Skip to main content

Foxtail Millet (Setaria italica L.): Potential of Smaller Millet for Future Breeding

  • Chapter
  • First Online:
Book cover Advances in Plant Breeding Strategies: Cereals

Abstract

Millets are considered nutri-cereals which play a crucial part in overcoming malnutrition and have a significant role in improving the status of human health. Foxtail millet (Setaria italica L.), also known as Italian millet or German millet, belongs to Poaceae family and is cultivated globally, including in India. It is also a staple food and feed in several regions of Asia and Africa. There is a great genetic diversity with a large number of germplasm collections maintained in countries like China, Japan, the USA and India. The crop is nutritionally superior as the grains contain high amounts of proteins, essential amino acids, minerals and vitamins and micronutrients like iron and zinc. Thus, foxtail millet can be useful for biofortification programs aimed at combating malnutrition. Foxtail millet is a relatively drought-tolerant crop and hence genomic interventions can be in place for genetic engineering for abiotic stress tolerance. Recent advancements in a draft genome sequence of this millet has spawned great enthusiasm in unraveling genetic and genomic intricacies, genome-wide molecular marker development, genomics-assisted breeding, identification and validation of stress-associated gene families. There have been great research efforts in the creation and facilitation of genomics databases. In this chapter, we present an overview of the importance, genetic diversity, potential and genomics interventions for foxtail millet improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Grow Reg 35:81–91

    Article  CAS  Google Scholar 

  • Ajithkumar P, Panneerselvam R (2013) Analysis of intraspecific variation in Setaria italica (L.) P. Beauv landraces using RAPD and ISSR markers. Int J Res Biochem Biophys 3(2):15–20

    Google Scholar 

  • Arockiasamy S, Prakash S, Ignacimuthu S (2001) High regenerative nature of Paspalum scrobiculatum L, an important millet crop. Curr Sci 80:496–498

    Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Bailey TL, Boden M, Buske FA et al (2009) MEME Suite: tools for motif discovery and searching. Nucl Acid Res 37(2):W202–W208

    Article  CAS  Google Scholar 

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology- towards genetically superior transgenic rice. Plant Biotech J 3:275–307

    Article  CAS  Google Scholar 

  • Barton L, Newsome SD, Chen FH et al (2009) Agricultural origins and the isotopic identity of domestication in northern China. Proc Nat Acad Sci 106:5523–5528

    Article  CAS  Google Scholar 

  • Beauvois P (1812) Essaid’une nouvelle agrostographie; ou nouveaux genres des Gramiùnees. 32. Paris

    Google Scholar 

  • Benabdelmouna A, Abirached-Darmency M, Darmency H (2001) Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet 103:668–677

    Article  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotech 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Bonthala VS, Muthamilarasan M, Roy R, Prasad M (2014) FmTFDb: a foxtail millet transcription factors database for expediting functional genomics in millets. Mol Bio Rep 41(10):6343–6348

    Article  CAS  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K et al (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai W, Si W, Ji W et al (2018) Genome-wide investigation and expression profiling of HD-Zip transcription factors in foxtail millet (Setaria italica L.). BioMed Res Int. Article ID 8457614. https://doi.org/10.1155/2018/8457614

    Google Scholar 

  • Chakraborty N, Singh N, Kaur K, Raghuram N (2015) G protein signaling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in Arabidopsis. Front Plant Sci 6:1000

    Google Scholar 

  • Cheng R, Dong Z (2010) Breeding and production of foxtail millet in China. In: He ZH, Bonjean APA (eds) Cereals in China. CIMMYT, Mexico, pp 87–95. isbn:978-970-648-177-1

    Google Scholar 

  • Chu CC, Wang CC, Sun CS et al (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sinica 18:659–668

    Google Scholar 

  • Clarke FR, Clarke JM, Knox RE (2002) Inheritance of stem-solidness in eight durum wheat crosses. Can. J Plant Sci 82:661–664

    Article  Google Scholar 

  • Cook JP, Wichman DM, Martin JM et al (2004) Identification of microsatellite markers associated with astem solidness locus in wheat. Crop Sci 44:1397–1402

