Skip to main content

Cultural Methods for Greenhouse Pest and Disease Management

  • Chapter
  • First Online:
Integrated Pest and Disease Management in Greenhouse Crops

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

Cultural control measures can be broadly divided into (a) general agricultural practices that can affect pest and disease incidence (e.g. greenhouse climate control, fertilization, irrigation as well as crop density, training and pruning practices) (b) practices that are solely or mainly used for pest and disease control (e.g. sanitation and insect screens), and (c) practices used for both agricultural and crop protection purposes (e.g. choice of crop cultivar and growing medium, grafting, crop rotation and composting). In this book chapter we describe the ways in which cultural control measures can influence pests and their natural enemies, diseases and their antagonists, and (induced) crop resistance. We discuss how this knowledge can be used to optimize integrated pest and disease management, with special reference to current developments, such as the shift from curative towards preventative pest and disease management, as well as developments in greenhouse energy saving practices and technologies used for sensing, monitoring and decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany AM, Al-Helal IM, Alzahrani SM, Alsadon AA, Ali IM, Elleithy RM (2012) Covering materials incorporating radiation-preventing techniques to meet greenhouse cooling challenges in arid regions: a review. Sci World J 2012:906360

    Article  Google Scholar 

  • Achuo EA, Prinsen E, Hofte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186

    Article  CAS  Google Scholar 

  • Aiello G, Giovino I, Vallone M, Catania P, Argento A (2018) A decision support system based on multisensor data fusion for sustainable greenhouse management. J Clean Prod 172:4057–4065

    Article  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Antignus Y (2000) Manipulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res 71:213–220

    Article  CAS  PubMed  Google Scholar 

  • Antignus Y, Mor N, Joseph RB, Lapidot M, Cohen S (1996) Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environ Entomol 25:919–924

    Article  Google Scholar 

  • Antignus Y, Lapidot M, Hadar D, Messika Y, Cohen S (1998) Ultraviolet-absorbing screens serve as optical barriers to protect crops from virus and insect pests. J Econ Entomol 91:1401–1405

    Article  Google Scholar 

  • Antignus Y, Nestel D, Cohen S, Lapidot M (2001) Ultraviolet-deficient greenhouse environment affects whitefly attraction and flight-behavior. Environ Entomol 30:394–399

    Article  Google Scholar 

  • Antoniou A, Tsolakidou MD, Stringlis IA, Pantelides IS (2017) Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front Plant Sci 8:2022

    Article  PubMed  PubMed Central  Google Scholar 

  • Arancon NQ, Edwards CA, Yardim EN, Oliver TJ, Byrne RJ, Keeney G (2007) Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicomposts. Crop Prot 26:29–39

    Article  Google Scholar 

  • Aylor DE (1990) The role of intermittent wind in the dispersal of fungal pathogens. Annu Rev Phytopathol 28:73–92

    Article  Google Scholar 

  • Baker KF (1962) Principles of heat treatment of soil and planting material. J Aust Inst Agric Sci 28:118–126

    Google Scholar 

  • Bakker FM, Klein ME, Mesa NC, Braun AR (1993) Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava. Exp Appl Acarol 17:97–113

    Google Scholar 

  • Bakker P, Pieterse CMJ, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97–102

    Article  CAS  PubMed  Google Scholar 

  • Ballare CL (2009) Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ 32:713–725

    Article  CAS  PubMed  Google Scholar 

  • Ballare CL (2014) Light regulation of plant defense. In: Annual review of plant biology, vol 65, pp 335–363

    Article  PubMed  CAS  Google Scholar 

  • Ballare CL, Caldwell MM, Flint SD, Robinson A, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241

    Article  CAS  PubMed  Google Scholar 

  • Bayu M, Ullah MS, Takano Y, Gotoh T (2017) Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 72:205–227

    Article  CAS  PubMed  Google Scholar 

  • Becktell MC, Daughtrey ML (2005) Temperature and leaf wetness requirements for pathogen establishment, incubation period, and sporulation of Phytophthora infestans on Petunia x hybrida. Plant Dis 89:975–979

    Article  CAS  PubMed  Google Scholar 

  • Belanger RR, Bowen PA, Ehret DL, Menzies JG (1995) Soluble silicon – its role in crop and disease management of greenhouse crops. Plant Dis 79:329–336

    Article  Google Scholar 

  • Bell ML, Baker JR (2000) Comparison of greenhouse screening materials for excluding whitefly (Homoptera: Aleyrodidae) and thrips (Thysanoptera: Thripidae). J Econ Entomol 93:800–804

    Article  CAS  PubMed  Google Scholar 

  • Bell ML, Baker JR (2001) Greenhouse insect screens – making the right selection. Nursery Pap:1–6

    Google Scholar 

  • Bentz JA, Reeves J, Barbosa P, Francis B (1995) Nitrogen-fertilizer effect on selection, acceptance, and suitability of Euphorbia pulcherrima (Euphorbiaceae) as a host-plant to Bemisia tabaci (Homoptera, Aleyrodidae). Environ Entomol 24:40–45

    Article  Google Scholar 

  • Ben-Yakir D, Teitel M, Tanny J, Chen M, Barak M (2008) Optimizing ventilation of protected crops while minimizing invasion by whitefly and thrips. Acta Hortic 797:217–222

    Article  Google Scholar 

  • Benyephet Y, Shtienberg D (1994) Effects of solar-radiation and temperature on fusarium-wilt in carnation. Phytopathology 84:1416–1421

    Article  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, Burmolle M, Herschend J, Bakker P, Pieterse CMJ (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlinger MJ, Mordechi S, Leeper A (1991) Application of screens to prevent whitefly penetration into greenhouses in the Mediterrenean Basin. In: Proceedings of the Working Group Integrated Control in Protected crops under Mediterranean Climate, Alassio, Italy, pp 105–110

    Google Scholar 

  • Berlinger MJ, Jarvis WR, Jewett TJ, Lebiush-Mordechi S (1999) Managing the greenhouse, crop and crop environment. In: Albajes R, Gullino ML, Lenteren JCV, Elad Y (eds) Integrated Pest and disease Management in Greenhouse Crops. Kluwer Academic Publishers, Dordrecht, pp 97–123

    Chapter  Google Scholar 

  • Berlinger MJ, Taylor RAJ, Lebiush-Mordechi S, Shalhevet S, Spharim I (2002) Efficiency of insect exclusion screens for preventing whitefly transmission of tomato yellow leaf curl virus of tomatoes in Israel. Bull Entomol Res 92:367–373

    Article  CAS  PubMed  Google Scholar 

  • Bethke JA, Paine TD (1991) Screen hole size and barriers for exclusion of insect pests of glasshouse crops. J Entomol Sci 26:169–177

    Article  Google Scholar 

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Article  Google Scholar 

  • Blacquiere, T., Aa-Furnée JVD, Cornelissen B, Donders JNLC (2006) Behaviour of honey bees and bumble bees beneath three different greenhouse claddings. Nederlandse Entomologische Vereniging (NEV)

    Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Bollen GJ (1969) The selective effect of heat treatment on the micro flora of a greenhouse soil. Neth J Plant Pathol 75:157–163

    Article  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala E (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bonato O, Lurette A, Vidal C, Fargues J (2007) Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiol Entomol 32:50–55

    Article  Google Scholar 

  • Bottrell DG, Barbosa P, Gould F (1998) Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu Rev Entomol 43:347–367

