Skip to main content

Toxicological Prospects on Joint Action of Microbial Insecticides and Chemical Pesticides

  • Chapter
  • First Online:
Microbes for Sustainable Insect Pest Management

Abstract

Microbial insecticides or entomopathogens are effective and eco-friendly insect pest management options. But slow mode of action and lack of a visual pest control, as expected by a farmer, mostly limits their wide commercial usage. The present day regular and high incidences of insect pests, due to intensive monocultures, warrant inevitable use of high doses of chemical pesticides. However, their judicious application depends on the diverse environmental threats associated. So, deployment of both entomopathogenic microbes and chemical pesticides together is considered to reduce the risk to the environment. Various studies also reported more efficient synergistic interactions in combined use than for independent applications. Synergism has the ability to reduce the pesticide doses. Most importantly, the combined application due to synergism can effectively tackles the pest problem and also helps in establishment of an entomopathogen in a given ecosystem. Once established, the entomopathogens can effectively manage the pest population build up in an eco-friendly manner, and over the years they can evade the use of pesticides or, if not so, reduce their dosage. The present chapter critically discusses possible synergism between entomopathogens and chemical pesticides and the present status of pest management achieved through this approach, in the context of latest research findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbassy, M. A. A., Hosny, A. H., Lamaei, O., & Choukri, O. (1979). Insecticidal and synergistic citrus oils isolated from citrus peels. Med Fac Landbouww Rijksuniv Gent, 44, 21–29.

    CAS  Google Scholar 

  • Abidin, A. F., Ekowati, N., & Ratnaningtyas, N. I. (2017). Compatibility of insecticides with entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Scripta Biologica, 4, 273–279.

    Article  Google Scholar 

  • Akbar, W., Jeffrey, C. L., James, R. N., & Thomas, M. L. (2005). Efficacy of Beauveria bassiana for red flour beetle when applied with plant essential oils or in mineral oil and organosilicone carriers. Journal of Economic Entomology, 98, 683–688.

    Article  PubMed  Google Scholar 

  • Ali, S., Zhang, C., Wang, Z., Wang, X. M., Wu, J. H., Cuthbertson, A. G., Shao, Z., & Qiu, B. L. (2017). Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Scientific Reports, 7, 46558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alizadeh, A., Samih, M. A., Khezri, M., & Riseh, R. S. (2007). Compatibility of Beauveria bassiana (Bals.) Vuill. Eith several insecticides. International Journal of Agriculture & Biology, 9, 31–34.

    Google Scholar 

  • Alumai, A., & Grewal, P. S. (2004). Tank-mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turfgrass. Biological Science and Technology, 14, 613–618.

    Google Scholar 

  • Alves, S. B., Haddad, M. L., Faion, M., de Baptista, G. C., & Rossi-Zalaf, L. S. (2007). Novo ındice biologico para classificacao da toxicidade de agrotoxicos para fungos entomopatogenicos (p. 10). Brasılia: Anais do X Siconbiol.

    Google Scholar 

  • Anderson, T. E., & Roberts, D. W. (1983). Compatibility of Beauveria bassiana isolates with insecticide formulations used in Colorado potato beetle (Coleoptera: Chrysomelidae) control. Journal of Economic Entomology, 76, 1437–1441.

    Article  CAS  Google Scholar 

  • Anderson, T. E., Hajek, A. E., Roberts, D. W., Preisler, H. K., & Robertson, J. L. (1989). Colorado potato beetle (Coleoptera: Chrysomelidae) effects of combinations of Beauveria bassiana with insecticides. Journal of Economic Entomology, 82, 83–89.

    Article  CAS  Google Scholar 

  • Asi, M. R., Bashir, M. H., Afzal, M., Ashfaq, M., & Sahi, S. T. (2010). Compatibility of entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus with selective insecticides. Pakistan Journal of Botany, 42, 4207–4214.

    Google Scholar 

  • Atwal, A. S., & Dhaliwal, G. S. (2015). Agricultural pests of South Asia and their management. Kalyani publishers. p 616.

    Google Scholar 

  • Baweja, V., & Sehgal, S. S. (1997). Potential of Heterorhabditis bacteriophora Poinar (Nematoda, Heterorhabditidae) in parasitizing Spodoptera litura Fabricius in response to malathion treatment. Acta Parasitologica, 42, 168–172.

