assumpção CF, Hermes VS, Pagno C, Castagna A, Mannucci A, Sgherri C, Pinzino C, Ranieri A, Hickmann Flôres S, de Oliveira RA (2018) Phenolic enrichment in apple skin following post-harvest fruit UV-B treatment. Postharvest Biol Technol 138:37–45

    Article  CAS  Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  CAS  PubMed  Google Scholar 

  • Ayalaja CF, Pedro A (2012) Stress response in microbiology. In: Reguena JM (ed) Caister Academic, Madrid

    Google Scholar 

  • Bach EM, Baer SG, Meyer CK, Six J (2010) Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem 42:2182–2191

    Article  CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bagheri V, Shamshiri MH, Shirani H, Roosta H (2012) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. JAST 14:1591–1604

    Google Scholar 

  • Bala A, Joshi N (2016) Role of bacteria in bio sorption of heavy metals. Int J Adv Res 4:416–424

    Article  CAS  Google Scholar 

  • Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981

    Article  CAS  Google Scholar 

  • Balsanelli E, de Baura VA, Pedrosa FD, de Souza EM, Monteiro RA (2014) Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS One 9:e110392. https://doi.org/10.1371/journal.pone.0110392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MG (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evolut 31:440–452

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia CR (2008) Role of microbial diversity for soil, health and plant nutrition. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Berlin, pp 53–74

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal (loid)s contaminated soils—to mobilize or to immobilize. J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Bompadre MJ, Silvani VA, Bidondo LF, Ríos de Molina MDC, Colombo RP, Pardo AG, Godeas AM (2014) Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions. Botany 92:187–193

    Article  CAS  Google Scholar 

  • Borowik A, Wyszkowska J (2016) Impact of temperature on the biological properties of soil. Int Agrophys 30:1–8

    Article  CAS  Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front of Plant Sci 6:547

    Article  Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Pulleman M et al (2018) Soil quality—a critical review. Soil Biol Biochem 120:105–125

    Article  CAS  Google Scholar 

  • Buscardo E, Geml J, Schmidt SK, Silva AL, Ramos RT, Barbosa SM, Andrade SS, Dalla Costa R, Souza AP, Freitas H, Cunha HB (2018) Of mammals and bacteria in a rainforest: temporal dynamics of soil bacteria in response to simulated N pulse from mammalian urine. Funct Ecol 32:773–784

    Article  Google Scholar 

  • Buyer JS, Teasdale JR, Roberts DP, Zasada IA, Maul JE (2010) Factors affecting soil microbial community structure in tomato cropping systems. Soil Biol Biochem 42:831–841

    Article  CAS  Google Scholar 

  • Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GE (2014) Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiol 166:2077–2090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229

    Article  CAS  Google Scholar 

  • Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P (2014) Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26:1134–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. MPMI 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—a review. Front Microbiol 6:780. https://doi.org/10.3389/fmicb.2015.00780

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Aust J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Chu D (2018) Effects of heavy metals on soil microbial community. In: IOP conference series: Environ Earth Sci 113(1):012009. IOP

    Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleason A (2006) Volatile organic compounds from microorganisms. Doctoral dissertation, Ph.D. thesis, Umeå University, Umeå

    Google Scholar 

  • Clúa J, Roda C, Zanetti ME, Blanco FA (2018) Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes 9:125

    Article  PubMed Central  CAS  Google Scholar 

  • Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F (2005) The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 Å resolution. J Mol Biol 347:121–134

    Article  CAS  PubMed  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365. https://doi.org/10.1111/j.1365-2672.2007.03366.x

    Article  CAS  PubMed  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  PubMed  Google Scholar 

  • Cornejo P, Seguel A, Aguilera P, Meier S, Larsen J, Borie F (2017) Arbuscular mycorrhizal fungi improve tolerance of agricultural plants to cope abiotic stress conditions. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 55–80

    Google Scholar 

  • Craine JM, Gelderman TM (2011) Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biol Biochem 43:455–457

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. https://doi.org/10.1186/1471-2229-11-163

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizospheric. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Chapter  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Varma A (2010) Role of enzymes in maintaining soil health. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, pp 25–42

    Chapter  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Davinic M, Fultz LM, Acosta-Martinez V, Calderon FJ, Cox SB, Dowd SE, Allen VG, Zak JC, Moore-Kucera J (2012) Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biol Biochem 46:63–72

