Skip to main content

General Background for Plant-Plant Allelopathic Interactions

  • Chapter
  • First Online:
  • 369 Accesses

Abstract

This chapter describes sources, sinks, turnover rates, modifying elements and identity, mobility, distribution, states and effects of potential allelopathic compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, Friedman J (1999) Allelopathic bacteria. In: Inderjit, Daksini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 149–163

    Google Scholar 

  • Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soil. www.plosone.org PLoS One 6(11):e27195. https://doi.org/10.1371/journal.pone0027195

  • Bausenwein U, Gattinger A, Langer U, Embacher A, Hartmann H-P, Sommer M, Munch JC, Schloter M (2008) Exploring soil microbial communities and soil organic matter: variability and interactions in arable soils under minimum tillage practices. Appl Soil Ecol 40:67–77

    Article  Google Scholar 

  • Belz RG, Hurle K, Duke SO (2005) Dose-response–a challenge for allelopathy. Nonlinearity Biol Toxicol Med 3:173–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belz RG, Velini ED, Duke SO (2007) Dose/response relationships in allelopathy research. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodologies. Science Publishers, Enfield, pp 3–29

    Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum U (2004) Fate of phenolic allelochemicals in soils-the role of the soil and rhizosphere microorganisms. In: Maciás FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelopathic chemicals. CRC Press, Boca Raton, pp 57–76

    Google Scholar 

  • Blum U (2006) Allelopathy: a soil system perspective. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Blum U (2007) Can data derived from field and laboratory bioassays establish the existence of allelopathic interactions in nature? In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodology. Science Publishers, Enfield, pp 31–38

    Google Scholar 

  • Blum U (2011) Plant-plant allelopathic interactions: phenolic acids, cover crops, and weed emergence. Springer Science and Business Media, Dordrecht

    Book  Google Scholar 

  • Blum U (2014) Plant-plant allelopathic interactions II: laboratory bioassays for water-soluble compounds with an emphasis on phenolic acids. Springer Science and Business Media, Cham

    Book  Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationships between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32:1817–1834

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Rice EL (1969) Inhibition of symbiotic nitrogen fixation by gallic and tannic acid and possible roles in old-field succession. Torrey Bot Club 96:531–544

    Article  CAS  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soils. Soil Biol Biochem 20:783–800

    Article  Google Scholar 

  • Blum U, Dalton BR, Rawlings JO (1984) Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J Chem Ecol 8:1169–1119

    Article  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985a) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J Chem Ecol 11:619–641

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985b) Effects of ferulic and p-coumaric acids in nutrient culture of cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Gerig TM, Weed SB (1989) Effects of mixtures of phenolic acids on leaf expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J Chem Ecol 15:2413–2423

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu S-W (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811

    Article  CAS  PubMed  Google Scholar 

  • Blum U, Austin MF, Shafer SR (1999a) The fates and effects of phenolic acids in plant-microbe-soil model systems. In: Maciás JGC, Galindo JMG, Cutler H (eds) Recent advances in allelopathy: a science for the future. Cadiz University Press, Puerto Real, pp 159–166

    Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999b) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzolenti S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    Article  CAS  PubMed  Google Scholar 

  • Börner H (1960) Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot Rev 26:393–424

    Article  Google Scholar 

  • Bradow JM (1991) Relationships between chemical structure and inhibitory activity of C6 through C9 volatiles emitted by plant residues. J Chem Ecol 17:2193–2212

    Article  CAS  PubMed  Google Scholar 

  • Bradow JM, Connick WJ Jr (1988a) Volatile methyl ketone seed-germination inhibitors from Amaranthus palmeri S Wats. residues. J Chem Ecol 14:1617–1631

    Article  CAS  PubMed  Google Scholar 

  • Bradow JM, Connick WJ Jr (1988b) Seed-germination inhibition by volatile alcohols and other compounds associated with Amaranthus palmeri residues. J Chem Ecol 14:1633–1648

    Article  CAS  PubMed  Google Scholar 

  • Bradow JM, Connick WJ Jr (1990) Volatile seed germination inhibitors from plant residues. J Chem Ecol 16:645–666

    Article  CAS  PubMed  Google Scholar 

  • Cecchi AM, Koskinen WC, Cheng HH, Haider K (2004) Sorption-desorption of phenolic acids as affected by soil properties. Biol Fertil Soils 39:235–242

    Article  CAS  Google Scholar 

  • Chaves N, Sosa T, Escudero JC (2001) Plant growth inhibiting flavonoids in exudates of Cistus ladanifer and associated soils. J Chem Ecol 27:623–631

