Skip to main content

Advanced Controlled Nanopesticide Delivery Systems for Managing Insect Pests

  • Chapter
  • First Online:
Controlled Release of Pesticides for Sustainable Agriculture

Abstract

The need to produce food in sufficient quantities for supplying to the growing population has resulted in the development of a wide range of new technologies. There is always a loss of crops due to pests and, therefore, pesticides have become an essential part of the agricultural system to prevent crop loss. In recent past, a variety of pesticides as organochlorines, organophosphates, carbamates, and pyrethroids have been developed to combat the insect pests, however, conventional methods of using pesticides have severe adverse effects such as reduction in the agricultural yield and undesirable health effects on human and the environment by various processes of degradation of pesticides which results in less than 0.1% of the applied pesticides to be used as active part to kill the target pests. In recent years, advanced nano-controlled delivery systems have been developed for agrochemicals based on biodegradable polymers to maintain optimal pesticide concentrations, protect and stabilize the pesticides and reduce the frequency of administration. This chapter presents an overview of the nanoformulations used as systems for controlled release of pesticides and concentrates on the modern strategies adopted for the delivery of pesticides and their limitations and potential in achieving sustainable agriculture management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sopena F, Maqueda C, Morillo E (2009) Controlled release formulations of herbicides based on micro-encapsulation. Cien Inv Agr 35:27–42

    Google Scholar 

  2. Moros J, Armenta S, Garrigues S, Guardia M (2007) Comparison of two vibrational procedures for the direct determination of mancozeb in agrochemicals. Talanta 72:72

    Article  CAS  Google Scholar 

  3. Pretty JN, Morison JIL, Hine RE (2003) Reducing food poverty by increasing agricultural sustainability in developing countries. Agr Ecosyst Environ 95:217–234

    Article  Google Scholar 

  4. Bajpai AK, Giri A (2002) Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 53:125

    Article  CAS  Google Scholar 

  5. Ali D, Nagpurea NS, Kumar S, Kumar R, Kushwaha B, Lakra WS (2009) Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem Toxicol 47:650

    Article  CAS  Google Scholar 

  6. Singh B, Sharma DK, Dhiman A (2013) Environment friendly agar and alginate-based thiram delivery system. Toxicol Environ Chem 95:567–578

    Article  CAS  Google Scholar 

  7. Ahmed RZ, Siddiqui K, Arman M, Ahmed N (2012) Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr Polym 90:441–446

    Article  CAS  Google Scholar 

  8. Campos EVR, de Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6:373–387

    Article  CAS  Google Scholar 

  9. Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    Article  CAS  Google Scholar 

  10. Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110

    Article  Google Scholar 

  11. Carter AD (2000) Herbicide movement in soils: principles, pathways and processes. Weed Res 40:113–122

    Article  CAS  Google Scholar 

  12. Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    Article  CAS  Google Scholar 

  13. Swinnen JFM, de Gorter H, Rausser GC, Banerjee AN (2002) The political economy of public research investment and commodity policies in agriculture: an empirical study. Agric Econ 22:111–122

    Article  Google Scholar 

  14. Lin PC, Lin HJ, Liao YY, Guo HR, Chen KT (2013) Acute poisoning with neonicotinoid insecticides: a case report and literature review. Basic Clin Pharmacol Toxicol 112:282–286

    Article  CAS  Google Scholar 

  15. Akar E, Altinisik A, Seki Y (2012) Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym 90:1634–1641

    Article  CAS  Google Scholar 

  16. Chowdhury MA (2014) The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. Int J Biol Macromol 65:136–147

    Article  CAS  Google Scholar 

  17. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–127

    Article  Google Scholar 

  18. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  Google Scholar 

  19. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    Article  CAS  Google Scholar 