    Article  CAS  Google Scholar 

  • De-la-Peña C, Badri DV, Lei Z, Watson BS, Brandão MM, Silva-Filho MC, Sumner LW, Vivanco JM (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285:30654–30665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desai S, Kumar GP, Amalraj LD, Bagyaraj DJ, Ashwin R (2016) Exploiting PGPR and AMF biodiversity for plant health management. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 145–160

    Chapter  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/fmicb.2017.02104

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C (2014) Soil fungal resources in annual cropping systems and their potential for management. BioMed Res Int. https://doi.org/10.1155/2014/531824

    Article  Google Scholar 

  • Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscissic acid and growth of micropropagated Chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan QJ, Liu JH (2012) Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31:145–154

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Fernández V, Ebert G, Winkelmann G (2005) The use of microbial siderophores for foliar iron application studies. Plant Soil 72:245–252

    Article  CAS  Google Scholar 

  • Fernández-Bidondo L, Silvani V, Colombo R, Pérgola M, Bompadre J, Godeas A (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Flouri F, Chatjipavdlidis C, Balis C (1990) Effect of olive oil mills liquid wastes on soil fertility. In: Reunion Znt, sobre: Tratamiento de alpechines. Cordoba, Spain

    Google Scholar 

  • Fontana A, Reichelt M, Hempel S, Gershenzon J, Unsicker SB (2009) The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol 35:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Friedlová M (2010) The influence of heavy metals on soil biological and chemical properties. Soil Water Res 5:21–27

    Article  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  PubMed  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale MR, Grigal DF, Harding RB (1991) Soil productivity index: predictions of site quality for white spruce plantations. Soil Sci Soc Am J 55:1701–1708

    Article  Google Scholar 

  • Garbeva PV, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I (2017) Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front microbiol 8:1966. https://doi.org/10.3389/fmicb.2017.01966

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg N, Aggarwal N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26

    Article  CAS  Google Scholar 

  • Garg N, Baher N (2013) Role of arbuscular mycorrhizal symbiosis in proline biosynthesis and metabolism of Cicer arietinum L.(chickpea) genotypes under salt stress. J Plant Growth Regul 32:767–778

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2016) Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma 253:1325–1345

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Chandel S (2012) Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. J Plant Growth Regul 31:292–308

    Article  CAS  Google Scholar 

  • Garg N, Geetanjali N (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68

    Article  CAS  Google Scholar 

  • Garg N, Kashyap L (2017) Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes. Environ Sci Pollut Res Int 24:18520–18535

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Kaur H (2013) Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36:67–90

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115. https://doi.org/10.1007/s00344-007-9038-z

    Article  CAS  Google Scholar 

  • Garg N, Singh S (2018) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63

    Article  CAS  Google Scholar 

  • Garg N, Singla R (2004) Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. BJPP 16:137–146

    Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80:5–22

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G, Kumar A (2014a) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105:289–305

    Article  PubMed  Google Scholar 

  • Garg N, Manchanda G, Singla P (2014b) Analysis of emergence stage facilitates the evaluation of chickpea (Cicer arietinum L.) genotypes for salinity tolerance imparted by mycorrhizal colonization. Acta Physiol Plant 36:2651–2669

    Article  CAS  Google Scholar 

  • Gauri SS, Mandal SM, Pati BR (2012) Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 95:331–338

    Article  CAS  PubMed  Google Scholar 

  • Gibson AH (1976) Recovery and compensation by nodulated legumes to environmental stress. In: Nutman PS (ed) Symbiotic nitrogen fixation. Cambridge University Press, Cambridge, pp 385–404

    Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Article  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151. https://doi.org/10.3389/fpls.2014.00151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roldan V, Roux C, Girard D, Bécard G, Puech V (2007) Strigolactones: promising plant signals. Plant Signal Behav 2:163–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500. https://doi.org/10.1080/23311932.2015.1127500

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Venkateswarlu B (2011) Role of microorganisms in adaptation of agricultural crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gube M (2016) Fungal molecular response to heavy metal stress. In: Hoffmeister D (ed) Biochemistry and molecular biology. Springer, Cham, pp 47–68

    Chapter  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214

    Article  CAS  Google Scholar 

  • Gururani MA, Upadhyaya CP, Strasser RJ, Yu JW, Park SW (2013a) Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Sci 198:7–16