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xie LJ, Zhou JR, Song YY, Wang RL, Chen S, Su YJ, Zeng RS (2010) Collection, purification and structure elucidation of allelochemicals in Streptomyces sp. 6803. Allelopath J 25:93–106

    CAS  Google Scholar 

  • Cutler HG, Cutler SJ, Matesic D (2004) Mode of action of phytotoxic fungal metabolites. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 253–270

    Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp root exudates. Weed Technol 15:813–825

    Article  CAS  Google Scholar 

  • Dalton BR, Blum U, Weeds SB (1983) Allelopathic substances in ecosystems: effectiveness of sterile soil components in altering recovery of ferulic acid. J Chem Ecol 9:1185–1201

    Article  CAS  PubMed  Google Scholar 

  • Dalton BR, Weeds SB, Blum U (1987) Plant phenolic acids in soils: a comparison of extraction procedures. Soil Sci Soc Amer J 51:1515–1521

    Article  CAS  Google Scholar 

  • Dalton BR, Blum U, Weeds SB (1989) Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic, and vanillic acids in soil. Soil Sci Soc Amer J 53:757–762

    Article  CAS  Google Scholar 

  • Dao TH (1987) Sorption and mineralization of plant phenolic acids in soil. In: Waller G (ed) Allelochemicals: roles in agriculture and forestry, ACS symposium series. American Chemical Society, Washington, DC, pp 358–370

    Chapter  Google Scholar 

  • Dayan FE, Howell JL, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Moral R, Muller CH (1969) Fog drip: a mechanism of toxin transport from Eucalyptus globulus. Bull Torrey Bot Club 96:467–475

    Article  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Engineer/Biotechnol 69:1–39

    CAS  Google Scholar 

  • Duke SO (1986) Microbially produced phytotoxins as herbicides – a perspective. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 287–304

    Google Scholar 

  • Duke SO, Dayan FE (2006) Modes of action of phytotoxins from plants. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 511–536

    Google Scholar 

  • Duke SO, Rimando A, Scheffler B, Dayan FE (2002) Strategies for research in applied aspects of allelopathy. In: Reigosa MJ, Pedrol N (eds) Allelopathy: from molecules to ecosystems. Science Publishers Inc, Enfield, pp 139–152

    Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy? Outlook Pest Manag 17:29–33

    Google Scholar 

  • Einhellig FA, Rasmussen JA (1978) Synergistic inhibitory effects of vanillic and p-hydroxybenzoic acids on radish and grain sorghum. J Chem Ecol 4:425–436

    Article  CAS  Google Scholar 

  • Einhellig FA, Schon MK, Rasmussen JA (1982) Synergistic effects of cinnamic acid compounds on grain sorghum. J Plant Growth Regul 1:251–258

    Google Scholar 

  • Field B, Jordán F, Osbourn A (2006) First encounters – deployment of defense-related natural products by plants. New Phytol 172:193–207

    Article  CAS  PubMed  Google Scholar 

  • Fisher NH, Williamson GB, Weidenhamer JD, Richardson DR (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20:1355–1380

    Article  Google Scholar 

  • Fry CF (1988) The growing plant cell wall: chemical and metabolic analysis. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Fujii Y, Hiradate S (2007) Allelopathy: new concepts and methodology. Science Publishers, Enfield

    Google Scholar 

  • Gauthier M (1997) Hydrophilic and hydrophobic interactions. In: Lagowski JJ (ed) Macmillan encyclopedia of chemistry, vol 2. Simon and Shuster Macmillan, New York, pp 763–765

    Google Scholar 

  • Gerig TM, Blum U (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil materials. J Chem Ecol 17:29–40

    Article  CAS  PubMed  Google Scholar 

  • Gilbert D, Jakobsen HH, Winding A, Mayer P (2014) Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ Sci Technol 48:4368–4375

    Article  CAS  PubMed  Google Scholar 

  • Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266

    Article  CAS  Google Scholar 

  • Harley JL, Russell RS (1979) The soil-root interface. Academic, London

    Google Scholar 

  • Hartel PG (1998) The soil habitat. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and application of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River, pp 21–43

    Google Scholar 

  • Inderjit, Dakshini KMM, Enhellig FA (1995) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington, DC

    Google Scholar 

  • Inderjit, Muramatsu M, Nishimaru H (1997) On the allelopathic potential of certain terpenoids, phenolics, and their mixtures, and their recovery from soil. Can J Bot 75:888–891

    Article  Google Scholar 

  • Inderjit, Daksini KMM, Foy CL (1999) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton

    Google Scholar 

  • Inderjit, Streibig JC, Olofsdotter M (2002) Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol Plant 114:422–428