    Article  CAS  PubMed  Google Scholar 

  • Briere JF, Pracros P, Le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Article  Google Scholar 

  • Brodbeck BV, Stavisky J, Funderburk JE, Andersen PC, Olson SM (2001) Flower nitrogen status and populations of Frankliniella occidentalis feeding on Lycopersicon esculentum. Entomol Exp Appl 99:165–172

    Article  CAS  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant SR, Bale JS, Thomas CD (1999) Comparison of development and growth of nettle-feeding larvae of Nymphalidae (Lepidoptera) under constant and alternating temperature regimes. Eur J Entomol 96:143–148

    Google Scholar 

  • Buitenhuis R, Shipp JL (2006) Factors influencing the use of trap plants for the control Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse potted chrysanthemum. Environ Entomol 35:1411–1416

    Article  Google Scholar 

  • Buitenhuis R, Shipp JL (2008) Influence of plant species and plant growth stage on Frankliniella occidentalis pupation behaviour in greenhouse ornamentals. J Appl Entomol 132:86–88

    Article  Google Scholar 

  • Buitenhuis R, Shipp JL, Jandricic S, Murphy G, Short M (2007) Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals. Pest Manag Sci 63:910–917

    Article  CAS  PubMed  Google Scholar 

  • Buitenhuis R, Brownbridge M, Brommit A, Saito T, Murphy G (2016) How to start with a clean crop: biopesticide dips reduce populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on greenhouse poinsettia propagative cuttings. Insects 7:13

    Article  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012) Impact of anaerobic soil disinfestation combined with soil solarization on plant-parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Butlin RK, Day TH (1985) Adult size, longevity and fecundity in the seaweed fly, Coelopa frigida. Heredity 54:107–110

    Article  Google Scholar 

  • Caldwell MM, Ballare CL, Bornman JF, Flint SD, Bjorn LO, Teramura AH, Kulandaivelu G, Tevini M (2003) Terrestrial ecosystems increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 2:29–38

    Article  CAS  PubMed  Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Article  Google Scholar 

  • Carneiro GA, Matic S, Ortu G, Garibaldi A, Spadaro D, Gullino ML (2017) Development and validation of a TaqMan real-time PCR assay for the specific detection and quantification of Fusarium fujikuroi in Rice plants and seeds. Phytopathology 107:885–892

    Article  CAS  PubMed  Google Scholar 

  • Castle SJ, Henneberry TJ, Toscano NC (1996) Suppression of Bemisia tabaci (Homoptera: Aleyrodidae) infestations in cantaloupe and cotton with sprinkler irrigation. Crop Prot 15:657–663

    Article  Google Scholar 

  • Cave RD, Gaylor MJ (1989) Functional response of Telenomus reynoldsi Hym, Scelionidae at 5 constant temperatures and in an artificial plant arena. Entomophaga 34:3–10

    Article  Google Scholar 

  • Celio GJ, Hausbeck MK (1998) Conidial germination, infection structure formation, and early colony development of powdery mildew on poinsettia. Phytopathology 88:105–113

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Story R, Samuel-Foo M (2014) Effects of nitrogen and phosphorous fertilization on western flower thrips population level and quality of susceptible and resistant Impatiens. Adv Crop Sci Technol 2:145

    Article  CAS  Google Scholar 

  • Chiel E, Messika Y, Steinberg S, Antignus Y (2006) The effect of UV-absorbing plastic sheet on the attraction and host location ability of three parasitoids: Aphidius colemani, Diglyphus isaea and Eretmocerus mundus. BioControl 51:65–78

    Article  Google Scholar 

  • Chow A, Chau A, Heinz KM (2009) Reducing fertilization for cut roses: effect on crop productivity and Twospotted spider mite abundance, distribution, and management. J Econ Entomol 102:1896–1907

    Article  CAS  PubMed  Google Scholar 

  • Chow A, Chau A, Heinz KM (2012) Reducing fertilization: a management tactic against western flower thrips on roses. J Appl Entomol 136:520–529

    Article  Google Scholar 

  • Chyzik R, Dobrinin S, Antignus Y (2003) Effect of a UV-deficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite aphidius matricariae. Phytoparasitica 31:467–477

    Article  Google Scholar 

  • Clarke ND, Shipp JL, Papadopoulos AP, Jarvis WR, Khosla S, Jewett TJ, Ferguson G (1999) Development of the harrow greenhouse manager: a decision-support system for greenhouse cucumber and tomato. Comput Electron Agric 24:195–204

    Article  Google Scholar 

  • Cochard P, Galstian T, Cloutier C (2017) Light environments differently affect parasitoid wasps and their hosts’ locomotor activity. J Insect Behav 30:595–611

    Article  Google Scholar 

  • Colinet H, Boivin G, Hance T (2007) Manipulation of parasitoid size using the temperature-size rule: fitness consequences. Oecologia 152:425–433

    Article  CAS  PubMed  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. In: Annual review of entomology, pp 375–400

    Article  CAS  PubMed  Google Scholar 

  • Correa RSB, Moraes JC, Auad AM, Carvalho GA (2005) Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotrop Entomol 34:429–433

    Article  CAS  Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49

    Article  Google Scholar 

  • Costa HS, Robb KL, Wilen CA (2002) Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J Econ Entomol 95:113–120

    Article  CAS  PubMed  Google Scholar 

  • Curtis OF (1936) Leaf temperature and the cooling of leaves by radiation. Plant Physiol 11:343–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Addabbo T, Miccolis V, Basile M, Candido V (2010) Soil Solarization and sustainable agriculture. In: Lichtfouse E (ed) Sociology, organic farming, climate change and soil science. Springer Netherlands, Dordrecht, pp 217–274

    Chapter  Google Scholar 

  • Dader B, Legarrea S, Moreno A, Plaza M, Carmo-Sousa M, Amor F, Vinuela E, Fereres A (2015a) Control of insect vectors and plant viruses in protected crops by novel pyrethroid-treated nets. Pest Manag Sci 71:1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Dader B, Plaza M, Fereres A, Moreno A (2015b) Flight behaviour of vegetable pests and their natural enemies under different ultraviolet-blocking enclosures. Ann Appl Biol 167:116–126

    Article  Google Scholar 

  • Datnoff LE, Elmer WH (2018) Mineral nutrition and florists’ crop diseases. In McGovern RJ, Elmer WH (eds) Handbook of florist crop diseases. Springer, p 237–252

    Google Scholar 

  • Datnoff LE, Elmer WH, Huber DM (2007a) Mineral nutrition and plant disease. The American Phytopathological Society Press, Saint Paul

    Google Scholar 

  • Datnoff LE, Rodrigues FA, Seebold KW (2007b) Silicon and plant disease. Miner Nutr Plant Dis:233–246

    Google Scholar 

  • Davis JA, Radcliffe EB, Ragsdale DW (2006) Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae). Environ Entomol 35:1461–1468

    Article  Google Scholar 

  • De Gelder A, Dieleman JA (2012) Validating the concept of the next generation greenhouse cultivation: an experiment with tomato. Acta Hortic 952:545–550

    Article  Google Scholar 

  • De Zwart HF (2014) Energy conserving dehumidification of greenhouses. Acta Hortic 1037:203–210

    Article  Google Scholar 

  • Demkura PV, Ballare CL (2012) UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling Sinapate accumulation. Mol Plant 5:642–652