    CAS  Google Scholar 

  • Bhandari, K., Sood, P., Mehta, P. K., Choudhary, A., & Prabhakar, C. S. (2009). Effect of botanical extracts on the biological activity of granulosis virus against Pieris brassicae. Phytoparasitica, 37, 317–322.

    Article  Google Scholar 

  • Chen, B., & Feng, M. G. (2003). Evaluation of interactive efficacy of two mycoinsecticides and low application rate imidacloprid in controlling greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). The Journal of Applied Ecology, 14, 1934–1938. [in Chinese].

    CAS  Google Scholar 

  • Chen, K. S., Funke, B. R., Schulz, J. T., Carlson, R. B., & Proshold, F. I. (1974). Effects of certain organophosphate and carbamate insecticides on Bacillus thuringiensis. Journal of Economic Entomology, 67, 471–473.

    Article  CAS  Google Scholar 

  • Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R., & Oakeshott, J. G. (2006). A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 15, 615–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Nardo, E. A. B., & Grewal, P. S. (2003). Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Science and Technology, 13, 441–448.

    Article  Google Scholar 

  • Dingman, D. W. (1994). Inhibitory effects of turf pesticides on Bacillus popilliae and the prevalence of milky Negrisoli disease. Applied and Environmental Microbiology, 60, 2343–2349.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, M. G., & Pu, X. Y. (2005). Time–concentration–mortality modeling of the synergistic interaction of Beauveria bassiana and imidacloprid against Nilaparvata lugens. Pest Management Science: Formerly Pesticide Science, 61, 363–370.

    Article  CAS  Google Scholar 

  • Gutierrez, C., Campos-Herrera, R., & Jimenez, J. (2008). Comparative study of the effect of selected agrochemical products on Steinernema feltiae (Rhabditida: Steinernematidae). Biocontrol Science and Technology, 18, 101–108.

    Article  Google Scholar 

  • Hara, A. H., & Kaya, H. K. (1982). Effects of selected insecticides and nematicides on the in vitro development of the entomogenous nematode Neoaplectana carpocapsae. Journal of Nematology, 14, 486–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan, A. E., & Charnley, A. K. (1987). The effect of dimilin on the ultrastructure of the integument of Manduca sexta. Journal of Insect Physiolology, 33, 669–676.

    Article  Google Scholar 

  • Hassan, A. E., & Charnley, A. K. (1989). Ultrastructural study of the penetration by Metarhizium anisopliae through dimilin affected cuticle of Manduca sexta. Journal of Invertebrate Pathology, 54, 117–124.

    Article  Google Scholar 

  • Head, J., Walters, K. F. A., & Langton, S. (2000). The compatibility of the entomopathogenic nematode, Steinernema feltiae, and chemical insecticides for the control of the south American leafminer, Liriomyza huidobrensis. BioControl, 45, 345–353.

    Article  CAS  Google Scholar 

  • Hiromori, H., & Nishigaki, J. (2001). Factor analysis of synergistic effect between the entomopathogenic fungus Metarhizium anisopliae and synthetic insecticides. Applied Entomology and Zoology, 36, 231–236.

    Article  CAS  Google Scholar 

  • Ishii, K., Adachi, T., Imamura, K., Takano, S., Usui, K., Suzuki, K., Hamamoto, H., Watanabe, T., & Sekimizu, K. (2012). Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella dependent mechanism. Journal of Biological Chemistry, 287, 36582–36592.

    Article  CAS  Google Scholar 

  • James, R. R. (2003). Combining azadirachtin and Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) to control Bemisia argentifolii (Homoptera: Aleyrodidae). Journal of Economic Entomology, 96, 25–30.

    Article  CAS  PubMed  Google Scholar 

  • James, R. R., & Elzen, G. W. (2001). Antagonism between Beauveria bassiana and imidacloprid when combined for Bemisia argentifolii control. Journal of Economic Entomology, 94, 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo, J., Borggemeister, C., Ebssa, L., Gailgl, A., Tobón, R., & Zimmernamm, G. (2005). Effect of combined application of Metarhizium anisopliae (Metsch.) Sorokin (Deuteromycotina: Hyphomycetes) strain CIAT 224 and different dosages of imidacloprid on the subterranean burrower bug Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae). Biological Control, 34, 12–20.