    Article  CAS  Google Scholar 

  • Dai F, Nevo E, Wu D et al (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci U S A 109:16969–16973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das G, Patra JK, Baek KH (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985

    Google Scholar 

  • De Wet JMJ, Oestry-Stidd LL, Cubero JI (1979) Origins and evolution of foxtail millets (Setaria italica). J d’Agric Trad Botan Appl 26(1):53–64

    Google Scholar 

  • Devos KM, Wang ZM, Beales J et al (1998) Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet 96:63–68

    Article  CAS  Google Scholar 

  • Diao X (2011) Current status of foxtail millet production in China and future development directions. In: Diao X (ed) Foxtail millet production in China and the industrial technology system. Agriculture, Science and Technology Press, Beijing, pp 20–30

    Google Scholar 

  • Diao XM, Schnable J, Bennetzen JL, Li JY (2014) Initiation of Setaria as a model plant. Front Agric Sci Eng 1:16–20

    Article  Google Scholar 

  • Diatchenko L, Lau Y-F, Campbell AP et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Nat Acad Sci U S A 93:6025–6030

    Article  CAS  Google Scholar 

  • Dipti (2017) Deciphering the differentially expressed genes in foxtail millet (Setaria italica L.) in response to water stress. PhD thesis, Dr. Panjabrao Deshmukh Krishi Vidyapeeth Akola University, Maharshta, India

    Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system [W]. Plant Phys 149:137–141

    Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S et al (2012) Millets: genetic and genomic resources. In: Janick J (ed) Plant breeding reviews. John Wiley, Hoboken, pp 247–374

    Chapter  Google Scholar 

  • En H, Pang ZH, Xiong BH (2008) Comparative analysis of composition and nutritive value of millet bran feed. China Feed 18:39–41

    Google Scholar 

  • Estrada-Campuzano G, Miralles DJ, Slafer GA (2008) Genotypicvariability and response to water stress of pre- and post-anthesis phases in triticale. Eur J Agron 28:171–177

    Article  Google Scholar 

  • Fang FQ, Qian Z, Guang MA, Jing JY (2007) Co-suppression of Si401, a maize pollen speciEsZm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163:103–111

    Google Scholar 

  • Farooq M, Aziz T, Basra SMA et al (2008) Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J Agron Crop Sci 194:161–168

    Article  CAS  Google Scholar 

  • Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucl Acid Res 42:D222–D230

    Article  CAS  Google Scholar 

  • Fukunaga K, Wang Z, Kato K, Kawase M (2002) Geographical variation of nuclear genome RFLPs and genetic differentiation in foxtail millet, Setaria italica (L.) P. Beauv. Genet Res Crop Evol 49:95–101

    Article  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kumari K, Das J et al (2011) Development and utilization of novel intron length polymorphic markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Genome 54:586–602

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L et al (eds) Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  • Hector JH (1936) Introduction to the botany of field crops. Millets, vol I, Cereals. Central New Agency, Johannesburg, pp 307–319

    Google Scholar 

  • Hermuth J, Janovska D, Cepkova PH et al (2016) Alternative crops and cropping systems: sorghum and foxtail millet-promising crops for the changing climate in central Europe. Intech Publishing, Europe

    Google Scholar 

  • Houshmand S, Knox RE, Clarke FR et al (2007) Microsatellite markers flanking a stem solidness gene on chromosome 3BL in durum wheat. Mol Breed 20:261–270

    Article  CAS  Google Scholar 

  • Hulse JH, Laing EM, Pearson OE (1980) Sorghum and the millets: their composition and nutritional value. Academic, New York

    Google Scholar 

  • ICAR (2006) Handbook of agriculture. Indian Council of Agricultural Research, New Delhi, pp 892–912

    Google Scholar 

  • Ignacimuthu S, Arockiasamy S, Terada R (2000) Genetic transformation of rice: current status and future prospects. Curr Sci 79:186–195

    Google Scholar 

  • Iriawati, Puspita MI, Roadiansyah A (2017) In vitro regeneration of foxtail millet (Setaria italica (L.) Beauv.) cv Buru Hotong. J Math Fund Sci 49(2):171–180