    Article  CAS  PubMed  Google Scholar 

  • Gururani MA, Upadhyaya CP, Upadhyaya CP, Baskar B, Venkatesh J, Nookaraju A, Park SW (2013b) Plant growth promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    Article  CAS  PubMed  Google Scholar 

  • Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Hammer EC, Rillig MC (2011) The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus-salinity increases glomalin content. PLoS One 6:e28426. https://doi.org/10.1371/journal.pone.0028426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Harris RF (1981) Effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR, Elliott LF (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, WI, pp 23–96

    Google Scholar 

  • Hartmann FE, Vallet AS, McDonald BA, Croll D (2017) A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J 11:1189–1204. https://doi.org/10.1038/15mej.2016.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haselwandter K (2008) Structure and function of siderophores produced by mycorrhizal fungi. Miner Mag 72:61–64

    Article  CAS  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 19(7):1089

    Google Scholar 

  • Hassen AI, Bopape FL, Sanger LK (2016) Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 23–36

    Google Scholar 

  • Hassink J (1994) Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in Dutch grassland soils. Soil Biol Biochem 26:1573–1581

    Article  CAS  Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric 11:57–61

    Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6:6–11

    Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, García Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter bessonderer Berücksichtigung der Gründung und Brache. Arb Dtsch Landwirtsch Ges Berl 98:59–78

    Google Scholar 

  • Hirsch AM, Fujishige NA (2012) Molecular signals and receptors: communication between nitrogen-fixing bacteria and their plant hosts. In: Witzany G, Baluška F (eds) Biocommunication of plants. Springer, Berlin, pp 255–280

    Chapter  Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmer R, Rutten L, Kohlen W, van Velzen R, Geurts R (2017) Commonalities in symbiotic plant-microbe signalling. Adv Bot Res 82:187–221

    Article  Google Scholar 

  • Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Soil Sci Plant Nutr 168:541–549

    Article  CAS  Google Scholar 

  • Huang SH, Bing P, Yang ZH, Chai LY, Zhou LC (2009) Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. T Nonferr Metal Soc 19:241–248

    Article  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Ibaraki Y (2008) Evaluation of photosynthetic capacity in micropropagated plants by image analysis. In: Dutta Gupta S, Ibaraki Y (eds) Plan tissue culture engineering. Springer, Dordrecht, pp 15–29

    Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768. https://doi.org/10.3389/fpls.2017.01768

    Article  PubMed  PubMed Central  Google Scholar 

  • Ilyas N, Bano A (2012) Potential use of soil microbial community in agriculture. In: Bacteria in agrobiology: plant probiotics, 1st edn. Springer, Berlin, pp 45–64

    Chapter  Google Scholar 

  • İpek M, Eşitken A (2017) The actions of PGPR on micronutrient availability in soil and plant under calcareous soil conditions: an evaluation over Fe nutrition. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 81–100

    Google Scholar 

  • Jafari TH, Ðurić S (2012) Inoculation of maize hybrids: the effect on grain yield and number of microorganisms in soil. In: International conference on bioscience: biotechnology and biodiversity, pp 401–415

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf B Biointerfaces 60:201–206

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Panneerselvam R (2008) Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. C R Biol 331:272–277

    Article  PubMed  CAS  Google Scholar 

  • Janoušková M, Pavlíková D, Vosátka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65:1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, Bornman JF (2012) UV-B radiation: from generic stressor to specific regulator. Physiol Plant 145:501–504

    Article  CAS  PubMed  Google Scholar 

  • Järvan M, Edesi L, Adamson A, Võsa T (2014) Soil microbial communities and dehydrogenase activity depending on farming systems. Plant Soil Environ 60:459–463

    Article  Google Scholar 

  • Jayachandran K, Hetrick BAD, Schwab AP (1989) Mycorrhizal mediation of phosphorus availability: synthetic iron chelate effects on phosphorus solubilization. Soil Sci Soc Am J 53:1701–1706

    Article  CAS  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2013) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113:7–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaci Y, Heyraud A, Barakat M, Heulin T (2005) Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol 156:522–531

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20

    Article  CAS  Google Scholar 

  • Kaur H, Garg N (2017) Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants. J Plant Growth Regul:1–14

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric For 31:355–362

    CAS  Google Scholar 

  • Kodaira H (2014) Responding to climate change and expectations for research. Paddy Water Environ 12:211–212

