Skip to main content

Controlled Release of Plant Hormones for Modifying Crop Yield

  • Chapter
  • First Online:
Book cover Controlled Release of Pesticides for Sustainable Agriculture
  • 936 Accesses

Abstract

Plant hormones have been an important component in crop improvement because they can in some way manipulate or modify plant development. Controlled application of phytohormones to crop plants alters their life processes or growth pattern to enhance yield, improve quality and facilitate better post-harvest life. Synthetic hormones those mimic natural plant hormones were used significantly and they are a major component in modern agriculture. Also, they are extensively used in plant tissue culture, as weedicides, for initiating uniform flowering parthenocarpic fruit development and even fruit set. They also have role in stress alleviation and plant’s adaptation to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins WG (1999) Introduction to plant physiology, 2nd edn. Wiley, London

    Google Scholar 

  2. Thimann KV, Pincus G (eds) (1948) The hormones, physiology, chemistry and applications. Academic Press

    Google Scholar 

  3. Weiler EW, Ziegler H (1981) Determination of phytohormones in phloem exudate from tree species by radioimmunoassay. Planta 152(2):168–170

    Article  CAS  Google Scholar 

  4. Bajguz A (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 38(3):209–215

    Article  CAS  Google Scholar 

  5. Shahbaz M, Ashraf M (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55(1):51–64

    Article  CAS  Google Scholar 

  6. Khan F, Mazid M, Khan TA, Quddasi S, Roychowdhury R, Naqvi N (2013) Application of sesquiterpene (GA3) to spermology: a contradictory report. Res J Biol 1:45–51

    Google Scholar 

  7. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  Google Scholar 

  8. Campos EVR, de Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6(4):373–387

    Article  CAS  Google Scholar 

  9. Dewitte W, Van Onckelen H (2001) Probing the distribution of plant hormones by immunocytochemistry. Plant Growth Regul 33(1):67–74

    Article  CAS  Google Scholar 

  10. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  11. Ni DA, Yu XH, Wang LJ, Xu ZH (2002) Aberrant development of pollen in transgenic tobacco expressing bacterial iaaM gene driven by pollen-and tapetum-specific promoters. Shi Yan Sheng Wu Xue Bao 35(1):1–6

    CAS  Google Scholar 

  12. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  CAS  Google Scholar 

  13. He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288(5475):2360–2363

    Article  CAS  Google Scholar 

  14. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016

    Article  CAS  Google Scholar 

  15. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  Google Scholar 

  16. Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180(3):454–460

    Article  CAS  Google Scholar 

  17. Slovin JP, Bandurski RS, Cohen JD (1999) Auxin. In: New Comprehensive Biochemistry, vol 33. Elsevier, Amsterdam, pp 115–140

    Chapter  Google Scholar 

  18. Wightman F (1977) Gas chromatographic identification and quantitative estimation of natural auxins in developing plant organs. In: Plant growth regulation. Springer, Berlin, Heidelberg, pp 77–90

    Google Scholar 

  19. Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156(3):1323–1337

    CAS  Google Scholar 

  20. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci 98(18):10487–10492

    Article  CAS  Google Scholar 

  21. Skoog F, Miller C (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol (11)

    Google Scholar 

  22. Saltveit ME (1999) Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Technol 15(3):279–292

    Article  CAS  Google Scholar 

  23. Moore TC (2012) Biochemistry and physiology of plant hormones. Springer, New York

    Google Scholar 

  24. Salisbury FB, Ross CW (1992) Plant Physiology, 4th edn. Wadsworth Inc., Belmont, California, pp 27–65

    Google Scholar 

  25. Kumar A, Purohit SS (2014) Plant Physiology: fundamentals and applications. Student Edition

    Google Scholar 

  26. Camara MC, Vandenberghe LP, Rodrigues C, De Oliveira J, Faulds C, Bertrand E, Soccol CR (2018) Current advances in gibberellic acid (GA 3) production, patented technologies and potential applications. Planta 248(5):1049–1062

    Article  CAS  Google Scholar 

  27. Kepka M, Benson CL, Gonugunta VK, Nelson KM, Christmann A, Grill E, Abrams SR (2011) Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol 157(4):2108–2119