    Article  CAS  Google Scholar 

  • Jia, M., Cao, G., Li, Y., Tu, X., Wang, G., Nong, X., Whitman, D. W., & Zhang, Z. (2016). Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Scientific Reports, 6, 28424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaakeh, W., Reid, B. L., Bohnert, T. J., & Bennet, W. (1997). Toxicity of imidacloprid in the German cockroach (Dictyoptera: Blattellidae), and the synergism between imidacloprid and Metarhizium anisopliae (Imperfect fungi: Hyphomycetes). Journal of Economic Entomology, 90, 473–482.

    Article  Google Scholar 

  • Kaya, H. K., Burlando, T. M., Choo, H. Y., & Thruston, G. S. (1995). Integration of entomopathogennic nematodeswith Bacillus thuringiensis or pesticidal soap for control of insect pests. Biological Control, 5, 432–441.

    Article  Google Scholar 

  • Khalique, F., & Ahmed, K. (2005). Compatibility of bio-insecticide with chemical insecticide for management of Helicoverpa armigera Huebner. Pakisthan Journal of Biological Science, 8(3), 475–478.

    Article  Google Scholar 

  • Khattab, M. (2007). Enhancement of the cotton leaf worm, Spodoptera littoralis (Lepidoptera: Noctuidae) nucleopolyhedrovirus activity by Spinosad. Egyptian Journal of Biological Pest Control, 17, 147–152.

    Google Scholar 

  • Koppenhöfer, A. M., & Fuzy, E. M. (2003). Biological and chemical control of the Asiatic garden beetle, Maladera castanea (Coleoptera: Scarabaeidae). Journal of Economic Entomology, 96, 1076–1082.

    Article  PubMed  Google Scholar 

  • Koppenhöfer, A. M., Brown, I., Gaugler, R., Grewal, P. S., Kaya, H. K., & Klein, M. G. (2000). Synergism of entomopathogenic nematodes and imidacloprid against white grubs: Greenhouse and field evaluation. Biological Control, 19, 245–251.

    Article  Google Scholar 

  • Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., & Baumgartner, L. (2002). Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biological Control, 24, 90–97.

    Article  Google Scholar 

  • Krishnayya, P. V., & Grewal, P. S. (2002). Effect of neem and selected fungicides on viability and virulence of the entomopathogenic nematode Steinernema feltiae. Biocontrol Science and Technology, 12, 259–266.

    Article  Google Scholar 

  • Li, Z. Z., Yang, Z., & Tang, J. (1996). Impact of 12 chemical insecticides on conidial germination of 3 entomogenous fungi. Journal of AnHui Agricultural University, 23, 360–365. [in Chinese].

    Google Scholar 

  • Liu, L. J., Alam, M. S., Hirata, K., Matsuda, K., & Ozoe, Y. (2008). Actions of quinolizidine alkaloids on Periplanta americana nicotinic acetylcholine receptors. Pest Management Science, 64, 1222–1228.

    Article  CAS  PubMed  Google Scholar 

  • Luo, W. C., & Zhang, Q. (2003). The effects of Sophora alopecuroids alkaloids on metabolic esterases of the diamondback moth. Acta Entomologia Sincia, 46, 122–125.

    CAS  Google Scholar 

  • Mansour, N. A., Eldefrawi, M. E., & Toppozada, A. (1966). Toxicological studies on the Egyptian cotton leaf worm, Prodenia litura. Potentiation and antagonism of organophosphorus and carbamate insecticides. Journal of Economic Entomology, 59, 307–311.

    Article  CAS  Google Scholar 

  • McCutchen, B. F., Hoover, K., Preisler, H. K., Betana, M. D., Herrmann, R., Robertson, J. L., & Hammock, B. D. (1997). Interactions of recombinant and wild-type baculoviruses with classical insecticides and pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 90, 1170–1180.

    Article  CAS  PubMed  Google Scholar 

  • Méndez, W. A., Valle, J., Ibarra, J. E., Cisneros, J., Penagos, D. I., & Williams, T. (2002). Spinosad and nucleopolyhedrovirus mixtures for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biological Control, 25, 195–206.

    Article  Google Scholar 

  • Meyling, N. V., Arthur, S., Pedersen, K. E., Dhakal, S., Cedergreen, N., & Fredensborg, B. L. (2018). Implications of sequence and timing of exposure for synergy between the pyrethroid insecticide alpha-cypermethrin and the entomopathogenic fungus Beauveria bassiana. Pest Management Science, 74, 2488–2495.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, P. K., & Tandon, S. M. (2003). Compatibility of entomopathogenic Bacillus sphaericus strain R3 with chemical insecticides. Indian Journal of Microbiology, 43, 265–266.