    Article  CAS  Google Scholar 

  • Inderjit, Wardel DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  PubMed  Google Scholar 

  • Klein K, Blum U (1990) Inhibition of cucumber leaf expansion by ferulic acid in split-root experiments. J Chem Ecol 16:455–463

    Article  CAS  PubMed  Google Scholar 

  • Kozel PC, Tukey HB Jr (1968) Loss of gibberellins by leaching from stems and foliage of Chrysanthemum morifolium Princess Anne. Am J Bot 55:1184–1189

    Article  CAS  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publication, Dordrecht

    Book  Google Scholar 

  • Lehman ME, Blum U (1999) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J Chem Ecol 25:2585

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U, Gerig TM (1994) Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments. J Chem Ecol 20:1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Li H-H, Inoue M, Nishimaru H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787

    Article  CAS  PubMed  Google Scholar 

  • Loi RX, Solar MC, Weidenhamer JD (2008) Solid-phase microextraction method for in vivo measurements of allelopathic uptake. J Chem Ecol 34:70–75

    Article  CAS  PubMed  Google Scholar 

  • Lyu S-W, Blum U (1990) Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J Chem Ecol 16:2429–2439

    Article  CAS  PubMed  Google Scholar 

  • Lyu S-W, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    Article  CAS  PubMed  Google Scholar 

  • Macías FA (1995) Allelopathy in the search for natural herbicide models. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. ACS symposium series, vol 582. American Chemical Society, Washington, DC, pp 310–329

    Chapter  Google Scholar 

  • Macías FA, Molinillo JMG, Varela RM, Torres A, Galindo JCG (1999) Bioactive compounds from genus Helianthus. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Recent advances in allelopathy I: a science for the future. Servicio de Publicaciones- Universidad de Cádiz, Puerto Real, pp 121–148

    Google Scholar 

  • Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (2004a) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press LLC, Boca Raton

    Google Scholar 

  • Macías FA, Molinillo JMG, Chinchilla D, Galindo JCG (2004b) Heliannanes – a structure-activity relationship (SAR) study. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 103–124

    Google Scholar 

  • Macías FA, Marin D, Oliveros-Bastidas A, Simonet AM, Molinillo JMG (2007) Ecological relevance of the degradation processes of allelochemicals. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodology. Science Publishers, Enfield, pp 91–107

    Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze auf the andere – allelopathie. Fisher, Jena

    Google Scholar 

  • Molisch H (2001) The influence of one plant on another: allelopathy. In: Narwal SS (ed) LaFleur LJ and Mallik MAB (trans: from German). Scientific Publishers, Jadhpur

    Google Scholar 

  • Mondava NB (1985) Chemistry and biology of allelopathic agents. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants, ACS symposium series, vol 268. American Chemical Society, Washington, DC, pp 33–54

    Chapter  Google Scholar 

  • Moody SF, Clarke AE, Bacic A (1988) Structural analysis of secreted slime from wheat and cowpea roots. Phytochemistry 27:2857–2861

    Article  CAS  Google Scholar 

  • Muller CH (1965) Inhibitory terpenes volatilized from Salvia shrubs. Bull Torrey Bot Club 92:38–45

    Article  CAS  Google Scholar 

  • Naafs DFW, van Bergen PF, Boogert SJ, de Leeuw JW (2004) Solvent-extractable lipids in an acid andic forest soil; variations in depth and season. Soil Biol Biochem 36:297–308

    Article  CAS  Google Scholar 

  • Owens DK, Nanayakkara NPD, Dayan FE (2013) In planta mechanism of action of leptospermone: impact of its physico-chemical properties on uptake, translocation, and metabolism. J Chem Ecol 39:262–270

    Article  CAS  PubMed  Google Scholar 

  • Patrick ZA (1971) Phytotoxic substances associated with the decomposition in soil of plant residues. Soil Sci 111:13–18

    Article  CAS  Google Scholar 

  • Pue KJ, Blum U, Gerig TM, Shafer SR (1995) Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J Chem Ecol 21:833–847

    Article  CAS  PubMed  Google Scholar 

  • Putnam AR (1994) Phytotoxicity of plant residues. In: Unger PW (ed) Managing agricultural residues. Lewis Publishers, Boca Rato, pp 285–314

    Google Scholar 

  • Putnam AR, Tang C-S (1986) The science of allelopathy. Wiley, New York

    Google Scholar 

  • Radwan O, Li M, Calla B, Li S, Hartman GL, Clough SJ (2013) Effects of Fusarium virguliforme phytotoxin on soybean gene expression suggests a role in multidimensional defense. Mol Plant Pathol 14:293–307