    Article  PubMed  CAS  Google Scholar 

  • DeShields JB, Bomberger RA, Woodhall JW, Wheeler DL, Moroz N, Johnson DA, Tanaka K (2018) On-site molecular detection of soil-borne phytopathogens using a portable real-time PCR system. Jove-J Vis Exp

    Google Scholar 

  • DeVay JE, Katan J (1991) Mechanisms of pathogen control in solarized soils. In: Katan J, DeVay JE (eds) Soil solarization. CRC, London, pp 97–101

    Google Scholar 

  • Diaz BM, Fereres A (2007) Ultraviolet-blocking materials as a physical barrier to control insect pests and plant pathogens in protected crops. Pest Technol 1:85–95

    Google Scholar 

  • Dixon AFG, Honek A, Keil P, Kotela MAA, Sizling AL, Jarosik V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264

    Article  Google Scholar 

  • Doker I, Kazak C, Karut K (2016) Functional response and fecundity of a native Neoseiulus californicus population to Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) at extreme humidity conditions. Syst Appl Acarol 21:1463–1472

    Google Scholar 

  • Doukas D, Payne CC (2007) Effects of UV-blocking films on the dispersal behavior of Encarsia formosa (Hymenoptera: Aphelinidae). J Econ Entomol 100:110–116

    Article  PubMed  Google Scholar 

  • Duffy B (2007) Zinc and plant disease. In: Datnoff LE, Elmer WH, Huber DN (eds) Mineral nutrition and plant disease. The Americal Phytopathological Soc. Press, Saint Paul, pp 155–176

    Google Scholar 

  • Dyer AG, Chittka L (2004) Bumblebee search time without ultraviolet light. J Exp Biol 207:1683–1688

    Article  PubMed  Google Scholar 

  • Eden MA, Hill RA, Beresford R, Stewart A (1996) The influence of inoculum concentration, relative humidity, and temperature on infection of greenhouse tomatoes by Botrytis cinerea. Plant Pathol 45:795–806

    Article  Google Scholar 

  • Ehret DL, Alsanius B, Wohanka W, Menzies JG, Utkhede R (2001) Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21:323–339

    Article  Google Scholar 

  • Elad Y, Malathrakis NE, Dik AJ (1996) Biological control of Botrytis-incited diseases and powdery mildews in greenhouse crops. Crop Prot 15:229–240

    Article  Google Scholar 

  • Elings A, De Zwart HF, Janse J, Marcelis LFM, Buwalda F (2006) Multiple-day temperature settings on the basis of the assimilate balance: a simulation study. Acta Hortic 718:219–226

    Google Scholar 

  • El-Laithy (1992) Some aspects on the use of the predaceous mite Phytoseiulus persimilis Athis-Henriot for biological control of the two-spotted spider mite Tetranynchus urticae Koch in greenhouses in Egypt. J Plant Dis Protect 9:93–100

    Google Scholar 

  • Elmer WH (2002) Seeds as vehicles for pathogen importation. Biol Invasions 3:263–271

    Article  Google Scholar 

  • Elmer WH (2007) Chlorine and plant disease. In: Datnoff LE, Elmer WH, Huber DN (eds) Mineral nutrition and plant disease. The American Phytopathological Soc. Press, Saint Paul, pp 189–202

    Google Scholar 

  • Elmer WH, McGovern RJ (2013) Epidemiology and Management of Fusarium Wilt of China asters. Plant Dis 97:530–536

    Article  PubMed  Google Scholar 

  • Elmer WH, Stephens CT (1988) Comparison of technique for eliminating contaminants from asparagus seeds. HortScience 23:1031–1032

    Google Scholar 

  • Elmer WH, White JC (2018) Role of nanotechnology in plant pathology. Annu Rev Phytopathol 56:6.1–6.23

    Article  CAS  Google Scholar 

  • Elmer WH, Gent MPN, McAvoy RJ (2012) Partial saturation under ebb and flow irrigation suppresses Pythium root rot of ornamentals. Crop Prot 33:29–33

    Article  Google Scholar 

  • Elmer WH, Buck J, Ahonis MO, Copes W (2014) Emerging technologies for irrigation water treatments. In: Hong C, Moorman GW, Wohanka W, Büttner C (eds) Biology, detection, and management of plant pathogens in irrigation water. Springer Inc., New York, pp 289–302

    Google Scholar 

  • Englund G, Ohlund G, Hein CL, Diehl S (2011) Temperature dependence of the functional response. Ecol Lett 14:914–921

    Article  PubMed  Google Scholar 

  • Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, Klinkhamer PGL, Leiss KA (2018) Light intensity-mediated induction of Trichome-associated Allelochemicals increases resistance against Thrips in tomato. Plant Cell Physiol 59:2462–2475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PGL (2019) Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. J Exp Bot 70:315–327

    Article  CAS  PubMed  Google Scholar 

  • Expert D (2007) Iron and plant disease. In: Datnoff LE, Elmer WH, Huber DN (eds) Mineral nutrition and plant disease. APS Press, St. Paul, pp 119–138

    Google Scholar 

  • Ferrero M, Gigot C, Tixier MS, van Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135:237–244

    Article  Google Scholar 

  • Fink U, Volkl W (1995) The effect of abiotic factors on foraging and oviposition success of the aphid parasitoid, aphidius-rosae. Oecologia 103:371–378

    Article  PubMed  Google Scholar 

  • Fisher PR, Heins RD, Ehler N, Lieth JH (1997a) A decision-support system for real-time management of Easter lily (Lilium longiflorum Thunb) scheduling and height .1. System description. Agric Syst 54:23–37

    Article  Google Scholar 

  • Fisher PR, Heins RD, Ehler N, Lieth JH, Brogaard M, Karlsen P (1997b) A decision-support system for real-time management of Easter lily (Lilium longiflorum Thunb) scheduling and height .2. Validation. Agric Syst 54:39–55

    Article  Google Scholar 

  • Flinn PW (1991) Temperature-dependent functional-response of the parasitoid Cephalonomia-waterstoni (gahan) (Hymenoptera, Bethylidae) attacking rusty grain beetle larvae (Coleoptera, Cucujidae). Environ Entomol 20:872–876

    Article  Google Scholar 

  • Fones H, Preston GM (2013) The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 37:495–519

    Article  CAS  PubMed  Google Scholar 

  • Fourtouni A, Manetas Y, Christias C (1998) Effects of UV-B radiation on growth, pigmentation, and spore production in the phytopathogenic fungus Alternaria solani. Can J Bot-Revue Can Bot 76:2093–2099

    Article  CAS  Google Scholar 

  • Frank SD (2010) Biological control of arthropod pests using banker plant systems: past progress and future directions. Biol Control 52:8–16

    Article  Google Scholar 

  • Freeman S, Katan J (1988) Weakening effect on propagules of Fusarium by sublethal heating. Phytopathology 78:1656–1661

    Article  Google Scholar 

  • Gardiner DC, Horst RK, Nelson PE (1987) Symptom enhancement of Fusarium-wilt of chrysanthemum by high-temperatures. Plant Dis 71:1106–1109

    Article  Google Scholar 

  • Gelsomino A, Petrovicova B, Zaffina F, Peruzzi A (2010) Chemical and microbial properties in a greenhouse loamy soil after steam disinfestation alone or combined with CaO addition. Soil Biol Biochem 42:1091–1100