  20. NICNAS Information Sheet (2006) Australian Government Department of Health and Aging, September

    Google Scholar 

  21. Whatmore RW (2006) Nanotechnology—what is it? Should we be worried. Occup Med 56:295–299

    Article  Google Scholar 

  22. ISO (2004) Occupational ultrafine aerosol exposure characterization, assessment. Draft technical report number 6. ISO/TC146/SC2WG1 particle size selective sampling and analysis (workplace air quality)

    Google Scholar 

  23. Wigginton NS, Rosso KM, Lower BH, Shi L, Hochella MF Jr (2007) Electron tunneling properties of outer-membrane decaheme cytochromes from Shewanella oneidensis. Geochim Cosmochim Acta 71:543–555

    Article  CAS  Google Scholar 

  24. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    Article  CAS  Google Scholar 

  25. Brandl MA, Schumann M, Przyklenk M, Patel A, Vidal S (2016) Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J Pest Sci 1–15

    Google Scholar 

  26. Rogge SA, Mayerhofer J, Enkerli J, Bacher S, Grabenweger G (2017) Preventive application of an entomopathogenic fungus in cover crops for wireworm control. Biocontrol 62(5):613–623

    Article  Google Scholar 

  27. European Food Safety Authority (2012) Conclusion on the peer review of the pesticide risk assessment of the active substance Metarhizium anisopliae var. anisopliae BIPESCO5/F52. EFSA J 10:2498–2542

    Google Scholar 

  28. Saborío HU, Carballo CM, Sandoval J, José R, Baudrit V, Morales AR (2017) Encapsulation of bacterial metabolic infiltrates isolated from different Bacillus strains in chitosan nanoparticles as potential green chemistry-based biocontrol agents against Radopholus similis. J Renew Mater 5:290–299

    Article  Google Scholar 

  29. Carvalho FP (2017) Pesticides, environment, and food safety. Pest Environ Food Saf 6:48–60

    Google Scholar 

  30. Melo CA, Oliveira LK, Goveia D, Fraceto LF, Rosa AH (2014) Enrichment of tropical peat with micronutrients for agricultural applications: evaluation of adsorption and desorption processes. J Braz Chem Soc 25:36–49

    CAS  Google Scholar 

  31. Dourado Junior SM, Nunes ES, Marques RP, Rossino LS, Quites FJ, Siqueira JR Jr, Moreto JA (2017) Controlled release behavior of sulfentrazone herbicide encapsulated in Ca-ALG microparticles: preparation, characterization, mathematical modeling and release tests in field trial weed control. J Mater Sci 52(16):9491–9507

    Article  CAS  Google Scholar 

  32. Nair R, Hanna S, Baiju V, Nair G, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  33. Kanhed P et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  34. Tabata J, Ikada Y (1989) Protein precoating of polylactide microspheres containing a lipophilic immunopotentiator for enhancement of macrophage phagocytosis and activation. Pharm Res 6:296–301

    Article  CAS  Google Scholar 

  35. Bodmeier R, Chen H (1990) Indomethacin polymeric nanosuspensions prepared by microfujidization. J Control Release 12:223–233

    Article  CAS  Google Scholar 

  36. Landry FB, Bazile DV, Spenlehauer G, Veillard M (1996) Influence of coating agents on the degradation of poly(D, L-lactic acid) nanoparticles in model digestive fluids. STP Pharma Sci 6:195–202

    CAS  Google Scholar 

  37. Gurny R, Peppas NA, Harrington DD, Banker GS (1981) Development of biodegradable and injectable latices for controlled release of potent drugs. Ind Pharm 7:1–25

    Article  CAS  Google Scholar 

  38. Jaiswal J, Gupta SK, Kreuter J (2004) Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J Control Release 96:169–178

    Article  CAS  Google Scholar 

  39. Saanchez A, Vila Jato JL, Alonso MJ (1993) Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporin A. Int J Pharm 99:263–273

    Article  Google Scholar 

  40. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:143–146

    Article  Google Scholar 

  41. Sunitha S, Amareshwar P, Kumar S (2010) Preparation and characterization of ondansetron hydrochloride microspheres using various cellulose polymers. Int J Curr Pharm Res 2:44–49