    Article  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  PubMed  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11:e0152478. https://doi.org/10.1371/journal.pone.0152478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Dames JF, Gupta A, Sharma S, Gilbert JA, Ahmad P (2015) Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Crit Rev Biotechnol 35:461–474

    Article  PubMed  CAS  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  • Latge JP (2017) Immune evasion: face changing in the fungal opera. Nat Microbiol 2:16266–16269

    Article  CAS  PubMed  Google Scholar 

  • Lecomte J, St-Arnaud M, Hijri M (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microb Lett 317:43–51

    Article  CAS  Google Scholar 

  • Lehmann KDS, Goldman BW, Dworkin I, Bryson DM, Wagner AP (2014) From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator–prey system. PLoS One 9:e91783. https://doi.org/10.1371/journal.pone.0091783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnert M (2013) The soil temperature regime in the urban and suburban landscapes of olomoric. Czech Repub MGR 21:27–36

    Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Chen BD (2013) Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance. Plant Signal Behav 8:e24030. https://doi.org/10.4161/psb.24030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liptzin D, Silver WL, Detto M (2011) Temporal dynamics in soil oxygen and greenhouse gases in two humid tropical forests. Ecosystems 14:171–182

    Article  CAS  Google Scholar 

  • Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL (2002) Concentrations of K, Ca, and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82:271–278

    Article  CAS  Google Scholar 

  • Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS One 10:e0128824. https://doi.org/10.1371/journal.pone.0128824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YR, Delgado-Baquerizo M, Trivedi P, He JZ, Wang JT, Singh BK (2017) Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biol Biochem 107:208–217

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Fu X, Yang Y, Cai P, Peng S, Chen W, Huang Q (2016) Microbial communities play important roles in modulating paddy soil fertility. Sci Rep 6:20326. https://doi.org/10.1038/srep20326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosyst 145:88–97

    Article  Google Scholar 

  • Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291

    Article  CAS  PubMed  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36

    Article  Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • McLellan CA, Turbyville TJ, Wijeratne EK, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AL (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena H, Ahmed MA, Prakash P (2015) Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Biosci Biotechno Res 8(2):171–174

    Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Meliani A, Bensoltane A, Mederbel K (2012) Microbial diversity and abundance in soil: related to plant and soil type. Am J Plant Nutr Fertil Technol 2:10–18

    Article  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    Article  CAS  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706. https://doi.org/10.3389/fmicb.2017.01706

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462

    Article  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mummey DL, Stahl PD (2004) Analysis of soil whole-and inner-microaggregate bacterial communities. Microb Ecol 48:41–50

    Article  CAS  PubMed  Google Scholar 

  • Nakajima A, Tsuruta T (2004) Competitive biosorption of thorium and uranium by Micrococcus luteus. J Radioanal Nucl Chem 260:13–18

    Article  CAS  Google Scholar 

  • Nambiar EKS (1997) Sustained productivity of forests as a continuing challenge to soil science. Soil Sci Soc Am J 60:1629–1642

    Article  Google Scholar 

  • Neumann E, George E (2010) Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 137–167

    Chapter  Google Scholar 

  • Nielsen MN, Winding A, Binnerup S (2002) Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark

    Google Scholar 

  • Niu SQ, Li HR, Paré PW, Aziz M, Wang SM, Shi H, Li J, Han QQ, Guo SQ, Li J, Guo Q (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217–230

    Article  CAS  Google Scholar 

  • Normile D (2008) Agricultural research. Reinventing rice to feed the world. Science 321:330–333

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576

    Article  CAS  PubMed  Google Scholar 

  • Onwuka B, Mang B (2018) Effects of soil temperature on some soil properties and plant growth. Adv Plants Agric Res 8(1):00288. https://doi.org/10.15406/apar.2018.08.00288

    Article  Google Scholar 

  • Pandey R, Garg N (2017) High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza 27:669–682

    Article  PubMed  Google Scholar 

  • Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7:434

    PubMed  PubMed Central  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    Article  CAS  Google Scholar 

  • Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R, Hause B, Ruiz-Lozano JM (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Pinedo I, Ledger T, Greve M, Poupin MJ (2015) Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front Plant Sci 6:466. https://doi.org/10.3389/fpls.2015.00466

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinter IF, Salomon MV, Berli F, Bottini R, Piccoli P (2017) Characterization of the As (III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl Soil Ecol 109:60–68