    Article  CAS  Google Scholar 

  • Gent MPN, Elmer WH, McAvoy RJ (2012) Water use efficiency with rapid watering of potted plants on flooded floors. Acta Hortic 927:101–107

    Article  Google Scholar 

  • Gilkeson LA, Hill SB (1986) Diapause prevention in Aphidoletes aphidimyza (Dipertera, Cecidomyiidae) by low-intensity light. Environ Entomol 15:1067–1069

    Article  Google Scholar 

  • Gillespie DR, Quiring DMJ (2002) Effects of photoperiod on induction of diapause in Feltiella acarisuga (Diptera: Cecidomyiidae). Can Entomol 134:69–75

    Article  Google Scholar 

  • Gols R, Harvey JA (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev 8:187–206

    Article  CAS  Google Scholar 

  • Goud JKC, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on Verticillium wilt. Plant Dis 88:688–694

    Article  PubMed  Google Scholar 

  • Grant JA, Villani MG (2003) Soil moisture effects on entomopathogenic nematodes. Environ Entomol 32:80–87

    Article  Google Scholar 

  • Gresens SE, Cothran ML, Thorp JH (1982) The influence of temperature on the functional-response of the dragonfly Celithemis-fasciata (Odonata, Libellulidae). Oecologia 53:281–284

    Article  PubMed  Google Scholar 

  • Gupta MK, Samuel DVK, Sirohi NPS (2010) Decision support system for greenhouse seedling production. Comput Electron Agric 73:133–145

    Article  Google Scholar 

  • Habib S, Akram M, Ashraf A (2017) Fuzzy climate decision support systems for tomatoes in high tunnels. Int J Fuzzy Syst 19:751–775

    Article  Google Scholar 

  • Hao X, Zhang Y, Shipp L, Borhan MS (2008) Adaptation and validation of a dynamic plant surface microclimate model (PSCLIMATE) for greenhouse tomatoes. Trans ASABE 51:1715–1725

    Article  Google Scholar 

  • Hectors K, Prinsen E, De Coen W, Jansen MAK, Guisez Y (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–270

    Article  CAS  PubMed  Google Scholar 

  • Hemming S, Kempkes FLK, Janse J (2012) New greenhouse cncept with high insulating double glass and new climate control strategies – modelling and first results from a cucumber experiment. Acta Hortic 952:231–239

    Article  Google Scholar 

  • Hemming S, Balendonck J, Dieleman JA, de Gelder A, Kempkes FLK, Swinkels GLAM, de Visser PHB, de Zwart HF (2017) Innovations in greenhouse systems – energy conservation by system design, sensors and decision support systems. Acta Hortic 1170:1–16

    Article  Google Scholar 

  • Hirama J, Seki K, Hosodani N (2007) Development of a physical control device for insect pests using a yellow LED light source – results of behavioural observations on the Noctuidae family. J Sci High Technol Agric 19:34–40

    Article  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • Holmes ND, Kirk WDJ (2007) Can diel activity patterns in the western flower thrips be exploited as part of an IPM strategy? J Insect Sci 7–15

    Google Scholar 

  • Honda Y, Toki T, Yunoki T (1977) Control of gray mold of greenhouse cucumber and tomato by inhibiting sporulation. Plant Dis Report 61:1041–1044

    Google Scholar 

  • Hong CGW, Moorman W, Wohanka W, Büttner C (2014) Biology, detection, and management of plant pathogens in irrigation water. Springer Inc, Dordrecht

    Google Scholar 

  • Huang NX, Enkegaard A, Osborne LS, Ramakers PMJ, Messelink GJ, Pijnakker J, Murphy G (2011) The banker plant method in biological control. Crit Rev Plant Sci 30:259–278

    Article  Google Scholar 

  • Huber DM (2007) Nitrogen and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Soc. Press, St. Paul, pp 31–44

    Google Scholar 

  • Huber L, Gillespie TJ (1992) Modeling leaf wetness in relation to plant-disease epidemiology. Annu Rev Phytopathol 30:553–577

    Article  Google Scholar 

  • Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, Ballare CL (2006) Remote sensing of future competitors: impacts on plant defenses. Proc Natl Acad Sci U S A 103:7170–7174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalali MA, Tirry L, De Clercq P (2010) Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl 55:261–269

    Article  Google Scholar 

  • Jarvis WR (1992) Managing diseases in greenhouse crops. APS Press, St. Paul

    Google Scholar 

  • Jarvis WR (1994) Latent infections in the preharvest and postharvest environment. HortScience 29:749–751

    Article  Google Scholar 

  • Jarvis WR, Shaw LA, Traquair JA (1989) Factors affecting antagonism of cucumber powdery mildew by Stephanoascus-flocculosus and Stephanoascus-rugulosus. Mycol Res 92:162–165

    Article  Google Scholar 

  • Jayaraj J, Radhakrishnan NV (2008) Enhanced activity of introduced biocontrol agents in solarized soils and its implications on the integrated control of tomato damping-off caused by Pythium spp. Plant Soil 304:189–197

    Article  CAS  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology. p 407–431

    Article  CAS  PubMed  Google Scholar 

  • Jerbi-Elayed M, Lebdi-Grissa K, Le Goff G, Hance T (2015) Influence of temperature on flight, walking and oviposition capacities of two aphid parasitoid species (Hymenoptera: Aphidiinae). J Insect Behav 28:157–166

    Article  Google Scholar 

  • Jewett TJ, Jarvis WR (2001) Management of the greenhouse microclimate in relation to disease control: a review. Agronomie 21:351–366

    Article  Google Scholar 

  • Johansen NS, Vanninen I, Pinto DM, Nissinen AI, Shipp L (2011) In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops. Ann Appl Biol 159:1–27

    Article  Google Scholar 

  • Johansen NS, Tadesse BA, Suthaparan A, Stensvand A, From PJ, Gadoury DM (2017) Nighttime treatments of ultraviolet (UV) light targeting powdery mildews also suppress the two-spotted spider mite (Tetranychus urticae). Phytopathology 107:77–77

    Google Scholar 

  • Johkan M, Shoji K, Goto F, Hahida S, Yoshihara T (2012) Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot 75:128–133

    Article  CAS  Google Scholar 

  • Jones JP, Engelhard AW, Woltz SS (1989) Management of Fusarium wilt of vegetables and ornamentals by macro- and microelement nutrition. In: Engelhard AW (ed) Soilborne plant pathogens: management of diseases with macro- and microelements. APS Press, St. Paul, pp 18–32

    Google Scholar 

  • Katan J (1987) Soil solarization. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 77–105

    Google Scholar 

  • Katan J (1996) Cultural practices and soil-borne disease management. In: Utkhede R, Gupta VK (eds) Management of soil-borne diseases. Kalyami Publishers, New Delhi, pp 100–122

    Google Scholar 

  • Katan J (2000) Physical and cultural methods for the management of soil-borne pathogens. Crop Prot 19:725–731

    Article  Google Scholar 

  • Kempkes F, Janse J, Hemming S (2014) Greenhouse concept with high insulation double glass with coatings and new climate control strategies: from design to results from tomato experiments. Acta Hortic 1037:83–92

    Article  Google Scholar 

  • Kennedy MK (1974) Survival and development of Bradysia impatiens (Diptera – Sciaridae) on fungal and non-fungal food resources. Ann Entomol Soc Am 67:745–749