    CAS  Google Scholar 

  42. Palmieri GF, Bonacucina G, Di Martino P, Martelli S (2001) Spray-drying as a method for microparticulate controlled release systems preparation: advantages and limits. I. Water-soluble drugs. Drug Dev Ind Pharm 27(3):195–204

    Article  CAS  Google Scholar 

  43. Chu M, Zhu SQ, Li HM, Huang ZB, Li SQ (2006) Synthesis of poly(acrylic acid)/sodium humate superabsorbent composite for agricultural use. J Appl Polym Sci 102:5137–5143

    Article  CAS  Google Scholar 

  44. Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a review. Am J Agric Biol Sci 3:299–314

    Article  Google Scholar 

  45. Kamat M, Malkani R (2003) Disposable diapers: a hygienic alternative. Indian J Pediatr 70:879–881

    Article  Google Scholar 

  46. Kosemund K, Schlatter H, Ochsenhirt JL, Krause EL, Marsman DS, Erasala GN (2009) Safety evaluation of superabsorbent baby diapers. Regul Toxicol Pharmacol 53:81–89

    Article  CAS  Google Scholar 

  47. Kasgoz H, Durmus AZ, Kasgoz A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19:213–220

    Article  CAS  Google Scholar 

  48. Wang YQ, Zhang HF, Wu YP, Yang J, Zhang LQ (2005) Preparation and properties of natural rubber/rectorite nanocomposites. Eur Polym J 41:2776–2783

    Article  CAS  Google Scholar 

  49. Sadeghi M, Hosseinzadeh HJ (2008) Synthesis of starch—poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23:381–404

    Article  CAS  Google Scholar 

  50. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in green the 21st century materials word. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  51. Pourjavadi A, Hosseinzadeh H, Sadeghi M (2007) Synthesis, characterization and swelling behavior of gelatin-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J Compos Mater 41:2057–2069

    Article  CAS  Google Scholar 

  52. Yoshimura T, Uchikoshi I, Yoshiura Y, Fujioka R (2005) Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride. Carbohydr Polym 61:322–326

    Article  CAS  Google Scholar 

  53. Zhang JP, Wang Q, Wang AQ (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68:367–374

    Article  CAS  Google Scholar 

  54. Aries JL (2008) Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 13:2340–2369

    Article  CAS  Google Scholar 

  55. Racovita S, Vasiliu S, Popa M, Lucab C (2009) Polysaccharides based on micro- and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Rev Roum Chim 54:709–718

    CAS  Google Scholar 

  56. Couvreur P, Gref R, Andrieux K, Malvy C (2006) Nanotechnologies for drug delivery: application to cancer and autoimmune diseases. Prog Solid State Chem 34:231–235

    Article  CAS  Google Scholar 

  57. Grillo R, Rosa AH, Fraceto LF (2014) Poly(e-caprolactone) nanocapsules carrying the herbicide atrazine: effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. Int J Environ Sci Technol 11:1691–1700

    Article  CAS  Google Scholar 

  58. Pyun J (2007) Nanocomposite materials from functional polymers and magnetic colloids. Polym Rev 47:231–263

    Article  CAS  Google Scholar 

  59. Xu C, Ohno K, Ladmiral V, Composto RJ (2008) Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49:3568–3577

    Article  CAS  Google Scholar 

  60. Allemann E, Leroux JC, Gurny R, Doelker E (1993) In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res 10:1732

    Article  CAS  Google Scholar 

  61. Flores-Cespedes F, Figueredo-Flores CI, Daza-Fernandez I, Vidal-Pena F, Villafranca-Sanchez M, Fernandez-Perez M (2012) Preparation and characterization of imidacloprid lignin-polyethylene glycol matrices coated with ethylcellulose. J Agric Food Chem 60:1042–1051