    Article  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2007) A gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Environ Exp Bot 60:251–256

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684

    Article  CAS  PubMed  Google Scholar 

  • Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CABI, Wallingford, pp 261–292

    Chapter  Google Scholar 

  • Qiu H, Ge T, Liu J, Chen X, Hu Y, Wu J, Su Y, Kuzyakov Y (2018) Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling analysis. Eur J Soil Biol 84:27–34

    Article  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. MPMI 11:144–152

    Article  CAS  Google Scholar 

  • Radzki W, Mañero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Leeuwenhoek 104:321–330

    Article  CAS  PubMed  Google Scholar 

  • Raineri J, Ribichich KF, Chan RL (2015) The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Rep 34:2065–2080

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy K, Joe MM, Kim KY, Lee SM, Shagol C, Rangasamy A, Chung JB, Islam MR, Sa TM (2011) Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for sustainable agricultural production. Korean J Soil Sci Fertil 44:637–649

    Article  Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. New York, Springer, pp 21–42

    Chapter  Google Scholar 

  • Razavi BS, Blagodatskaya E, Kuzyakov Y (2016) Temperature selects for static soil enzyme systems to maintain high catalytic efficiency. Soil Biol Biochem 97:15–22

    Article  CAS  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Rinaudi LV, González JE (2009) The low-molecular weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol 191:7216–7224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59

    Article  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti Cei F (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  • Rosier A, Bishnoi U, Lakshmanan V, Sherrier DJ, Bais HP (2016) A perspective on inter-kingdom signaling in plant-beneficial microbe interactions. Plant Mol Biol 90:537–548

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Smith AR, Jones DL (2013) Investigating the long-term legacy of drought on the soil microbial community across five European shrubland ecosystems. Global Change Biol 19:3872–3884

    Article  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Cho H, Choi D, Hwang I (2012) Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 34:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Karimi E, Dahazi PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil condition. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Saeed W, Naseem S, Ali Z (2017) Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front Plant Sci 8:1487. https://doi.org/10.3389/fpls.2017.01487

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Reinhold-Hurek B (2014) Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72. PLoS One 9:e86527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, Geng M, Hussain S (2015) Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicol Environ Saf 122:528–536

    Article  CAS  PubMed  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhizae 15:539–545

    Article  CAS  Google Scholar 

  • Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL, Flematti GR (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg Med Chem Lett 22:3743–3746

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bompadre MJ, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922

    Article  CAS  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel KH (2011) N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Schmidt R, Cordovez V, De Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9:2329. https://doi.org/10.1038/ismej.2015.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J (2013) The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10:3983–3996

    Article  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    Article  CAS  Google Scholar 

  • Seneviratne M, Seneviratne G, Madawala HM, Vithanage M (2017) Role of rhizospheric microbes in heavy metal uptake by plants. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability. Springer, Cham, pp 147–163

    Chapter  Google Scholar 

  • Seto Y, Yamaguchi S (2014) Strigolactone biosynthesis and perception. Curr Opin Plant Biol 21:1–6

    Article  CAS  PubMed  Google Scholar 

  • Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma N, Deswal R (2005) The molecular biology of the low-temperature response in plants. BioEssays 27:1048–1059

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59:89–94

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    Article  PubMed  Google Scholar 

  • Sigel A, Sigel H (1998) Iron transport and storage in microorganisms, plants, and animals, vol 35. Marcel Dekker, New York. ISBN: 0824799844

    Google Scholar 

  • Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Plant 38:110. https://doi.org/10.1007/s11738-016-2123-9

    Article  CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937. https://doi.org/10.3389/fmicb.2015.00937

    Article  PubMed  PubMed Central  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7. https://doi.org/10.1186/1475-2859-5-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Li J (2014) Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol 21:23–29

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Smith DL, Subramanian S, Lamont JR, Bywater-Ekegärd M (2015a) Signaling in the phytomicrobiome: breadth and potential. Front Plant Sci 6:709. https://doi.org/10.3389/fpls.2015.00709

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI (2015b) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1:665–685

    Article  CAS  Google Scholar 

  • Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11:1259–1266

    Article  CAS  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94

    Article  CAS  PubMed  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  • Stotzky G (1997) Soil as an Environment for Microbial Life. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Subramanian KS, Balakrishnan N, Senthil N (2013) Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Aust J Crop Sci 7:900