    Google Scholar 

  • Mohan, M. C., Narasimha, P., Reddy, N. P., Devi, U. K., Kongara, R., & Sharma, H. C. (2007). Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology, 17, 1059–1069.

    Article  Google Scholar 

  • Moino, A., Jr., & Alves, S. B. (1998). Efeito de imicacloprid e fipronil sobre Beauveria bassiana (Bals.) Vuill. e Metarhizium anisopliae (Metsch.) Sorok. e no comportamento de limpeza de Heterotermes tenuis (Hagen). Anais da Sociedade Entomologica do Brasil, 27, 611–620.

    Article  CAS  Google Scholar 

  • Moorhouse, E. R., Gillespie, A. T., Sellers, E. K., & Charnley, A. K. (1992). Influence of fungicides and insecticides on the entomogenous fungus Metarhizium anisopliae a pathogen of the vine weevil, Otiorhynchus sulcatus. Biocontrol Science and Technology, 2, 49–58.

    Article  Google Scholar 

  • Morales-Rodriguez, A., & Peck, D. C. (2009). Synergies between biological and neonicotinoid insecticides for the curative control of the white grubs Amphimallon majale and Popillia japonica. Biological Control, 51, 169–180.

    Article  CAS  Google Scholar 

  • Muralibaskaran, R. K., Venugopal, N. S., & Mahadevan, N. R. (1999). Effect of certain botanicals on biological activity of nuclear polyhedrosis virus of tobacco caterpillar (Spodoptera litura). Indian Journal of Agricultural Sciences, 69, 224–226.

    Google Scholar 

  • Nathan, S. S., Chung, P. G., & Murugan, K. (2004). Effect of botanical insecticides and bacterial toxins on the gut enzyme of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica, 32, 433–443.

    Article  CAS  Google Scholar 

  • Negrisoli, A. S., Jr., Barbosa, C. R., & Moino, A., Jr. (2008). Avaliação da compatibilidade de produtos fitossanitários com nematóides entomopatogênicos (Rhabditida: Steinernematidae, Heterorhabditidae) utilizando o protocolo modificado da IOBC/WPRS. Nematologia Brasileira, 32, 111–116.

    Google Scholar 

  • Negrisoli, A. S., Garcia, M. S., & Barbosa-Negrisoli, C. R. C. (2010a). Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection, 29, 545–549.

    Article  Google Scholar 

  • Negrisoli, A. S., Garcia, M. S., Negrisoli, C. R. B., Bernardi, D., & da Silva, A. (2010b). Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn crops. Crop Protection, 29, 677–683.

    Article  Google Scholar 

  • Neves, P. M. O. J., Hirose, E., Tchujo, P. T., & Moino, A., Jr. (2001). Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotropical Entomology, 30, 263–268.

    Article  CAS  Google Scholar 

  • Niu, H., Wang, N., Liu, B., Xiao, L., Wang, L., & Guo, H. (2018). Synergistic and additive interactions of Serratia marcescens S-JS1 to the chemical insecticides for controlling Nilaparvata lugens (Hemiptera: Delphacidae). Journal of Economic Entomology, 111, 823–828.

    Article  PubMed  Google Scholar 

  • Nowierski, R. M., Zeng, Z., Jaronski, S., Delgado, F., & Swearingen, W. (1996). Analysis and modeling of time-dose-mortality of Melanoplus sanguinipes, Locusta migratoria migratorioides, and Schistocerca gregaria (Orthoptera: Acrididae) from Beauveria, Metarhizium, and Paecilomyces isolates from Madagascar. Journal of Invertebrate Pathology, 67, 236–252.

    Article  CAS  PubMed  Google Scholar 

  • Otieno, J. A., Pallmann, P., & Poehling, H. M. (2016). The combined effect of soil-applied azadirachtin with entomopathogens for integrated management of western flower thrips. Journal of Applied Entomology, 140, 174–186.

    Article  CAS  Google Scholar 

  • Pachamuthu, P., & Kamble, S. T. (2000). In vivo study on combined toxicity of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) strain ESC-1 with sublethal doses of chlorpyrifos, propetamphos, and cyfluthrin against German cockroach (Dictyoptera: Blattellidae). Journal of Econmic Entomology, 93, 60–70.