    Article  CAS  Google Scholar 

  28. Hussain S, Ali A, Ibrahim M, Saleem MF, Bukhsh MAAHA (2012) Exogenous application of abscisic acid for drought tolerance in sunflower (Helianthus annuus L.): a review. J Anim Plant Sci 22(3):806–826

    Google Scholar 

  29. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, dit Frey NF, Leung J (2008) An update on abscisic acid signaling in plants and more…. Mol Plant 1(2):198–217

    Article  CAS  Google Scholar 

  30. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255

    Article  CAS  Google Scholar 

  31. Muday GK (2001) Auxins and tropisms. J Plant Grow Regul 20(3):226–243

    Article  CAS  Google Scholar 

  32. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1):164–176

    Article  CAS  Google Scholar 

  33. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602

    Article  Google Scholar 

  34. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426(6963):147

    Article  CAS  Google Scholar 

  35. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, … Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Procee Nat Acad Sci 105(25):8790–8794

    Article  CAS  Google Scholar 

  36. Zimmerman PW, Hitchcock AE (1942) Substituted phenoxy and benzoic acid growth substances and the relation of structure to physiological activity. Contrib Boyce Thompson Inst 12(5):321–344

    CAS  Google Scholar 

  37. Morgan PW, Hall WC (1962) Effect of 2, 4-dichlorophenoxyacetic acid on the production of ethylene by cotton and grain sorghum. Physiol Plant 15(3):420–427

    Article  CAS  Google Scholar 

  38. Abel S, Nguyen MD, Chow W, Theologis A (1995) ASC4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J Biol Chem 270(32):19093–19099

    Article  CAS  Google Scholar 

  39. Ross JJ, O’neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21(6):547–552

    Article  CAS  Google Scholar 

  40. Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134(2):769–776

    Article  CAS  Google Scholar 

  41. Finkelstein RR (2004) The role of hormones during seed development and germination. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action, pp 513–537

    Google Scholar 

  42. Choi J, Hwang I (2007) Cytokinin: perception, signal transduction, and role in plant growth and development. J Plant Biol 50(2):98–108

    Article  CAS  Google Scholar 

  43. Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci 103(3):814–819

    Article  CAS  Google Scholar 

  44. Matsumoto TK (2006) Gibberellic acid and benzyladenine promote early flowering and vegetative growth of Miltoniopsis orchid hybrids. HortScience 41(1):131–135

    Article  CAS  Google Scholar 

  45. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  Google Scholar 

  46. Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438(7071):1172

    Article  CAS  Google Scholar 

  47. Lara MEB, Garcia MCG, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16(5):1276–1287

    Article  Google Scholar 

  48. Eklöf S, Åstot C, Sitbon F, Moritz T, Olsson O, Sandberg G (2000) Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin-and cytokinin-overproducing phenotypes. Plant J 23(2):279–284

    Article  Google Scholar 

  49. Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc Natl Acad Sci 101(21):8039–8044

    Article  Google Scholar 

  50. Mok MC (1994) Cytokinins and plant development. Cytokinins: chemistry, activity, and function. CRC Press, Boca Raton, 155–166

    Google Scholar 

  51. De Munk WJ, Gijzenberg J (1977) Flower-bud blasting in tulip plants mediated by the hormonal status of the plant. Sci Hortic 7(3):255–268

    Article  Google Scholar 

  52. Ranwala AP, Miller WB (1998) Gibberellin4 + 7, benzyladenine, and supplemental light improve postharvest leaf and flower quality of cold-storedstargazer’hybrid lilies. J Am Soc Hortic Sci 123(4):563–568

    Article  CAS  Google Scholar 

  53. Naor V, Kigel J, Ziv M (2004, April) The effect of gibberellin and cytokinin on floral development in Zantedeschia spp. in vivo and in vitro. In: IX International Symposium on Flower Bulbs 673, pp 255–263