    Article  Google Scholar 

  • Kerssies A (1992) Epidemiology of Botrytis cinerea in gerbera and rose grown in glasshouses. In: Verhoeff K, Malathrakis NE, Williams B (eds) Advances in Botrytis research. Pudoc Scientific Publishers, Wageningen, pp 159–162

    Google Scholar 

  • Kerssies A (1993) Influence of environmental-conditions on dispersal of Botrytis-cinerea conidia and on postharvest infection of Gerbera flowers grown under glass. Plant Pathol 42:754–762

    Article  Google Scholar 

  • Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33:1–11

    Article  Google Scholar 

  • Koohakan P, Ikeda H, Jeanaksorn T, Tojo M, Kusakari SI, Okada K, Sato S (2004) Evaluation of the indigenous microorganisms in soilless culture: occurrence and quantitative characteristics in the different growing systems. Sci Hortic 101:179–188

    Article  Google Scholar 

  • Körner O, Holst N (2005) Model based humidity control of botrytis in greenhouse cultivation. Acta Hortic 691:141–148

    Google Scholar 

  • Korner O, Van Straten G (2008) Decision support for dynamic greenhouse climate control strategies. Comput Electron Agric 60:18–30

    Article  Google Scholar 

  • Kraiselburd I, Moyano L, Carrau A, Tano J, Orellano EG (2017) Bacterial photosensory proteins and their role in plant-pathogen interactions. Photochem Photobiol 93:666–674

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol Biotechnol 41:37–42

    Google Scholar 

  • Kring JB (1972) Flight behavior of aphids. Annu Rev Entomol 17:461

    Article  Google Scholar 

  • Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:119–131

    Article  Google Scholar 

  • Krug H, Romey A, Rath T (2007) Decision support for climate dependent greenhouse production planning and climate control by modelling. II. Modelling plant growth. Eur J Hortic Sci 72:145–151

    Google Scholar 

  • Kuhar TP, Short BD, Krawczyk G, Leskey TC (2017) Deltamethrin-incorporated nets as an integrated pest management tool for the invasive Halyomorpha halys (Hemiptera: Pentatomidae). J Econ Entomol 110:543–545

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann F, Muller C (2011) Impacts of ultraviolet radiation on interactions between plants and herbivorous insects: a chemo-ecological perspective. Prog Bot 72:305–347

    CAS  Google Scholar 

  • Kung SP, Gaugler R, Kaya HK (1991) Effects of soil-temperature, moisture, and relative-humidity on entomopathogenic nematode persistence. J Invertebr Pathol 57:242–249

    Article  Google Scholar 

  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plan Theory 4:112–166

    Google Scholar 

  • Legarrea S, Karnieli A, Fereres A, Weintraub PG (2010) Comparison of UV-absorbing nets in pepper crops: spectral properties, effects on plants and Pest control. Photochem Photobiol 86:324–330

    Article  CAS  PubMed  Google Scholar 

  • Legarrea S, Weintraub PG, Plaza M, Vinuela E, Fereres A (2012) Dispersal of aphids, whiteflies and their natural enemies under photoselective nets. BioControl 57:523–532

    Article  Google Scholar 

  • Legarrea S, Velazquez E, Aguado P, Fereres A, Morales I, Rodriguez D, Del Estal P, Vinuela E (2014) Effects of a photoselective greenhouse cover on the performance and host finding ability of Aphidius ervi in a lettuce crop. BioControl 59:265–278

    Article  Google Scholar 

  • Liang XH, Lei ZR, Wen JZ, Zhu ML (2010) The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse. Insect Sci 17:535–541

    Article  Google Scholar 

  • Lifshitz R, Tabachnik M, Katan J, Chet I (1983) The effect of sublethal heating on sclerotia of Sclerotium-rolfsii. Can J Microbiol 29:1607–1610

    Article  Google Scholar 

  • Liu HJ, Lee SH, Chahl JS (2017) A review of recent sensing technologies to detect invertebrates on crops. Precis Agric 18:635–666

    Article  Google Scholar 

  • Lopez A, Molina-Aiz FD, Valera DL, Pena A (2016) Wind tunnel analysis of the airflow through insect-proof screens and comparison of their effect when installed in a Mediterranean greenhouse. Sensors:16

    Google Scholar 

  • Luvisi A, Materazzi A, Triolo E (2006) Steam and exothermic reactions as alternative techniques to control soil-borne diseases in basil. Agron Sustain Dev 26:201–207

    Article  Google Scholar 

  • Magarey RD, Sutton TB, Thayer CL (2005) A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95:92–100

    Article  CAS  PubMed  Google Scholar 

  • Magie RO (1971) Effectiveness of treatments with hot water plus benzimidazoles and ethephon in controlling Fusarium disease of gladiolus. Plant Dis Report 55:82–85

    CAS  Google Scholar 

  • Mahlein A-K (2016) Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–251

    Article  PubMed  Google Scholar 

  • Makhlouf S, Laghrouche M, Adane A (2016) Hot wire sensor-based data acquisition system for controlling the laminar boundary layer near plant leaves within a greenhouse. IEEE Sensors J 16:2650–2657

    Article  Google Scholar 

  • Marois JJ, Redmond JC, Macdonald JD (1988) Quantification of the impact of environment on the susceptibility of Rosa-hybrida flowers to Botrytis-cinerea. J Am Soc Hortic Sci 113:842–845

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen-content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Mazza CA, Izaguirre MM, Zavala J, Scopel AL, Ballare CL (2002) Insect perception of ambient ultraviolet-B radiation. Ecol Lett 5:722–726

    Article  Google Scholar 

  • McGuire R, Agrawal AA (2005) Trade-offs between the shade-avoidance response and plant resistance to herbivores? Tests with mutant Cucumis sativus. Funct Ecol 19:1025–1031

    Article  Google Scholar 

  • Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM (2018) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224

    Article  PubMed  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wackers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Messenger PS (1968) Bioclimatic studies of aphid parasite Praon exsoletum .1. Effects of temperature on functional response of females to varying host densities. Can Entomol 100:728

    Article  Google Scholar 

  • Meyer-Rochow VB, Kashiwagi T, Eguchi E (2002) Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron 33:23–31

    Article  CAS  PubMed  Google Scholar 

  • Miguel AF (1998) Airflow through porous screens: from theory to practical considerations. Energ Buildings 28:63–69

    Article  Google Scholar 

  • Miguel AF, van de Braak NJ, Bot GPA (1997) Analysis of the airflow characteristics of greenhouse screening materials. J Agric Eng Res 67:105–112

    Article  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Article  Google Scholar 

  • Miyake Y, Takahashi E (1983) Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci Plant Nutr 29:71–83

    Article  CAS  Google Scholar 

  • Mollema C, Cole RA (1996) Low aromatic amino acid concentrations in leaf proteins determine resistance to Frankliniella occidentalis in four vegetable crops. Entomol Exp Appl 78:325–333

    Article  CAS  Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jarq-Jpn Agric Res Q 42:7–12

    Article  CAS  Google Scholar 

  • Momma N (2015) Studies on mechanisms of anaerobicity-mediated biological soil disinfestation and its practical application. J Gen Plant Pathol 81:480–482