    Article  CAS  Google Scholar 

  • Jayaraman A, Puranik S, Rai NK et al (2008) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 40(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Zhang Z, Liu Y et al (2009) Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theor Appl Genet 118:821–829. https://doi.org/10.1007/s00122-008-0942-9

    Article  CAS  PubMed  Google Scholar 

  • Jia GQ, Huang XH, Zhi H et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961

    Article  CAS  PubMed  Google Scholar 

  • Jusuf M, Pernes J (1985) Genetic variability of foxtail millet (Setaria italica P. Beauv.): electrophoretic study of five isoenzyme systems. Theor Appl Genet 71:385–391. https://doi.org/10.1007/BF00251177

    Article  CAS  PubMed  Google Scholar 

  • Kamara AY, Menkir A, Badu-Apraku B, Ibikunle O (2003) The influence of drought stress on growth, yield and yield components of selected maize genotypes. J Agric Sci 141:43–50. https://doi.org/10.1017/S0021859603003423

    Article  Google Scholar 

  • Karyudi, Fletcher RJ (2002) Osmoregulative capacity in birdseed millet under conditions of water stress. I Variation in Setaria italica and Panicum miliaceum. Euphytica 125(3):337–348. https://doi.org/10.1023/A:1016073910886

    Article  CAS  Google Scholar 

  • Kawase M, Sakamoto S (1987) Geographical distribution of landrace groups classified by hybrid pollen sterility in foxtail millet [Setaria italica (L.) P. Beauv.]. Japan J Breed 37:1–9

    Article  Google Scholar 

  • Kaya MD, Okçub G, Ataka M et al (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Proto 10(6):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesawat MS, Das BK (2009) Molecular markers: it’s application in crop improvement. J Crop Sci Biotech 12(4):168–178

    Article  Google Scholar 

  • Khan Y, Yadav A, Suresh BV et al (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setariaitalica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tissue Organ Cult 118:279–292

    Article  CAS  Google Scholar 

  • Kim EJ, Sa KJ, Yu CY et al (2010) Morphological variation of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm collected in Korea, China and Pakistan. Korean J Breed Sci 8:1–8

    Google Scholar 

  • King RC, Stansfield WD (1997) A dictionary of genetics, 5th edn. Oxford University Press, New York

    Google Scholar 

  • Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G et al (2013) Development of eSSR-markers in Setariaitalica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8(6):e67742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambe P, Mutambel HSN, Deltour R, Dinant M (1999) Somatic embryogenesis in pearl millet (Pennisetum glaucum): Strategies to reduce genotype limitation and to maintain long-term totipotency. Plant Cell Tissue Organ Cult 55:23–29

    Article  Google Scholar 

  • Lata C, Prasad M (2012) Validation of an allele-specific marker associated with dehydration stress tolerance in a core set of foxtail millet accessions. Plant Breed. https://doi.org/10.1111/j.1439-0523.2012.01983.x

  • Lata C, Bhutty S, Bahadur RP et al (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401. https://doi.org/10.1093/jxb/err016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Gupta S, Prasad M (2012) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit RevBiotech 33(3):328–343. https://doi.org/10.3109/07388551.2012.716809

    Article  Google Scholar 

  • Lata C, Mishra AK, Muthamilarasan M et al (2014) Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 199(11):e113092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucl Acid Res 40(1):D302–DD30

    Article  CAS  Google Scholar 

  • Li T, Ma SS, Gao M, Yang P (1991) Relationship of endogenous hormones of immature inflorescences of naked oats (Avena sativa) and somatic embryogenesis. Acta Scientiarum Naturaliam Universitatis Intramongolicae 22(3):428–432

    Google Scholar 

  • Li YM (1997) Breeding for foxtail millet drought tolerant cultivars. In: Li Y (ed) Foxtail millet breeding. Agri Press, Beijing, pp 421–446 (in Chinese)

    Google Scholar 

  • Li PH, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li Y, Wu S (1996) Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica 87:33–38

    Article  Google Scholar 

  • Li CH, Pao WK, Li HW (1942) Interspecific crosses in Setaria. II. Cytological studies of interspecific hybrids involving 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica, S. viridis and S. faberii. J Hered33:351–355