    Article  CAS  Google Scholar 

  62. http://www.springer.com/978-1-4471-4212-6

  63. Roy A, Bajpai AK, Bajpai J (2009) Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76:222–229

    Article  CAS  Google Scholar 

  64. Roy A, Bajpai AK, Bajpai J (2009) Designing swellable beads of alginate and gelatin for controlled release of pesticide (cypermethrin). J Macromol Sci Res Part A Pure Appl Chem 46:847–859

    Article  CAS  Google Scholar 

  65. Wang HQ, Nann T (2009) Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3:3804–3808

    Article  CAS  Google Scholar 

  66. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  67. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333–1383

    Article  CAS  Google Scholar 

  68. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  69. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  70. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  71. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854

    Article  CAS  Google Scholar 

  72. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 38:481–494

    Article  CAS  Google Scholar 

  73. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2

    Article  CAS  Google Scholar 

  74. John AB (2009) Metallic nanoparticles. Elsevier

    Google Scholar 

  75. Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4(4):297–305

    Article  CAS  Google Scholar 

  76. Forssen E, Willis M (1998) Ligand-targeted liposomes. Adv Drug Deliv Rev 29(3):249–271

    Article  CAS  Google Scholar 

  77. Allouche J, Chanéac C, Brayner R (2014) Design of magnetic gelatine/silica nanocomposites by nanoemulsification: encapsulation versus in situ growth of iron oxide colloids. Nanomaterials 4:612–627

    Article  CAS  Google Scholar 

  78. Taze PT, John S, Dennis Mark B (2015) Iron-filled multiwalled carbon nanotubes surface-functionalized with paramagnetic Gd (III): a candidate dual-functioning MRI contrast agent and magnetic hyperthermia structure. Carbon 87:226–232

    Article  CAS  Google Scholar 

  79. Nuraje N, Su K (2013) Perovskite ferroelectric nanomaterials. Nanoscale 2013(5):8752–8780

    Article  CAS  Google Scholar 

  80. Agarwal T, Gupta KAS, Alam S, Zaidi MGH (2012) Fabrication and characterization of iron oxide filled polyvinyl pyrrolidone nanocomposites. Int J Compos Mater 2:17–21

    CAS  Google Scholar 

  81. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  CAS  Google Scholar 

  82. Tefft J, Friend DR (1993) Controlled release herbicide formulations based on polymeric microspheres. J Control Release 27:27–35

    Article  CAS  Google Scholar 

  83. Raloff J (2007) Common pesticide clobbers amphibians. Sci News 154:10–150

    Google Scholar 

  84. Yang L, Yang Y, Chena Z, Guoc C, Li S (2014) Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol Eng 62:27–32

    Article  Google Scholar 

  85. Crawford SL, Fiedler ER (1992) Childhood physical and sexual abuse and failure to complete military basic training. Mil Med 157(12):645–648

    Article  CAS  Google Scholar 

  86. Hodgson E, Levi PE (1996) Pesticides: an important but underused model for the environmental health sciences. Environ Health Perspect 104(1):97–106

    CAS  Google Scholar 

  87. Daly HV, Doyen JT, Purcell AH (1998) Introduction to insect biology and diversity, 2nd edn. Oxford University Press, pp 279–300

    Google Scholar 

  88. Godish T (2000) Indoor environment quality. CRC Press, pp 325–326

    Google Scholar 

  89. Sarisozen C, Vural I, Levchenko T, Hincal A, Torchilin VP (2012) PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells. Drug Deliv 19(4):169–176

    Article  CAS  Google Scholar 

  90. Chena Y, Lo CL, Lin YF, Hsiue GH (2013) Rapamycin encapsulated in dual-responsive micelles for cancer therapy. Biomaterials 34:1115–1127

    Article  CAS  Google Scholar 

  91. Rezaei SJT, Amani V, Nabid MR, Safari N, Niknejad H (2015) Folate-decorated redox/pH dual-responsive degradable prodrug micelles for tumor triggered targeted drug delivery. Polym Chem 6:2844–2853