    Article  Google Scholar 

  • Monetti LN, Croft BA (1997) Neoseiulus calfornicus (McGregor) and Neoseiulus fallacis (Garman): larval responses to prey and humidity, nymphal feeding drive and nymphal predation on phytoseiid eggs. Exp Appl Acarol 21:225–234

    Article  Google Scholar 

  • Montagne V, Capiaux H, Cannavo P, Charpentier S, Renaud S, Liatard E, Grosbellet C, Lebeau T (2016) Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops. Sci Hortic 206:62–70

    Article  Google Scholar 

  • Moreau TL, Isman MB (2011) Trapping whiteflies? A comparison of greenhouse whitefly (Trialeurodes vaporariorum) responses to trap crops and yellow sticky traps. Pest Manag Sci 67:408–413

    Article  CAS  PubMed  Google Scholar 

  • Moreau TL, Isman MB (2012) Combining reduced-risk products, trap crops and yellow sticky traps for greenhouse whitefly (Trialeurodes vaporariorum) management on sweet peppers (Capsicum annum). Crop Prot 34:42–46

    Article  CAS  Google Scholar 

  • Morra L, Carrieri R, Fornasier F, Mormile P, Rippa M, Baiano S, Cermola M, Piccirillo G, Lahoz E (2018) Solarization working like a “solar hot panel” after compost addition sanitizes soil in thirty days and preserves soil fertility. Appl Soil Ecol 126:65–74

    Article  Google Scholar 

  • Morrow RC (2008) LED lighting in horticulture. HortScience 43:1947–1950

    Article  Google Scholar 

  • Neher DA, Fang L, Weicht TR (2017) Ecoenzymes as indicators of compost to suppress Rhizoctonia Solani. Compost Sci Utilization 25:251–261

    Article  CAS  Google Scholar 

  • Newhall AG (1955) Disinfestation of soil by heat, flooding and fumigation. Bot Rev 21:189–250

    Article  CAS  Google Scholar 

  • Nicot PC, Mermier M, Vaissiere BE, Lagier J (1996) Differential spore production by Botrytis cinerea on agar medium and plant tissue under near-ultraviolet light-absorbing polyethylene film. Plant Dis 80:555–558

    Article  Google Scholar 

  • Nomura K, Oya S, Watanabe I, Kawamura H (1965) Studies on orchard illumination effects, and the influence of light elements on months’ activities. Jpn J Appl Entomol Zool 9:179–186. (in Japanese with English summary)

    Article  Google Scholar 

  • Northfield TD, Paini DR, Funderburk JE, Reitz SR (2008) Annual cycles of Frankliniella spp. (Thysanoptera: Thripidae) thrips abundance on North Florida uncultivated reproductive hosts: predicting possible sources of pest outbreaks. Ann Entomol Soc Am 101:769–778

    Article  Google Scholar 

  • Olson DL, Oetting RD, van Iersel MW (2002) Effect of soilless potting media and water management on development of fungus gnats (Diptera: Sciaridae) and plant growth. HortScience 37:919–923

    Article  Google Scholar 

  • Onzo A, Sabelis MW, Hanna R (2010) Effects of ultraviolet radiation on predatory mites and the role of refuges in plant structures. Environ Entomol 39:695–701

    Article  PubMed  Google Scholar 

  • Opit GP, Fitch GK, Margolies DC, Nechols JR, Williams KA (2006) Overhead and drip-tube irrigation affect twospotted spider mites and their biological control by a predatory mite on impatiens. HortScience 41:691–694

    Article  Google Scholar 

  • Otter JA, Cummins M, Ahmad F, van Tonder C, Drabu YJ (2007) Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J Hosp Infect 67:182–188

    Article  CAS  PubMed  Google Scholar 

  • Palevsky E, Walzer A, Gal S, Schausberger P (2008) Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper. Exp Appl Acarol 45:15–27

    Article  CAS  PubMed  Google Scholar 

  • Paul ND, Jacobson RJ, Taylor A, Wargent JJ, Moore JP (2005) The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions. Photochem Photobiol 81:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Perdikis DC, Lykouressis DP, Economou LP (1999) The influence of temperature, photoperiod and plant type on the predation rate of Macrolophus pygmaeus on Myzus persicae. BioControl 44:281–289

    Article  Google Scholar 

  • Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21

    Article  Google Scholar 

  • Perera RG, Wheeler BEJ (1975) Effect of water droplets on development of Sphaerotheca-pannosa on rose leaves. Trans Br Mycol Soc 64:313–319

    Article  Google Scholar 

  • Porras M, Barrau C, Romero F (2007) Effects of soil solarization and Trichoderma on strawberry production. Crop Prot 26:782–787

    Article  Google Scholar 

  • Porter IJ, Merriman PR (1983) Effects of solarization of soil on nematode and fungal pathogens at 2 sites in Victoria. Soil Biol Biochem 15:39–44

    Article  Google Scholar 

  • Postma J, Willemsen-de Klein M, van Elsas JD (2000) Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 90:125–133

    Article  CAS  PubMed  Google Scholar 

  • Prado SG, Jandricic SE, Frank SD (2015) Ecological interactions affecting the efficacy of Aphidius colemani in greenhouse crops. Insects 6:538–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Prahbu AS, Fageria NK, Huber DM, Rodrigues FA (2007) Phosphorus and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Soc. Press, St. Paul, pp 57–78

    Google Scholar 

  • Quinn JA, Powell CC (1982) Effects of temperature, light, and relative-humidity on powdery mildew of Begonia. Phytopathology 72:480–484

    Article  Google Scholar 

  • Raaijmakers JM, Mazzola M (2016) Soil immune responses. Science 352:1392–1393

    Article  CAS  PubMed  Google Scholar 

  • Ratte H (1985) Temperatue and insect development. In: Hoffman KH (ed) Environmental physiology and biochemistry of insects. Springer, New York, pp 33–66

    Google Scholar 

  • Raviv M, Antignus Y (2004) UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol 79:219–226

    Article  CAS  PubMed  Google Scholar 

  • Reitz SR, Yearby EL, Funderburk JE, Stavisky J, Momol MT, Olson SM (2003) Integrated management tactics for Frankliniella thrips (Thysanoptera: Thripidae) in field-grown pepper. J Econ Entomol 96:1201–1214

    Article  PubMed  Google Scholar 

  • Reuveni R, Raviv M (1992) The effect of spectrally-modified polyethylene films on the development of botrytis-cinerea in greenhouse-grown tomato plants. Biol Agric Hortic 9:77–86

    Article  Google Scholar 

  • Reuveni R, Raviv M (1997) Control of downy mildew in greenhouse-grown cucumbers using blue photoselective polyethylene sheets. Plant Dis 81:999–1004

    Article  PubMed  Google Scholar 

  • Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186

    Article  CAS  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Roberts MR, Paul ND (2006) Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol 170:677–699

    Article  CAS  PubMed  Google Scholar 

  • Robson TM, Klem K, Urban O, Jansen MAK (2015) Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ 38:856–866

    Article  CAS  PubMed  Google Scholar 

  • Rowlandson T, Gleason M, Sentelhas P, Gillespie T, Thomas C, Hornbuckle B (2015) Reconsideration leaf wetness duration determination for plant disease management. Plant Dis 99:310–319

    Article  PubMed  Google Scholar 

  • Runia WT (1983) A recent development in steam sterilization. Acta Hortic 152:195–200

    Google Scholar 

  • Runia WT (2000) Steaming methods for soils and substrates. Acta Hortic 532:115–124