    Google Scholar 

  • Li Y, Wu S, Cao Y (1995) Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv.). Euphytica 83:79–85

    Article  Google Scholar 

  • Li L, Stoeckert Jr CJ, Roos DS (2003) Ortho MCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yue J, Wu X et al (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65:5415–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZY, Wang N, Dong L et al (2015) Differential gene expression in foxtail millet during incompatible interaction with Uromyces Setaria italica. PLoSOne 10(4):e0123825

    Article  CAS  Google Scholar 

  • Linnaeus C (1753) Species plantarum exhibitentes plantas rite cognitas ad genera relatas, cum different is specificis, nominibus trivialibus, synonym is selectis, et locis natalibus, secundum systema sexuale digestas, Ed. 1. Laurentius Salvius, Stockholm, Sweden. Facsimile published 1957–1959 as Ray Soc. Publ. 140 and 142. The Ray Society, London

    Google Scholar 

  • Lisitsyn N, Lisitsyn N, Wigler M (1993) Cloning the difference between two complex. Sci 259(5097):946–51

  • Liu Y, Yu J, Zhao Q et al (2005) Genetic transformation of millet (Setaria italica) by Agrobacterium-mediated. Chin J Agr Biotech 13:32–37

    Google Scholar 

  • Malm NR, Rachie KO (1971) Setaria millets: a review of the world literature. S.B. 513. University of Nebraska, Lincoln, pp 19–29

    Google Scholar 

  • Matsuura A, Tsuji W, An P et al (2012) Effect of pre- and post-heading water deficit on growth and grain yield of four millets. Plant Prod Sci 15(4):323–331

    Article  Google Scholar 

  • Mekbib F, Mantell SH, Buchanan-Wollaston V (1997) Callus induction and in vitro regeneration of tef [Eragrostis tef (Zucc.) Trotter] from leaf. J Plant Phys 151:368–372

    Article  CAS  Google Scholar 

  • Mishra AK, Muthamilarasan M, Khan Y et al (2013) Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One 9:e86852

    Article  CAS  Google Scholar 

  • Morgan PW (1990) Effects of abiotic stresses on plant hormone systems. In: Alscher RG, Cummings JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss Inc, New York, pp 113–146

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Phys 15:473–497

    Article  CAS  Google Scholar 

  • Murugan R, Nirmalakumari A (2006) Genetic divergence in foxtail millet (Setaria italic (L.) Beauv.). Indian J Genet 66(4):339–340

    Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Khandelwal R, Yadav CB et al (2014a) Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS One 9:e109920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Mishra AK et al (2014b) C2H2-type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genomics. https://doi.org/10.1007/s10142-014-0383-2

    Article  CAS  Google Scholar 

  • Muthamilarasan M, Venkata SB, Pandey G et al (2014c) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Khandelwal R et al (2015) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910

    PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M (2015a) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910. https://doi.org/10.3389/fpls.2015.00910

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2015b) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97. https://doi.org/10.1016/j.plantsci.2015.08.023

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Shweta S, Prasad M (2017) Foxtail millet genome sequencing, assembly, annotation, and application. In: Prasad M (ed) The foxtail millet genome. Series: compendium of plant genomes. Springer International Publishing, Cham, pp 11–22

    Google Scholar 

  • Nirmalakumari A, Vetriventhan M (2010) Characterization of foxtail millet germplasm collections for yield contributing traits. Elect J Plant Breed 1(2):140–147

    Google Scholar 

  • Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111 (3):373–382

    Article  Google Scholar 

  • O’Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235

    Article  CAS  Google Scholar 

  • Ober ES, Setter TL, Madison JT et al (1991) Influence of water deficit on maize endosperm development enzyme activities and RNA transcripts of starch and zeinsynthesis,abscisic acid, and cell division. Plant Phys 97:154–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Z, Li K, Zhao L et al (2012) Review and prospects of foxtail millet breeding in Zhangye City Academy. China Seed Indus 7:17–18

    Google Scholar 

  • Pandey G, Misra G, Kumari K et al (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil JV (2017) Millets and sorghum: biology and genetic improvement. Wiley. https://doi.org/10.1002/9781119130765