    Google Scholar 

  54. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445(7128):652

    Article  CAS  Google Scholar 

  55. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745

    Article  CAS  Google Scholar 

  56. Langer RHM, Prasad PC, Laude HM (1973) Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.). Ann Bot 37(3):565–571

    Article  CAS  Google Scholar 

  57. Liu Y, Gu D, Ding Y, Wang Q, Li G, Wang S (2011) The relationship between nitrogen, auxin and cytokinin in the growth regulation of rice (‘Oryza sativa’l.) Tiller buds. Aust J Crop Sci 5(8):1019

    Google Scholar 

  58. Hooley R (1994) Gibberellins: perception, transduction and responses. In: Signals and signal transduction pathways in plants. Springer, Dordrecht, pp 293–319

    Chapter  Google Scholar 

  59. Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Biol 48(1):461–491

    Article  CAS  Google Scholar 

  60. Goszczynska DM, Zieslin N, Mor Y, Halevy AH (1990) Improvement of postharvest keeping quality of ‘Mercedes’ roses by gibberellin. Plant Growth Regul 9(4):293–303

    Article  CAS  Google Scholar 

  61. McDonald RE, Greany PD, Shaw PE, McCollum TG (1997) Preharvest applications of gibberellic acid delay senescence of florida grapefruit. J Hortic Sci 72(3):461–468

    Article  CAS  Google Scholar 

  62. Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, Sun TP (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13(7):1555–1566

    CAS  Google Scholar 

  63. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421(6924):740

    Article  CAS  Google Scholar 

  64. Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26(2):143

    Article  CAS  Google Scholar 

  65. Watada AE (1986) Effects of ethylene on the quality of fruits and vegetables. Food Technol 40(5):82–85

    Google Scholar 

  66. Abeles FB (1966) Auxin stimulation of ethylene evolution. Plant Physiol 41(4):585–588

    Article  CAS  Google Scholar 

  67. Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1(2):168–177

    Article  CAS  Google Scholar 

  68. Garner JM, Armitage AM (1996) Gibberellin applications influence the scheduling and flowering of Limonium × Misty Blue’. HortScience 31(2):247–248

    Article  CAS  Google Scholar 

  69. Schmidt CM, Bellé RA, Nardi C, Toledo KDA (2003) The gibberelic acid (GA3) in the cut chrysanthemum (DedranthemagrandifloraTzevelev.)'viking': planting summer/autumn. Ciência Rural 33(2):267–274

    Article  Google Scholar 

  70. Medina EO, Saavedra AL (2005) El uso de regulador de crecimiento en la floricultura mexicana. Ciência y Desarrollo 148–26

    Google Scholar 

  71. Zeevaart JAD (1983) The biochemistry and physiology of gibberellins. Gibberellins and flowering. New York, 333–374

    Google Scholar 

  72. Harkess RL, Lyons RE (1994) Gibberellin-and cytokinin-induced growth and flowering responses in Rudbeckia hirta l. HortScience 29(3):141–142

    Article  CAS  Google Scholar 

  73. Sajjad Y, Jaskani MJ, Ashraf MY, Qasim M, Ahmad R (2014) Response of morphological and physiological growth attributes to foliar application of plant growth regulators in gladiolus’white prosperity’. Pak J Agric Sci 51(1)

    Google Scholar 

  74. Ramzan F, Younis A, Riaz A, Ali S, Siddique MI, Lim KB (2014) Pre-planting exogenous application of gibberellic acid influences sprouting, vegetative growth, flowering, and subsequent bulb characteristics of ‘Ad-Rem’tulip. Hortic Environ Biotechnol 55(6):479–488

    Article  CAS  Google Scholar 

  75. Mahgoub MH, El-Aziz NA, Mazhar AMA (2011) Response of Dahlia pinnata L. plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. Am-Eurasian J Agric Environ Sci 10(5):769–775

    Google Scholar 

  76. Currey CJ, Lopez RG (2010) Paclobutrazol pre-plant bulb dips effectively control height of ‘Nellie White’easter lily. HortTechnology 20(2):357–360

    Article  CAS  Google Scholar 

  77. Leason T, Harkess RL (2006) Influence of Cytokinins on lateral branching of Iris germanica rhizomes, vol 50. In: Proceedings Southern Nursery Association Research Conferences, pp 300–301