    Article  Google Scholar 

  • Sakai Y, Osakabe M (2010) Spectrum-specific damage and solar ultraviolet radiation avoidance in the two-spotted spider mite. Photochem Photobiol 86:925–932

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Honda Y, Umekawa M, Nemoto M (1985) Control of certain diseases of greenhouse vegetables with ultraviolet-absorbing vinyl film. Plant Dis 69:530–533

    Article  Google Scholar 

  • Schroeder RD (1965) Temperature relationships of fruit tissues under extreme conditions. Proc Am Soc Hortic Sci 87:199–203

    Google Scholar 

  • Schuch UK, Rdak RA, Behtke JA (1998) Cultivar, fertilizer and irrigation effect vegetative growth and susceptibility of chrysanthemum to western flower thrips. J Am Soc Hortic Sci 123:727–733

    Article  Google Scholar 

  • Schumacher J (2017) How light affects the life of Botrytis. Fungal Genet Biol 106:26–41

    Article  CAS  PubMed  Google Scholar 

  • Sentis A, Hemptinne JL, Brodeur J (2012) Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia 169:1117–1125

    Article  PubMed  Google Scholar 

  • Sharpe PJH, Demichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  CAS  PubMed  Google Scholar 

  • Shimoda M, Honda K (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48:413–421

    Article  Google Scholar 

  • Shipp JL, Gillespie TJ (1993) Influence of temperature and water-vapor pressure deficit on survival of Frankliniella occidentalis (Thysanoptera, Thripidae). Environ Entomol 22:726–732

    Article  Google Scholar 

  • Shipp JL, VanHouten YM (1997) Influence of temperature and vapor pressure deficit on survival of the predatory mite Amblyseius cucumeris (Acari: Phytoseiidae). Environ Entomol 26:106–113

    Article  Google Scholar 

  • Shipp JL, Zhang Y (1999) Using greenhouse microclimate to improve the efficacy of insecticide application for Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 92:201–206

    Article  Google Scholar 

  • Shipp JL, Ward KI, Gillespie TJ (1996) Influence of temperature and vapor pressure deficit on the rate of predation by the predatory mite, Amblyseius cucumeris, on Frankliniella occidentalis. Entomol Exp Appl 78:31–38

    Article  Google Scholar 

  • Shipp JL, Zhang Y, Hunt DWA, Ferguson G (2003) Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environ Entomol 32:1154–1163

    Article  Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–340

    Article  CAS  PubMed  Google Scholar 

  • Shull CA (1936) Rate of adjustment of leaf temperature to incident energy. Plant Physiol 11:181–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivan A, Chet I (1993) Integrated control of Fusarium crown and root-rot of tomato with Trichoderma-harzianum in combination with methyl-bromide or soil solarization. Crop Prot 12:380–386

    Article  CAS  Google Scholar 

  • Skirvin DJ, Fenlon JS (2003) The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 31:37–49

    Article  PubMed  Google Scholar 

  • Slininger PJ, Sheawilbur MA (1995) Liquid culture PH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas-fluorescens-2-79. Appl Microbiol Biotechnol 43:794–800

    Article  CAS  PubMed  Google Scholar 

  • Stack PA, Drummond FA (1997) Reproduction and development of Orius insidiosus in a blue light-supplemented short photoperiod. Biol Control 9:59–65

    Article  Google Scholar 

  • Stack PA, Drummond FA, Stack LB (1998) Chrysanthemum flowering in a blue light-supplemented long day maintained for biocontrol of thrips. HortScience 33:710–715

    Article  Google Scholar 

  • Stanghellini C, Dai JF, Kempkes F (2011) Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop. Biosyst Eng 110:261–271

    Article  Google Scholar 

  • Stapleton JJ, Devay JE (1984) Thermal components of soil solarization as related to changes in soil and root microflora and increased plant-growth response. Phytopathology 74:255–259

    Article  Google Scholar 

  • Stapleton JJ, Summers CG (2002) Reflective mulches for management of aphids and aphid-borne virus diseases in late-season cantaloupe (Cucumis melo L. var. cantalupensis). Crop Prot 21:891–898

    Article  Google Scholar 

  • Steinberg S, Dicke M, Vet LEM, Wanningen R (1992) Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals – effects of bioassay set-up, parasitoid age and experience and barometric flux. Entomol Exp Appl 63:163–175

    Article  CAS  Google Scholar 

  • Steiner MY, Spohr LJ, Goodwin S (2011) Relative humidity controls pupation success and dropping behaviour of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Aust J Entomol 50:179–186

    Article  Google Scholar 

  • Stinner RE, Gutierrez AP, Butler GD (1974) Algorithm for temperature-dependent growth-rate simulation. Can Entomol 106:519–524

    Article  Google Scholar 

  • Sugiyama K, Ohishi N, Saito T (2014) Preliminary evaluation of greenhouses employing positive-pressure forced ventilation to prevent invasion by insect pests. Appl Entomol Zool 49:553–559

    Article  Google Scholar 

  • Summers CG, Stapleton JJ (2002) Use of UV reflective mulch to delay the colonization and reduce the severity of Bemisia argentifolii (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Prot 21:921–928

    Article  Google Scholar 

  • Summers CG, Mitchell JP, Stapleton JJ (2004) Management of aphid-borne viruses and Bemisia argentifolii (Homoptera: Aleyrodidae) in zucchini squash by using UV reflective plastic and wheat straw mulches. Environ Entomol 33:1447–1457

    Article  Google Scholar 

  • Suthaparan A, Stensvand A, Torre S, Herrero ML, Pettersen RI, Gadoury DM, Gislerod HR (2010a) Continuous lighting reduces conidial production and germinability in the rose powdery mildew pathosystem. Plant Dis 94:339–344

    Article  CAS  PubMed  Google Scholar 

  • Suthaparan A, Torre S, Stensvand A, Herrero ML, Pettersen RI, Gadoury DM, Gislerod HR (2010b) Specific light-emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. Plant Dis 94:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Suthaparan A, Stensvand A, Solhaug KA, Torre S, Telfer K, Ruud A, Cadle-Davidson L, Mortensen L, Gadoury DM, Seem RC, Gislerod HR (2012) Suppression of cucumber powdery mildew by UV-B is affected by background light quality. Phytopathology 102:116–116

    Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Yase J, Aoki S, Sakurai T, Kanto T, Osakabe M (2016) Physical control of spider mites using ultraviolet-B with light reflection sheets in greenhouse strawberries. J Econ Entomol 109:1758–1765

    Article  PubMed  Google Scholar 

  • Tanigoshi LK, Browne RW, Hoyt SC, Lagier RF (1976) Empirical-analysis of variable temperature regimes on life stage development and population-growth of Tetranychus-mcdanieli (Acarina-Tetranychidae). Ann Entomol Soc Am 69:712–716

    Article  Google Scholar 

  • Tantau HJ, Lange D (2003) Greenhouse climate control: an approach for integrated pest management. Comput Electron Agric 40:141–152

    Article  Google Scholar 

  • Teitel M (2007) The effect of screened openings on greenhouse microclimate. Agric For Meteorol 143:159–175

    Article  Google Scholar 

  • Thompson DJ (1978) Towards a realistic predator-prey model – effect of temperature on functional response and life-history of larvae of damselfly, Ischnura-elegans. J Anim Ecol 47:757–767