    Google Scholar 

  • Patil SM, Sawardekar SV, Bhave SG et al (2009) Development of somaclones and their genetic diversity analysis through RAPD in finger millet (Eleusine coracana) L. Gaertn. Indian J Genet 69:132–139

    CAS  Google Scholar 

  • Paul A, Panneerselvam R (2013) Osmolyte accumulation, photosynthetic pigment and growth of Setaria italica (L.) P. Beauv under drought stress. Asia Pacif J Reprod 2(3):220–224

    Article  Google Scholar 

  • Plaut Z (2003) Plant exposure to water stress during specific growth stages. In: Stewart BA, Howell T (eds) Encyclopedia of water science. Marcel Dekker Inc, New York, pp 673–675

    Google Scholar 

  • Prasada Rao KE, De Wet JMJ, Brink DE, Mengesha MH (1987) Intraspecific variation and systematics of cultivated Setaria italica, foxtail millet (Poaceae). Econ Bot 41:108–116

    Article  Google Scholar 

  • Prashant SH, Namakkal SR, Chandra TS (2005) Effect of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan induced rats. Nutr Res 25:1109–1120

    Article  CAS  Google Scholar 

  • Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv]. Mol Biotechnol 49:138–150

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN et al (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italic L.). PLoS One 8:e64594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Xie S, Liu Y et al (2013) Genome-wide annotation of genes and non-coding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473

    Article  CAS  PubMed  Google Scholar 

  • Qin FF, Zhao Q, Ming Ao G (2008) Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet. Euphytica 163:103–111

    Article  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1(5):404–411

    Article  CAS  PubMed  Google Scholar 

  • Richmond T, Somerville S (2000) Chasing the dream: plant EST microarrays. Curr Opin Plant Biol 3:108–116. pmid:10712953

    Article  CAS  PubMed  Google Scholar 

  • Risi CJ, Galwey NW (1989) The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd). II. Multivariate methods. Euphytica 41:135–145

    Article  Google Scholar 

  • Rojas W, Soto JL, Carrasco E (2004) Study on the social, environmental and economic impacts of quinoa promotion in Bolivia. PROIMPA Foundation, La Paz, Bolivia

    Google Scholar 

  • Roychowdhury R, Taoutaou A, Hakeem K (2013) Molecular marker-assisted technologies for crop improvement. In: Book: crop improvement in the era of climate change, Roychowdhury R. I.K. International Publ. House Pvt. Ltd., New Delhi. https://doi.org/10.13140/RG.2.1.2822.2560

    Chapter  Google Scholar 

  • Sage RF, Monson RK (1999) C4 plant biology. Academic, San Diego

    Google Scholar 

  • Sakamoto S (1987) Origin and dispersal of common millet and foxtail millet. Japan Agr Res Quart 21(2):84–89

    Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Article  Google Scholar 

  • Sang P (2011) Analysis on breeding development of spring foxtail milletin Shanxi Province. Agri Sci Tech Comm 12:8–9

    Google Scholar 

  • Saxena R, Vanga SR, Wang J et al (2018) Millets for food security in the context of climate change: are view. Sustainable 10:2228. https://doi.org/10.3390/su10072228

    Article  Google Scholar 

  • Schontz D, Rether B (1999) Genetic variability in foxtail millet, Setaria italica (L.) P. Beauv.: identification and classification of lines with RAPD markers. Plant Breed 118:190–192. https://doi.org/10.1046/j.1439-0523.1999.118002190.x

    Article  Google Scholar 

  • Seetharam A (2006) Millets. Hand book of agriculture. ICAR, New Delhi, pp 892–912

    Google Scholar 

  • Seetharam A, Patel DP, Halaswamy BH (2006) Small millets. In: Dhillon BS, Saxena S, Agrawal A, Tyagi RK (eds) Plant genetic resources – food grain crops. Narosa Publishing House, New Delhi, pp 204–223

    Google Scholar 

  • Sharma N, Niranjan K (2018) Foxtail millet: properties, processing, health benefits, and uses. Food Rev Int 34(4):329–363. https://doi.org/10.1080/87559129.2017.1290103