    Article  Google Scholar 

  92. Wu H, Zhua L, Torchilin V (2013) pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 34:1213–1222

    Article  CAS  Google Scholar 

  93. Kenawy ER, Sherrington DC, Akelah A (1992) Controlled release of agrochemical molecules chemically bound to polymers. Eur Polym J 28:841–862

    Article  CAS  Google Scholar 

  94. Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113

    Article  CAS  Google Scholar 

  95. Zhang W, He S, Liu Y, Geng Q, Ding G, Guo M, Deng Y, Zhu J, Li J, Cao Y (2014) Preparation and characterization of novel functionalized prochloraz microcapsules using silica–alginate–elements as controlled release carrier materials. ACS Appl Mater Interfaces 6:11783–11790

    Article  CAS  Google Scholar 

  96. Akelah A, Kenawy ER, Sherrington DL (1992) Agricultural polymers with herbicide/fertilizer function—III. Polyureas and poly(Schiff base)s based systems. Eur Polym J 29:1041–1045

    Article  Google Scholar 

  97. Kenawy ER, Akelah A, Sherrington DC (1992) Agricultural polymers with herbicide/fertilizer function—II. Glutarate-based systems. Eur Polym J 28:615–621

    Article  CAS  Google Scholar 

  98. Gao JH, Xu B (2009) Application of nanomaterials inside cells. Nano Today 4:37–51

    Article  CAS  Google Scholar 

  99. Galaev IY, Mattiasson B (1999) ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17:335–340

    Article  CAS  Google Scholar 

  100. Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7:479–495

    Article  CAS  Google Scholar 

  101. Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  Google Scholar 

  102. Batzill M, Diebold M (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  103. Kilic C, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88:95–501

    Article  CAS  Google Scholar 

  104. Fang LM, Zu XT, Li ZJ, Zhu S, Liu CM, Zhou WL, Wang LM (2008) Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol–gel-calcination or sol–gel-hydrothermal route. J Alloys Compd 454:261–267

    Article  CAS  Google Scholar 

  105. Janko C, Stephan Dürr S, Luis EM, Stefan Lyer S, Chaurio R, Rainer Tietze R, Löhneysen SV, Schorn C, Herrmann M, Alexiou C (2013) Magnetic drug targeting reduces the chemotherapeutic burden on circulating leukocytes. Int J Mol Sci 14:7341–7355

    Article  CAS  Google Scholar 

  106. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nano Res Lett 7:144

    Article  CAS  Google Scholar 

  107. Zhang XJ, Jiang W, Li FS, Sun ZD, Ou’yang Z (2010) Controllable preparation of magnetic polymer nanospheres with high saturation magnetization by miniemulsion polymerization. Mater Lett 64:119–121

    Article  CAS  Google Scholar 

  108. Rahimi M, Yousef M, Cheng Y, Meletis EI, Eberhart RC (2009) Formulation and characterization of covalently coated magnetic nanogel. J Nanosci Nanotechnol 9:4128–4134

    Article  CAS  Google Scholar 

  109. Thorek DLJ, Chen A, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38

    Article  Google Scholar 

  110. Batlle X, Labarta A (2002) TOPICAL REVIEW: finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:15–42

    Article  Google Scholar 

  111. El Bahri Z, Taverdet J-L (2007) Elaboration and characterisation of microparticles by pesticide model. Powder Technol 172:30–40

    Article  CAS  Google Scholar 

  112. Bodmeier R, Oh KH, Pramar T (1989) Preparation and evaluation of drug-containing chitosan beads. Drug Dev Ind Pharm 15:1475–1494

    Article  CAS  Google Scholar 

  113. Yurdasiper A, Sevgi F (2010) An overview of modified release chitosan, alginate and eudragit RS microparticles. J Chem Pharm Res 2:704–721