    Article  CAS  Google Scholar 

  • Polavarapu, S., Koppenhöfer, A. M., Barry, J. D., Holdcraft, R. J., & Fuzy, E. M. (2007). Entomopathogenic nematodes and neonicotinoids for remedial control of oriental beetle, Anomala orientalis (Coleoptera: Scarabaeidae), in highbush blueberry. Crop Protection, 26, 1266–1271.

    Article  Google Scholar 

  • Purwar, J. P., & Sachan, G. C. (2004). Synergistic effect of entomogenous fungi with some insecticides for management of mustard aphid Lipaphis erysimi (Kalt). Journal of Aphidology, 8, 11–14.

    Google Scholar 

  • Purwar, J. P., & Sachan, G. C. (2006). Synergistic effect of entomogenous fungi on some insecticides against Bihar hairy caterpillar Spilarctia obliqua (Lepidoptera: Arctiidae). Microbiological Research, 161(1), 38–42.

    Google Scholar 

  • Quintela, E. D., & McCoy, C. W. (1997). Pathogenicity enhancement of M. anisopliae and B. bassiana to first instars of Diaprepes abbreviatus (Coleoptera: Curculionidae) with sublethal doses of imidacloprid. Environmental Entomology, 26, 1173–1182.

    Article  CAS  Google Scholar 

  • Quintela, E. D., & McCoy, C. W. (1998a). Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. Journal of Economic Entomology, 91, 110–122.

    Article  CAS  Google Scholar 

  • Quintela, E. D., & McCoy, C. W. (1998b). Conidial attachment of Metarhizium anisopliae and Beauveria bassiana to the larval cuticle of Diaprepes abbreviatus (Coleoptera: Curculionidae) treated with imidacloprid. Journal of Invertebrate Pathology, 72, 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Quintela, E. D., Mascarin, G. M., da Silva, R. A., Barrigossi, J. A. F., & da Silva Martins, J. F. (2013). Enhanced susceptibility of Tibraca limbativentris (Heteroptera: Pentatomidae) to Metarhizium anisopliae with sublethal doses of chemical insecticides. Biological Control, 66(1), 56–64.

    Article  CAS  Google Scholar 

  • Ramakrishnan, R., Suiter, D. R., Nakatsu, C. H., Humber, R. A., & Bennett, G. W. (1999). Imidacloprid-enhanced Reticulitermes flavipes (Isoptera: Rhinotermitidae) susceptibility to the entomopathogen Metarhizium anisopliae. Journal of Economic Entomology, 92, 1125–1132.

    Article  CAS  Google Scholar 

  • Rovesti, L., & Deseo, K. V. (1990). Compatibility of chemical pesticides with the entomopathogenic nemetodes, Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica, 36, 237–245.

    Article  Google Scholar 

  • Russel, C. W., Ugine, T. A., & Hajek, A. E. (2010). Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) (Coleoptera: Cerambycidae). Journal of Invertebrate Pathology, 105, 305–311.

    Article  CAS  Google Scholar 

  • Sabino, P. D. S., Sales, F. S., Guevara, E. J., Moino, J., & Filgueiras, C. C. (2014). Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with insecticides used in the tomato crop. Nematoda, 2014(1), e03014. https://doi.org/10.4322/nematoda.03014.

    Google Scholar 

  • Salama, H. S., Foda, M. S., Zaki, F. N., & Moawad, S. (1984). Potency of combinations of Bacillus thuringiensis and chemical insecticides on Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology, 77, 885–890.

    Article  CAS  Google Scholar 

  • Schumacher, V., & Poehling, H. (2012). In vitro effect of pesticides on the germination, vegetative growth, and conidial production of two strains of Metarhizium anisopliae. Fungal Biology, 116, 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Selkirk, M. E., Henson, S. M., Russel, W. S., & Hussein, A. S. (2001). Acetylcholinesterase secretion by nematodes. In M. W. Kennedy & W. Harnett (Eds.), Parasitic nematodes: Molecular biology, biochemistry and immunology (pp. 211–229). New York: CABI.

    Chapter  Google Scholar 

  • Shakarami, J., Eftekharifar, R., Latifian, M., & Jafari, S. (2015). Insecticidal activity and synergistic effect of Beauvaria bassiana (Bals.) Vuill. and three botanical compounds against third instar larvae of Ephestia kuehniella Zeller. Research on Crops, 16(2).