    Article  CAS  Google Scholar 

  • Sharma R, Girish AG, Upadhyaya HD et al (2014) Identification of blast resistance in a core collection of foxtail millet germ plasm. Plant Dis 98(4):519–524

    Article  PubMed  Google Scholar 

  • Shinada H, Iwata N, Sato T, Fujino K (2014) QTL pyramiding for improving of cold tolerance at fertilization stage in rice. Breed Sci 63:483–488. https://doi.org/10.1270/jsbbs.63.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotech J 4:575–603

    Article  CAS  Google Scholar 

  • Singh RK, Gregorio GB, Jain RK (2007) QTL mapping for salinity tolerance in rice. Phys Mol Biol Plant 13:87–99

    CAS  Google Scholar 

  • Sivadas P, Kothari SL, Chandra N (1990) High frequency embryoid and plantlet formation from tissue cultures of the finger millet -Eleusine coracana (L.) Gaertn. Plant Cell Rep 9:93–96

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS et al (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line. J Plant Physiol 161:467–477

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2003) Advances on embryogenesis in culture of coniferous species: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Sunil (2015) Gene targeted characterization of foxtail millet (Setaria italica L.) accessions for their high mineral content. Thesis, Dr. PDKV, Akola (MS). India

    Google Scholar 

  • Suprasanna P, Mirajkar S, Bhagwat SG (2015) Induced mutations and crop improvement: development and organization of cell types and tissues. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol I: plant diversity, organization, function and improvement. Springer, New Delhi, pp 593–617. https://doi.org/10.1007/978-81-322-2286-6_23

    Chapter  Google Scholar 

  • Suresh BV, Muthamilarasan M, Misra G, Prasad M (2013) FmMDb: aversatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 8:e714–e718

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Tapia M (1979) Historia y distribución geográfica. In: Tapia M (ed) Quinua y Kaniwa. Cultivos Andinos. Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agricolas (IICA), Bogotá, Colombia, pp 11–19

    Google Scholar 

  • Tsui WS, Ma HH, Chang TY (1979) The selection and utilization of “Sun Hsi 28” – a male-sterility strain of millet. Sci Agric Sin 12(4):43–46

    Google Scholar 

  • Upadhyaya HD, Pundir RPS, Gowda CLL et al (2008) Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop. Plant Genet Res 7:177–184. https://doi.org/10.1017/S1479262108178042

    Article  Google Scholar 

  • Upadhyaya HD, Ravishankar CR, Narasimhudu Y et al (2011) Identification of trait-specific germplasm and developing a mini core collection for efficient use of foxtail millet genetic resources in crop improvement. Field Crop Res 124:459–467. https://doi.org/10.1016/j.fcr.2011.08.004

    Article  Google Scholar 

  • Urano D, Chen JG, Botella JR et al (2013) Heterotrimeric G protein signalling in the plant kingdom. Open Biol 3(3):120186. https://doi.org/10.1098/rsob.120186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van K, Onoda S, Kim MY et al (2008) Allelic variation of the Waxy gene in foxtail millet (Setaria italica (L.) P. Beauv.) by single nucleotide polymorphisms. Mol Genet Genomics 279:255–266. https://doi.org/10.1007/s00438-007-0310-5

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883. https://doi.org/10.1371/journal.pbio.1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Inst Appl Bot Plant Breed, Leningrad

    Google Scholar 

  • Veeranagamallaiah G, Chandraobulreddy P, Jyothsnakumari G, Sudhakar C (2007) Glutamine synthetase expression and pyrroline-5-carboxylate reductase activity influence proline accumulation in two cultivars of foxtail millet (Setaria italica L.) with differential salt sensitivity. Environ Exp Bot 60:239–244

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Sci 270:484–487

    Article  CAS  Google Scholar 

  • Vinall HN (1924) Foxtail millet: its culture and utilization in the United States USDA. Farmers Bull 793

    Google Scholar 

  • Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29. https://doi.org/10.3389/fpls.2017.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S (2008) Reviews and prospects of foxtail millet breeding in Heilongjiang province. China Agri Tech Ext 24(6):15–39