    CAS  Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Article  Google Scholar 

  • Sun XG, Tang M (2013) Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S Afr J Bot 88:373–379

    Article  CAS  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Xu G (2014) Strigolactones are involved in phosphate-and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh CK, Bagyaraj DJ (2002) Arbuscular mycorrhizae: interactions in plants, rhizosphere and soils. Oxford and IBH, New Delhi, pp 7–28

    Google Scholar 

  • Suseela V, Tharayil N, Xing B, Dukes JS (2013) Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytol 200:122–133

    Article  CAS  PubMed  Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2013) Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiol Plant 35:2601–2610

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exper Bot 98:20–31

    Article  CAS  Google Scholar 

  • Taniguchi H, Wendisch VF (2015) Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 6:740. https://doi.org/10.3389/fmicb.2015.00740

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorn RM, Reynolds DM, Greenman J (2011) Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 84:258–264

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:1–13

    Article  CAS  Google Scholar 

  • Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int. https://doi.org/10.1155/2015/132635

    Article  CAS  Google Scholar 

  • Turnau K, Kottke I (2005) Fungal activity as determined by microscale methods with special emphasis on interactions with heavy metals. In: Dighton J, White JF (eds) The fungal community. CRC, Boca Raton, pp 287–305

    Chapter  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exper Bot 117:28–40

    Article  CAS  Google Scholar 

  • Upreti KK, Bhatt RM, Panneerselvam P, Varalakshmi LR (2016) Morpho-physiological responses of grape rootstock ‘Dogridge’ to arbuscular mycorrhizal fungi inoculation under salinity stress. Int J Plant Sci 16:191–209

    Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266

    Article  CAS  PubMed  Google Scholar 

  • Vodnik D, Grčman H, Maček I, van Elteren JT, Kovačevič M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    Article  CAS  PubMed  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-patho-genic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Wang X, Li W, Li M, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126:90–96

    Article  CAS  Google Scholar 

  • Wani SH, Singh NB, Devi TR, Haribhushan A, Jeberson SM, Malik CP (2013) Engineering abiotic stress tolerance in plants: extricating regulatory gene complex. In: Malik CP, Sanghera GS, Wani SH (eds) Conventional and non-conventional interventions in crop improvement. CABI, New Delhi, pp 1–19

    Google Scholar 

  • Warkentin BP (1995) The changing concept of soil quality. J Soil Water Conserv 50:226–228

    Google Scholar 

  • White PJ (2003) Ion transport. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic, London, pp 625–634

    Chapter  Google Scholar 

  • Wu QS, Zou YN (2017) Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In: Wu Q-S (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 25–41

    Chapter  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Google Scholar 

  • Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regu 68:27–35

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Xie CM, Wei W, Sun Y (2013) Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics 40:97–106

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and Bermuda grass genetic variation. Front Plant Sci 7:755. https://doi.org/10.3389/fpls.2016.00755

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10:e0145726. https://doi.org/10.1371/journal.pone.0145726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen SE (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43:632–642

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Liu Q (2007) Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply. Physiol Plant 129:364–374

    Article  CAS  Google Scholar 

  • Ye S, Yanga Y, Xin G, Wang Y, Ruan L, Ye G (2015) Studies of the Italian ryegrass–rice rotation system in southern China: arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium multiflorum L. rhizosphere. Appl Soil Ecol 90:26–34

    Article  Google Scholar 

  • Yin N, Zhang Z, Wang L, Qian K (2016) Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ Sci Pollut Res 23:17840–17849

    Article  CAS  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Yooyongwech S, Phaukinsang N, Cha-um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293

    Article  CAS  Google Scholar 

  • Young IM, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Tillage Res 53:201–213

    Article  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45. https://doi.org/10.1007/s11104-009-0076-0

    Article  CAS  Google Scholar 

  • Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y, Kang Y, Hou L, De Waal PW, Li S, Jiang Y, Scaffidi A (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25:1219–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17:976. https://doi.org/10.3390/ijms17060976

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India and University Grants Commission (UGC) for financial assistance in carrying out related research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garg, N., Saroy, K., Cheema, A., Bisht, A. (2019). Microbial Diversity in Soil: Biological Tools for Abiotic Stress Management in Plants. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_17

Download citation

Publish with us

Policies and ethics