    CAS  Google Scholar 

  114. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  115. Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73:121–136

    Article  CAS  Google Scholar 

  116. Cappello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, Whitledge JR, Xia Z, Burman D, Aukerman L, Stedronsky ER (1998) In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Control Release 53:105–117

    Article  CAS  Google Scholar 

  117. Beasley ML, Collins RL (1970) Water-degradable polymers for controlled release of herbicides and other agents. Science 169:769–770

    Article  CAS  Google Scholar 

  118. Cauchetier E, Deniau M, Fessi H, Astier A, Paul M (2003) Atovaquone-loaded nanocapsules: influence of the nature of the polymer on their in vitro characteristics. Int J Pharm 250:273–281

    Article  CAS  Google Scholar 

  119. Colombo P (1993) Swelling-controlled release in hydrogel matrices for oral route. Adv Drug Deliv Rev 11(1–2):37–57

    Article  CAS  Google Scholar 

  120. Herrlich S, Spieth S, Messner S, Zengerle R (2012) Osmotic micropumps for drug delivery. Adv Drug Deliv Rev 64:1617–1627

    Article  CAS  Google Scholar 

  121. Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  CAS  Google Scholar 

  122. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  123. Lee SH, Mok H, Lee Y, Park TG (2011) Self-assembled siRNA–PLGA conjugate micelles for gene silencing. J Control Release 152:152–158

    Article  CAS  Google Scholar 

  124. Burkersroda FV, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231

    Article  Google Scholar 

  125. Razavilar N, Choi P (2013) In-vitro modeling of the release kinetics of micron and nano-sized polymer drug carriers. Int J Drug Deliv 5:362–378

    Google Scholar 

  126. Chime Salome AC, Onunkwo Godswill C, Onyishi Ikechukwu I (2013) Kinetics and mechanisms of drug release from swellable and non swellable matrices: a review. Res J Pharm Biol Chem Sci. ISSN: 0975-8585

    Google Scholar 

  127. Yadav G, Bansal M, Thakur N, Khare S, Khare P (2013) Multilayer tablets and their drug release kinetic models for oral controlled drug delivery system. Mid-East J Sci Res 16:782–795

    CAS  Google Scholar 

  128. Dash S, Murthy PR, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  Google Scholar 

  129. Higuchi T (2010) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1148

    Article  Google Scholar 

  130. Peppas NA, Khare A (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35

    Article  CAS  Google Scholar 

  131. Perera DI, Shanks RA (1996) Swelling and mechanical properties of crosslinked hydrogels containing N-vinylpyrrolidone. Polym Int 39:121–127

    Article  CAS  Google Scholar 

  132. Wu W, Zhou S (2013) Responsive materials for self-regulated insulin delivery. Macromol Biosci 13:1464–1477

    Article  CAS  Google Scholar 

  133. Sershen S, West J (2002) Implantable, polymeric systems for modulated drug delivery. Adv Drug Deliv Rev 54:1225

    Article  CAS  Google Scholar 

  134. Demirci S, Çaykara T (2012) RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] brushes for quantitative DNA immobilization. Mater Sci Eng C 33(111)

    Article  CAS  Google Scholar 

  135. Zhong K, Lin Z-T, Zheng X-L, Jiang GB, Fang YS, Mao XY, Liao ZW (2013) Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr Polym 92:1367–1376

    Article  CAS  Google Scholar 

  136. Price R, Poursaid A, Ghandehari H (2013) Controlled release from recombinant polymers. J Control Release 190:304–313

    Article  CAS  Google Scholar 

  137. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  138. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, R.K., Patel, S., Bajpai, J., Bajpai, A.K. (2020). Advanced Controlled Nanopesticide Delivery Systems for Managing Insect Pests. In: K. R., R., Thomas, S., Volova, T., K., J. (eds) Controlled Release of Pesticides for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23396-9_7

Download citation

Publish with us

Policies and ethics