    Google Scholar 

  • Wang TY, Du RH, Chen HB et al (1996) A new way of using herbicide resist ant gene on hybrid utilization in foxtail millet. Sci Agric Sin 29(4):96

    Google Scholar 

  • Wang ZM, Devos KM, Liu CJ et al (1998) Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet 96:31–36

    Article  CAS  Google Scholar 

  • Wang L, Wang X, Wen Q (2008) Breeding and high-yield cultivation technique in high-quality millet varieties. J Shanxi Agri Sci 36(11):53–56

    CAS  Google Scholar 

  • Wang C, Chen J, Zhi H et al (2010) Population genetics of foxtail millet and its wild ancestor. BMC Genet 11:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang MZ, Pan YL, Li C (2011) Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Afr J Biotechnol 10:16466–16479

    CAS  Google Scholar 

  • Wang C, Jia G, Zhi H et al (2012) Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 Gene Genom Genet 2:769–777. https://doi.org/10.1534/g3.112.002907

    Article  CAS  Google Scholar 

  • Wang L, Czedik-Eysenberg A, Mertz RA et al (2014) Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotech 32:1158–1165

    Article  CAS  Google Scholar 

  • Wang J, Wang Z, Du X et al (2017a) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS One 12(6):e0179717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Cao XH, Miclaus M et al (2017b) The promise of agriculture genomics. Int J Genom 2017:1–3

    Google Scholar 

  • Wilson HD (1990) Crop/weed gene flow: Chenopodium quinoa Willd and C. berlandieri Moq. Theor Applied Genet 86:642–648

    Article  Google Scholar 

  • Whitehead WT (2007) Exploring the wild and domestic: Paleoethnobotany at Chriripa, a formative site in Bolivia. Dissertation. University of California, Berkeley

    Google Scholar 

  • Xu P, Cai W (2014) RAN1 is involved in plant cold resistance and development in rice (Oryza sativa). J Exp Bot 65(12):3277–3287. https://doi.org/10.1093/jxb/eru178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZH, Wang DY, Yang LJ, Wei ZM (1984) Somatic embryogenesis and plant regeneration in cultured immature inflorescences of Setaria italica. Plant Cell Rep 3:149–150

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE et al (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotech 29:735–741

    Article  CAS  Google Scholar 

  • Xue YY, Li P, Lin QB (2008) Research evolution on chemical component and physical character of foxtail millet. J Chin Cer Oils Assoc 22:51–56

    Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR et al (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G et al (2014) Development of novel micro RNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed 34:2219–2224. https://doi.org/10.1007/s11032-014-0137-9

    Article  CAS  Google Scholar 

  • Yadav CB, Muthamilarasan M, Garima P et al (2015a) Identification, characterization and expression profiling of dicer-like, argonaute and RNA dependent RNA polymerase gene families in foxtail millet. Plant Mol Biol Rep 33:43–55

    Article  CAS  Google Scholar 

  • Yadav CB, Bonthala VS, Muthamilarasan M et al (2015b) Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res 22(1):79–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Wan Z, Perry L et al (2012) Early millet use in northern China. PNAS 109:3726–3730. https://doi.org/10.1073/pnas.1115430109

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi F, Xie S, Liu Y et al (2013) Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC Plant Biol 13:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You Q, Zhang Z, Yi X et al (2015) SIFGD: Setaria italica Functional Genomics Database. Mol Plant 8:967–970

    Article  CAS  PubMed  Google Scholar 

  • Zangré R, Nguyen-van E, Rherissi B, Till-Bottraud I (1992) Organisation du pool génique de Setaria italica (L.) P. Beauv. et exploitation des ressources génétiques d’espècesspontanées. In: Lavoisier (ed) Complexes d’espèces, flux de gènes et ressources génétiques des plantes, 8–10 Janvier. Bureau des Ressources Génétiques (BRG), Paris, pp 87–97

    Google Scholar 

  • Zhang L, Ma XL, Zhang Q et al (2001) Expressed sequence tags from a NaCl treated suaeda salsa cDNA library. Gene 267:193–200