    Google Scholar 

  78. Hilhorst HW (1995) A critical update on seed dormancy. Seed Sci Res 5(2):61–73

    Article  CAS  Google Scholar 

  79. Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24(4):319–344

    Article  CAS  Google Scholar 

  80. Thompson AJ, Andrews J, Mulholland BJ, McKee JM, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IR, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143(4):1905–1917

    Article  CAS  Google Scholar 

  81. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20(2):55–67

    Article  CAS  Google Scholar 

  82. Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15(4):281–307

    Article  CAS  Google Scholar 

  83. Karssen CM, Brinkhorst-Van der Swan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157(2):158–165

    Article  CAS  Google Scholar 

  84. Hartmann HT (1990) Anatomical and physiological basis of propagation by cuttings. Plant Propag Princ Pract 199–255

    Google Scholar 

  85. Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM, Casse-Delbart F (1996) Identification and expression of water stress-and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31(4):819–829

    Article  CAS  Google Scholar 

  86. Pekić S, Quarrie SA (1987) Abscisic acid accumulation in lines of maize differing in drought resistance: a comparison of intact and detached leaves. J Plant Physiol 127(3–4):203–217

    Article  Google Scholar 

  87. Lee TM, Lur HS, Chu C (1997) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings.: II. Modulation of free polyamine levels. Plant Sci 126(1):1–10

    Article  CAS  Google Scholar 

  88. Moons A, Bauw G, Prinsen E, Van Montagu M, Van Der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107(1):177–186

    Article  CAS  Google Scholar 

  89. Tardieu F, Lafarge T, Simonneau TH (1996) Stomatal control by fed or endogenous xylem ABA in sunflower: interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant Cell Environ 19(1):75–84

    Article  CAS  Google Scholar 

  90. Ünyayar S, Keleþ Y, Ünal E (2004) Proline and ABA levels in two sunflower genotypes subjected to water stress. Bulg J Plant Physiol

    Google Scholar 

  91. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci 104(49):19631–19636

    Article  CAS  Google Scholar 

  92. Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA 3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29(1):63–72

    Article  CAS  Google Scholar 

  93. Sterling TM, Hal JC (1997) Mechanism of action of natural auxins and the auxinic herbicides. Rev Toxicol 1:111–142

    CAS  Google Scholar 

  94. Grossmann K (2003) Mediation of herbicide effects by hormone interactions. J Plant Growth Regul 22(1):109–122

    Article  CAS  Google Scholar 

  95. Fallon H, Tollerud D, Breslow N (1994) Veterans and agent orange: health effects of herbicides used in Vietnam. In: Committee to review the health effects in Vietnam veterans of exposure to herbicides, Division of Health Promotion and Disease Prevention, Institute of Medicine, 26

    Google Scholar 

  96. Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66(2):113–120

    CAS  Google Scholar 

  97. Grzesik M (1988, September). Factors influencing the effectiveness of growth regulators in nursery production. In: III International Symposium on Growth Regulators in Ornamental Horticulture 251, pp 371–376

    Google Scholar 

  98. Wróblewska K, Debicz R (2013) Influnce of time of benzyladenine application on rooting of cuttings and subsequent development of portulaca umbraticola kunth. Acta Sci Pol-Hortoru Cultus 12(1):89–99

    Google Scholar 

  99. Carey D, Whipker B, McCall I, Buhler W (2007) Cytokinin based PGR affects growth of vegetative petunia. ASG/PGRSA, p 94

    Google Scholar 

  100. Saniewski M, Góraj J, Węgrzynowicz-Lesiak E, Okubo H, Miyamoto K, Ueda J (2010) Different growth of excised and intact fourth internode after removal of the flower bud in growing tulips: focus and auxin action. J Fruit Ornam Plant Res 18:297–308

    CAS  Google Scholar 

  101. Weaver RJ (1958) Effect of gibberellic acid on fruit set and berry enlargement in seedless grapes of Vitis vinifera. Nature 181(4612):851

    Article  CAS  Google Scholar 

  102. Carswell FE, Day JS, Gould KS, Jameson PE (1996) Cytokinins and the regulation of plant form in three species of Sophora. NZ J Bot 34(1):123–130