    Google Scholar 

  • Silva, R. A. D., Quintela, E. D., Mascarin, G. M., Barrigossi, J. A. F., & Lião, L. M. (2013). Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Scientia Agricola, 70, 152–160.

    Article  Google Scholar 

  • Singh, A. K., Singh, A., & Joshi, P. (2016). Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. International Journal of Pest Management, 62, 222–227.

    Article  CAS  Google Scholar 

  • Stanley, J., & Preetha, G. (2015). Pesticide toxicity to microorganisms. In Pesticide toxicity to non-target organisms: Exposure, toxicity and risk assessment methodologies (pp. 351–410). Dordrecht: Springer.

    Google Scholar 

  • Stanley, J., Chandrasekaran, S., Preetha, G., & Kuttalam, S. (2010). Physical and biological compatibility of diafenthiuron with micro/macro nutrients fungicides and biocontrol agents used in cardamom. Archives of Phytopathology and Plant Protection, 43, 1396–1406.

    Article  CAS  Google Scholar 

  • Subbanna, A. R. N. S., Chandrashekara, C., Stanley, J., Mishra, K. K., Mishra, P. K., & Pattanayak, A. (2019). Bio-efficacy of chitinolytic Bacillus thuringiensis isolates native to northwestern Indian Himalayas and their synergistic toxicity with selected insecticides. Pesticide Biochemistry and Physiology.

    Google Scholar 

  • Sutter, G. R., Abrahamson, M. D., Hamilton, E. W., & Vick, I. D. (1971). Compatibility of Bacillus thuringiensis var. thuringiensis and chemical insecticides. 1. Effect of insecticide doses on bacterial replication rate. Journal of Economic Entomology, 64, 1348–1350.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Diao, H. L., Liang, L., Hao, C., Arthurs, S., & Ma, R. Y. (2015). Pathogenicity of Isaria fumosorosea to Bemisia tabaci, with some observations on the fungal infection process and host immune response. Journal of Invertebrate Pathology, 130, 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Vallet-Gely, I., Lemaitre, B., & Boccard, F. (2008). Bacterial strategies to overcome insect defences. Nature Reviews Microbiology, 6, 302–313.

    Article  CAS  PubMed  Google Scholar 

  • Vyas, R. V., Jani, J. J., & Yadav, D. N. (1992). Effect of some natural pesticides on entomogenous muscardine fungi. Indian Journal of Experimental Biology, 30, 435–436.

    CAS  PubMed  Google Scholar 

  • Wang, C., Henderson, G., & Gautam, B. K. (2013). Lufenuron suppresses the resistance of Formosan subterranean termites (Isoptera: Rhinotermitidae) to entomopathogenic bacteria. Journal of Economic Entomology, 106(4), 1812–1818.

    Article  CAS  PubMed  Google Scholar 

  • Yii, J. E., Bong, C. F. J., King, J. H. P., & Kadir, J. (2015). Synergism of entomopathogenic fungus, Metarhizium anisopliae incorporated with fipronil against oil palm pest subterranean termite, Coptotermes curvignathus. Plant Protection Science, 52, 35–44.

    Article  Google Scholar 

  • Zibaee, A., Bandani, A. R., & Tork, M. (2009). Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology, 19, 485–498.

    Article  Google Scholar 

  • Zimmerman, R. J., & Crashaw, W. S. (1990). Compatibility of three entomogenous nematodes (Rhabditida) in aqueous solutions of pesticides used in turfgrass maintenance. Journal of Economic Entomology, 83, 97–100.

    Article  CAS  Google Scholar 

  • Zou, C., Li, L., Dong, T., Zhang, B., & Hu, Q. (2014). Joint action of the entomopathogenic fungus Isaria fumosorosea and four chemical insecticides against the whitefly Bemisia tabaci. Biocontrol Science and Technology, 24, 315–324.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Indian Council of Agricultural Research (ICAR), New Delhi. Authors are thankful to Director, ICAR-VPKAS, Almora.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. N. S. Subbanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subbanna, A.R.N.S., Stanley, J., Venkateswarlu, V., Chinna Babu Naik, V., Khan, M.S. (2019). Toxicological Prospects on Joint Action of Microbial Insecticides and Chemical Pesticides. In: Khan, M., Ahmad, W. (eds) Microbes for Sustainable Insect Pest Management . Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-23045-6_12

Download citation

Publish with us

Policies and ethics