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen JA, Einhellig FA (1977) Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J Chem Ecol 3:197–205

    CAS  Google Scholar 

  • Reigosa MJ, Souto XC, González L (1999) Effects of phenolic compounds on germination of six weeds species. Plant Growth Regul 28:83–88

    Article  CAS  Google Scholar 

  • Reigosa MJ, Pedrol N, González L (2006) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht

    Book  Google Scholar 

  • Reynolds JF (1979) Some misconception of mathematical models. What’s New Plant Physiol 10:41–43

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic, London

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Oklahoma Press, Norman

    Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    Article  CAS  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide most location and host selection by parasitic plants. Science 313:1964–1967

    Article  CAS  PubMed  Google Scholar 

  • Sawhney BL, Brown K (1989) Reactions and movements of organic chemicals in soils, SSSA special publication no. 22. Soil Science Society of America Inc and American Society of Agronomy Inc, Madison

    Google Scholar 

  • Seigler DS (2006) Basic pathways for the origin of allelopathic compounds. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 11–61

    Chapter  Google Scholar 

  • Shann JR, Blum U (1987a) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26:2959–2964

    Article  CAS  Google Scholar 

  • Shann JR, Blum U (1987b) The utilization of exogenously supplied ferulic acid in lignin biosynthesis. Phytochemistry 26:2977–2982

    Article  CAS  Google Scholar 

  • Strobel G, Sugawara F, Clardy J (1987) Phytotoxins from plant pathogens of weedy plants. In: Waller GR (ed) Allelochemicals: role of agriculture and forestry, ACS symposium series, vol 330. American Chemical Society, Washington, DC, pp 517–523

    Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2004) Principles and application of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tang C-S, Young C-C (1982) Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tharayil N, Bjowmik PC, Xing B (2006) Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals. Agric Food Chem 54:3033–3040

    Article  CAS  Google Scholar 

  • Thornley J (1976) Mathematical models in plant physiology. Academic, New York

    Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Tukey HB Jr (1966) Leaching of metabolites from above-ground plant parts and its implications. Bull Torrey Bot Club 93:385–401

    Article  CAS  Google Scholar 

  • Tukey HB Jr (1969) Implications of allelopathy in agricultural plant science. Bot Rev 35:1–16

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudates and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenhamer JD (2005) Biomimetic measurement of allelochemical dynamics in the rhizosphere. J Chem Ecol 31:221–236

    Article  CAS  PubMed  Google Scholar 

  • Weidenhamer JD, Macías FA, Fisher NH, Williamson GB (1993) Just how insoluble are monoterpenoids? J Chem Ecol 19:1799–1807

    Article  CAS  PubMed  Google Scholar 

  • Weidenhamer JD, Menelaou M, Macías FA, Fisher NH, Richardson DR, Williamson GB (1994) Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. J Chem Ecol 20:3345–3359

    Article  CAS  PubMed  Google Scholar 

  • Weidenhamer JD, Boes PD, Wilcox DS (2009) Solid-phase root zone extraction (SPRE): a new technology for measuring of allelochemical dynamics in soil. Plant Soil 322:177–186

    Article  CAS  Google Scholar 

  • Weidenhamer JD, Mohney BK, Shihada N, Rupasinghe M (2014) Spatial and temporal dynamics of root exudation: how important is heterogeneity in allelopathic interactions? J Chem Ecol 40:940–952

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bo 63:3445–3454

    Article  CAS  Google Scholar 

  • Whitehead DC, Buchan H, Hartley RD (1979) Composition and decomposition of roots of ryegrass and red clover. Soil Biol Biochem 11:619–628

    Article  CAS  Google Scholar 

  • Williams RD, Hoagland RE (1982) The effects of naturally occurring phenolic compounds on seed germination. Weed Sci 30:206–212

    Article  CAS  Google Scholar 

  • Willis RJ (1985) The historical bases of the concept of allelopathy. J Hist Biol 18:71–102

    Article  Google Scholar 

  • Willis RJ (2007) The history of allelopathy. Springer, Dordrecht

    Google Scholar 

  • Xu JM, Tang C, Chen ZL (2005) Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biol Biochem 38:544–552

    Article  CAS  Google Scholar 

  • Xuan TD, Tawata S, Khanh TD, Chung IM (2005) Decomposition of allelopathic plants in soil. J Agron Crop Sci 191:162–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blum, U. (2019). General Background for Plant-Plant Allelopathic Interactions. In: Plant-Plant Allelopathic Interactions III. Springer, Cham. https://doi.org/10.1007/978-3-030-22098-3_2

Download citation

Publish with us

Policies and ethics