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Wang MY, Bai YF et al (2005) Rapid evaluation on drought tolerance of foxtail millet at seedling stage. J Plant Genet Res 2005:01

    Google Scholar 

  • Zhang J, Liu T, Fu J et al (2007) Construction and application of EST library from Setaria italica, in response to dehydration stress. Genom 90:121–131

    Article  CAS  Google Scholar 

  • Zhang G, Liu X, Quan Z et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30:549–554

    Article  CAS  Google Scholar 

  • Zhu GQ, Wu QM (1991) The development of Ve type male sterile line of foxtail millet. Shannxi Agric Sci 1(7):1–7

    Google Scholar 

  • Zhu XH, Song YC, Zhao ZH et al (2008) Methods for identification of drought tolerance at germination period of foxtail millet by osmotic stress. J Plant Genet Res 9:62–67

    CAS  Google Scholar 

  • Zhu C, Ming C, Zhao-shi X et al (2014) Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.). PLoS One 9:e101136

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mangesh Pradip Moharil or Penna Suprasanna .

Editor information

Editors and Affiliations

Appendices

Appendices

4.1.1 Appendix I: Indian Research Institutes Relevant To Foxtail Breeding and Genomics

Institution

Specialization and research activities

Contact information and website

National Institute of Plant Genome Research (NIPGR)

New Delhi-110067 India

Plant molecular genetics and genomics, stress biology

Dr. Manoj Prasad

National Institute of Plant Genome Research (NIPGR), New Delhi

Email:manoj_pds@yahoo.com

Website:http://www.nipgr.res.in/research/dr_mprasad.php

Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola -444104 (MS), India

Mutation breeding, in vitro culture, development of elite varieties, biofortification

Dr. M. P. Moharil

Dr. Panjabrao Deshmukh Krishi Vidyapeeth,Biotechnology Centre, Department of Agricultural Botany, Akola (MS), India

Email:mpmoharil@gmail.com

Website:https://www.pdkv.ac.in/

Indian Institute of Millet Research, Hyderabad-506001, India

Hybrid breeding, molecular assisted breeding, genetic augmentation of grain yield in foxtail millet, biofortification

Dr. Hariprasanna K

Indian Institute of Millet Research, Hyderabad

Email:hari@millets.res.in

Website:http://millets.res.in/

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India

Germplasm characterization, regeneration, conservation and documentation, plant breeding and genetics; plant genetic resources

Dr. M Vetriventhan

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India

Email:vetriventhan@gmail.com

Website:https://www.icrisat.org/

4.1.2 Appendix II: Foxtail Millet Genetic Resources in India And Their Salient Features 1989–2012

Cultivar

Pedigree

Important traits

Cultivation location

SiA 3085

Pure line from SiA 2644

Resistant to blast and downy mildew

Andhra Pradesh

HMT 100-1

RS 118 × PS 3

High tillering, suitable for early and late sowing

Karnataka

Suryanandi (SiA 3088)

Pure line fromSiA 1244

Non-lodging, Short duration, suitable for double cropping

Andhra Pradesh

TNAU 196

Co 5 × ISe 247

Resistant to rust

Tamil Nadu

Sri Lakshmi

Pure line Selection

High seed yield

Andhra Pradesh

PS 4

SiA 2616 (0.2% EMS induced mutant)

Wider adaptability

All States

TNAU 186

Co-5 × SiA 326

Tolerant to drought

Tamil Nadu

Krishnadevaraya (SiA 2593)

Selection from SiA326 × SiA 242

High seed yield

Tamil Nadu

AK 132–1

Pureline selection

Drought tolerance

Andhra Pradesh

K3

Selection from SiA 2567

Stay green character

Tamil Nadu

Meera (SR 16)

Pure line selection

Stay green character, resistant to downy mildew

Rajasthan

  1. Source: http://millets.res.in/technologies/foxtail_millet.pdf

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moharil, M.P., Ingle, K.P., Jadhav, P.V., Gawai, D.C., Khelurkar, V.C., Suprasanna, P. (2019). Foxtail Millet (Setaria italica L.): Potential of Smaller Millet for Future Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_4

Download citation

Publish with us

Policies and ethics