    Article  Google Scholar 

  • Ullah MS, Lim UT (2015) Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. J Econ Entomol 108:1000–1009

    Article  PubMed  Google Scholar 

  • Urban L, Charles F, de Miranda MRA, Aarrouf J (2016) Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol Biochem 105:1–11

    Article  CAS  PubMed  Google Scholar 

  • Urquhart EJ, Menzies JG, Punja ZK (1994) Growth and biological-control activity of Tilletiopsis species against powdery mildew (Sphaerotheca-fuliginea) on greenhouse cucumber. Phytopathology 84:341–351

    Article  Google Scholar 

  • Van Atta KJ, Potter KA, Woods HA (2015) Effects of UV-B on environmental preference and egg parasitization by Trichogramma wasps (Hymenoptera: Trichogrammatidae). J Entomol Sci 50:318–325

    Article  Google Scholar 

  • van Kruistum G, Verschoor J, Hoek H (2014) CATT as a non-chemical pest and nematode control method in strawberry mother planting stock. J Berry Res 4:29–35

    Article  CAS  Google Scholar 

  • Van Roermond HJW (1995) Understanding biological control of greenhouse whitefly with the parasitoid Encarsia formosa. PhD thesis. Department of Entomology, Wageningen Agricultural University, Wageningen

    Google Scholar 

  • van Straten G, Challa H, Buwalda F (2000) Towards user accepted optimal control of greenhouse climate. Comput Electron Agric 26:221–238

    Article  Google Scholar 

  • Vandinh N, Sabelis MW, Janssen A (1988) Influence of humidity and water availability on the survival of Amblyseius-idaeus and Amblyseius-anonymus (Acarina, Phytoseiidae). Exp Appl Acarol 4:27–40

    Article  Google Scholar 

  • Vangansbeke D, De Schrijver L, Spranghers T, Audenaert J, Verhoeven R, Nguyen DT, Gobin B, Tirry L, De Clercq P (2013) Alternating temperatures affect life table parameters of Phytoseiulus persimilis, Neoseiulus californicus (Acari: Phytoseiidae) and their prey Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 61:285–298

    Article  PubMed  Google Scholar 

  • Vangansbeke D, Audenaert J, Nguyen DT, Verhoeven R, Gobin B, Tirry L, De Clercq P (2015a) Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators. PLoS One 10:e0124898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2015b) Prey consumption by phytoseiid spider mite predators as affected by diurnal temperature variations. BioControl 60:595–603

    Article  Google Scholar 

  • Vanninen I, Pinto DM, Nissinen AI, Johansen NS, Shipp L (2010) In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Ann Appl Biol 157:393–414

    Article  Google Scholar 

  • Vansteekelenburg NAM (1985) Influence of humidity on incidence of Didymella-bryoniae on cucumber leaves and growing tips under controlled environmental-conditions. Neth J Plant Pathol 91:277–283

    Article  Google Scholar 

  • Volpin H, Elad Y (1991) Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology 81:1390–1394

    Article  CAS  Google Scholar 

  • Walcott B (1969) Movement of retinula cells in insect eyes on light adaptation. Nature 223:971. &

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tan XL, Michaud JP, Zhang F, Guo X (2013) Light intensity and wavelength influence development, reproduction and locomotor activity in the predatory flower bug Orius sauteri (Poppius) (Hemiptera: Anthocoridae). BioControl 58:667–674

    Article  Google Scholar 

  • Weintraub PG, Kleitman S, Shapira N, Argov Y, Palevsky E (2006) Efficacy of Phytoseiulus persimilis versus Neoseiulus californicus for controlling spider mites on greenhouse sweet pepper. IOBC WPRS Bull 29:121–125

    Google Scholar 

  • Wilson SC, Wu C, Andriychuk LA, Martin JM, Brasel TL, Jumper CA, Straus DC (2005) Effect of chlorine dioxide gas on fungi and mycotoxins associated with sick building syndrome. Appl Environ Microbiol 71:5399–5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfert S, Ge L, Verdouw C, Bogaardt MJ (2017) Big data in smart farming – a review. Agric Syst 153:69–80

    Article  Google Scholar 

  • Worner SP (1992) Performance of phenological models under variable temperature regimes – consequences of the kaufmann or rate summation effect. Environ Entomol 21:689–699

    Article  Google Scholar 

  • Wraight SP, Ugine TA, Ramos ME, Sanderson JP (2016) Efficacy of spray applications of entomopathogenic fungi against western flower thrips infesting greenhouse impatiens under variable moisture conditions. Biol Control 97:31–47

    Article  Google Scholar 

  • Yabu T (1999) Control of insect pests by using illuminator of ultra high luminance light emitting diode (LED). Effect of flight and mating behaviour of Helicoverpa armigera. Plant Prot 53:209–211

    Google Scholar 

  • Yamada M, Uchida T, Kuramitsu O (2006) Insect control lightning for reduced and insectide-free agriculture. MEW Tech Rep 54:30–35

    Google Scholar 

  • Yarwood CE (1939) Control of powdery mildews with a water spray. Phytopathology 29:288–290

    Google Scholar 

  • Yase J, Yamanaka M, Fujii H (1997) Control of tobacco budworm, Helicoverpa armigera (Hubner), beet armyworm, Spodoptera exigua (Hubner), common cutworm, Spodoptera litura (Fabricius), feeding on carnation, roses and chrysanthemum by overnight illumination with yellow fluorescent lamps. Bull Natl Agric Res Cent West Reg 93:10–14

    Google Scholar 

  • Yoon J-B, Nomura M, Ishikura S (2012) Analysis of the flight activity of the cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under yellow LED lighting. Jpn J Appl Entomol Zool 56:103–110

    Article  Google Scholar 

  • Yunis H, Shtienberg D, Elad Y, Mahrer Y (1994) Qualitative approach for modeling outbreaks of gray mold epidemics in nonheated cucumber greenhouses. Crop Prot 13:99–104

    Article  Google Scholar 

  • Zhang Y, Shipp JL (1998) Effect of temperature and vapor pressure deficit on the flight activity of Orius insidiosus (Hemiptera: Anthocoridae). Environ Entomol 27:736–742

    Article  Google Scholar 

  • Zhang Y, Jewett TJ, Shipp JL (2002) Adynamic model to estimate in-canopy and leaf-surface microclimate of greenhouse cucumber crops. Trans Asae 45:179–192

    Article  Google Scholar 

  • Zilahi-Balogh GMG, Shipp JL, Cloutier C, Brodeur J (2006) Influence of light intensity, photoperiod, and temperature on the efficacy of two aphelinid parasitoids of the greenhouse whitefly. Environ Entomol 35:581–589

    Article  Google Scholar 

  • Zilahl-Balogh GMG, Shipp JL, Cloutier C, Brodeur J (2007) Predation by Neoseiulus cucumeris on western flower thrips, and its oviposition on greenhouse cucumber under winter vs. summer conditions in a temperate climate. Biol Control 40:160–167

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Esteban J. Baeza Romero, Dr. Silke Hemming and Dr. J. Anja Dieleman for their contributions on greenhouse climate control and artificial light technologies, as well as Dr. Gerben J. Messelink for suggesting a number of improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Marjolein Kruidhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kruidhof, H.M., Elmer, W.H. (2020). Cultural Methods for Greenhouse Pest and Disease Management. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_10

Download citation

Publish with us

Policies and ethics