    Article  Google Scholar 

  103. De Vries DP, Dubois LA (1988) The effect of BAP and IBA on sprouting and adventitious root formation of ‘Amanda’rose single-node softwood cuttings. Sci Hortic 34(1–2):115–121

    Article  Google Scholar 

  104. Ahmad A, Hayat S, Fariduddin Q, Ahmad I (2001) Photosynthetic efficiency of plants of Brassica juncea, treated with chlorosubstituted auxins. Photosynthetica 39(4):565–568

    Article  CAS  Google Scholar 

  105. Hayat S, Ahmad A, Mobin M, Fariduddin Q, Azam ZM (2001) Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica 39(1):111–114

    Article  CAS  Google Scholar 

  106. Afroz S, Mohammad F, Hayat S, Siddiqui MH (2006) Exogenous application of gibberellic acid counteracts the ill effect of sodium chloride in mustard. Turkish J Biol 29(4):233–236

    Google Scholar 

  107. Ranwala AP, Legnani G, Reitmeier M, Stewart BB, Miller WB (2002) Efficacy of plant growth retardants as preplant bulb dips for height control in LA and oriental hybrid lilies. HortTechnology 12(3):426–431

    Article  CAS  Google Scholar 

  108. Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 2(9):e311

    Article  CAS  Google Scholar 

  109. Hilli JS, Vyakarnahal BS, Biradar DP, Ravi H (2010) Effect of growth regulators and stages of spray on growth, fruit set and seed yield of ridgegourd (Luffa acutangula L. Roxb). Karnataka J Agric Sci 23(2):239–242

    Google Scholar 

  110. Prajapati S, Jamkar T, Singh O, Raypuriya N, Mandloi R, Jain P (2015) Plant growth regulators in vegetable production: an overview. Plant Arch 15:619–626

    Google Scholar 

  111. Prasad RN, Singh SK, Yadava RB, Chaurasia SNS (2013) Effect of GA3 and NAA on growth and yield of tomato. Veg Sci 40(2):195–197

    Google Scholar 

  112. Balraj R, Kurdikeri MB (2002) Effect of growth regulators on growth and yield of chilli (Capsicum annuum) at different pickings. Indian J Hortic 59(1):84–88

    Google Scholar 

  113. Singh M, John SA, Rout S, Patra SS (2015) Effect of GA3 and NAA on growth and quality of garden pea (Pisum sativum L.) cv. Arkel Bioscan 10(3):381–383

    Google Scholar 

  114. Ravindra A, Anjanabha B, Bharat C (2016) Effect of foliar application of plant growth regulators on growth and yield of potato seed tubers propagated from micro plantlets on soilless solid media in greenhouse. Adv Res J Crop Improv 7(2):234–239

    Article  Google Scholar 

  115. Patel MJ, Patel HC, Chavda JC (2010) Influence of plant growth regulators and their application methods on yield and quality of onion (Allium cepa L.). Asian J Hortic 5(2):263–265

    Google Scholar 

  116. Dhoran VS, Gudadhe SP (2012) Effect of plant growth regulators on seed germination and seedling vigour in Asparagus sprengeri Regelin. Int Res J Biol Sci 1(7):6–10

    Google Scholar 

  117. Mir MM, Barche S, Singh DB (2004) Effect of plant growth regulators on growth, yield and quality of strawberry (Fragaria ananassa Duch) cv.’Sweet charley’. Appl Biol Res 6(1/2):48–51

    Google Scholar 

  118. Dalai S, Singh MK, Singh KV, Kumar M, Malik S, Kumar V (2015) Effect of foliar application of GA3 and NAA on growth, flower-ing yield and yield attributes of cucumber [Cucumis Sativus L.]. Ann Hortic 8(2):181–194

    Article  Google Scholar 

  119. Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33(2):151–153

    Google Scholar 

  120. Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22(4):289–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linu Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandran, V., Shahena, S., Rajan, M., Mathew, L. (2020). Controlled Release of Plant Hormones for Modifying Crop Yield. In: K. R., R., Thomas, S., Volova, T., K., J. (eds) Controlled Release of Pesticides for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23396-9_11

Download citation

Publish with us

Policies and ethics