Skip to main content

Analysis of Hepatocellular Carcinoma Tissue for Biomarker Discovery

  • Chapter
  • First Online:
Hepatocellular Carcinoma

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the fifth most common cancer overall. Late-stage therapeutic options are limited, while resection or ablation of small tumors can lead to overall survival rates of greater than 60 months. Therefore, early detection of HCC is crucial for patient survival. Currently, there are only three widely used biomarkers for HCC: α-fetoprotein (AFP), core fucosylated AFP (AFP-L3), and des-gamma-carboxy prothrombin (DCP). All three of these markers have shown some value in the detection of HCC but with limited sensitivity. While serum is hepatic in nature, the tissue origin of these biomarkers is not determinable based on serum analysis alone, despite the ability of AFP to detect later-stage cancers. Therefore, further tissue analysis is needed for improved detection. Here, multi-omic approaches of HCC tissue are discussed, beginning with large-scale analyses to identify larger biocommunication networks predominant in HCC progression and moving toward smaller and more specific analyses. In the large-scale studies, the data suggests dysregulation in many major pathways, specifically the β-catenin/WNT and RAS pathways, and in specific sub-types, changes in specific genes such as TP53, TERT, and CTNNB1. Proteomics and glycomics are of special interest due to the glycosylation changes observed with AFP in HCC cases. From studying these glycomic and proteomic profiles of HCC serum and tissue, many groups have identified increased fucosylation and branching that are related to presence and progression of HCC. New techniques such as MALDI mass spectrometry glycan imaging have been used to identify specific glycan changes in cancer tissue. Further studies are necessary to accurately pinpoint the location of these modified glycoproteins to tumor-specific regions due to the heterogeneous composition of HCC tissue and to identify all the proteins that are modified and could act as potential biomarkers for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  2. Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2015;21(37):10573–83. https://doi.org/10.3748/wjg.v21.i37.10573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene. 2003;22(33):5093–107. https://doi.org/10.1038/sj.onc.1206557.

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network. Electronic Address: wheeler@bcm.edu, Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327–41 e23. https://doi.org/10.1016/j.cell.2017.05.046.

    Article  CAS  Google Scholar 

  5. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007;27(1):55–76. https://doi.org/10.1055/s-2006-960171.

    Article  CAS  PubMed  Google Scholar 

  6. Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis. 2005;25(2):181–200. https://doi.org/10.1055/s-2005-871198.

    Article  PubMed  Google Scholar 

  7. Petrick JL, Braunlin M, Laversanne M, Valery PC, Bray F, McGlynn KA. International trends in liver cancer incidence, overall and by histologic subtype, 1978–2007. Int J Cancer. 2016;139(7):1534–45. https://doi.org/10.1002/ijc.30211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryerson AB, Eheman CR, Altekruse SF, Ward JW, Jemal A, Sherman RL, et al. Annual report to the nation on the status of cancer, 1975–2012, featuring the increasing incidence of liver cancer. Cancer. 2016;122(9):1312–37. https://doi.org/10.1002/cncr.29936.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mehta A, Herrera H, Block T. Glycosylation and liver cancer. Adv Cancer Res. 2015;126:257–79. https://doi.org/10.1016/bs.acr.2014.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pang TC, Lam VW. Surgical management of hepatocellular carcinoma. World J Hepatol. 2015;7(2):245–52. https://doi.org/10.4254/wjh.v7.i2.245.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Heim bach J, Kulik LM, Finn R, Sirlin CB, Abecassis M, Roberts LR, et al. Aasld guidelines for the treatment of hepatocellular carcinoma. Hepatology (Baltimore, Md.). 2017. https://doi.org/10.1002/hep.29086.

  12. Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med. 2014;11(4):e1001624. https://doi.org/10.1371/journal.pmed.1001624.

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Meer S, de Man RA, Coenraad MJ, Sprengers D, van Nieuwkerk KM, Klumpen HJ, et al. Surveillance for hepatocellular carcinoma is associated with increased survival: results from a large cohort in the Netherlands. J Hepatol. 2015;63(5):1156–63. https://doi.org/10.1016/j.jhep.2015.06.012.

    Article  PubMed  Google Scholar 

  14. Singal AG, Nehra M, Adams-Huet B, Yopp AC, Tiro JA, Marrero JA, et al. Detection of hepatocellular carcinoma at advanced stages among patients in the HALT-C trial: where did surveillance fail? Am J Gastroenterol. 2013;108(3):425–32. https://doi.org/10.1038/ajg.2012.449.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Atiq O, Tiro J, Yopp AC, Muffler A, Marrero JA, Parikh ND, et al. An assessment of benefits and harms of hepatocellular carcinoma surveillance in patients with cirrhosis. Hepatology. 2017;65(4):1196–205. https://doi.org/10.1002/hep.28895.

    Article  CAS  PubMed  Google Scholar 

  16. Joshi K, Mendler M, Gish R, Loomba R, Kuo A, Patton H, et al. Hepatocellular carcinoma surveillance: a national survey of current practices in the USA. Dig Dis Sci. 2014;59(12):3073–7. https://doi.org/10.1007/s10620-014-3256-6.

    Article  PubMed  Google Scholar 

  17. Johnson PJ, Pirrie SJ, Cox TF, Berhane S, Teng M, Palmer D, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomark Prev. 2014;23(1):144–53. https://doi.org/10.1158/1055-9965.EPI-13-0870.

    Article  CAS  Google Scholar 

  18. Aoyagi Y. Molecular discrimination between alpha-fetoprotein from patients with hepatocellular-carcinoma and nonneoplastic liver-diseases by their carbohydrate structures (review). Int J Oncol. 1994;4(2):369–83.

    CAS  PubMed  Google Scholar 

  19. Aoyagi Y. Carbohydrate-based measurements on alpha-fetoprotein in the early diagnosis of hepatocellular carcinoma. Glycoconj J. 1995;12(3):194–9.

    Article  CAS  PubMed  Google Scholar 

  20. Aoyagi Y, Isemura M, Suzuki Y, Sekine C, Soga K, Ozaki T, et al. Change in fucosylation of alpha-fetoprotein on malignant transformation of liver cells. Lancet. 1986;1(8474):210.

    Article  CAS  PubMed  Google Scholar 

  21. Block T, Mehta AS, London WT. Hepatocellular carcinoma of the liver. Cancer Biomark. 2010;9(1–6):375–83. https://doi.org/10.3233/CBM-2011-0165.

    Article  CAS  PubMed  Google Scholar 

  22. Mehta A, Block TM. Fucosylated glycoproteins as markers of liver disease. Dis Markers. 2008;25(4–5):259–65.

    Article  CAS  PubMed  Google Scholar 

  23. Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, et al. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res. 2009;8(2):595–602. https://doi.org/10.1021/pr800752c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steel LF, Mattu TS, Mehta A, Hebestreit H, Dwek R, Evans AA, et al. A proteomic approach for the discovery of early detection markers of hepatocellular carcinoma. Dis Markers. 2001;17(3):179–89.

    Article  CAS  PubMed  Google Scholar 

  25. Singal AG, Conjeevaram HS, Volk ML, Fu S, Fontana RJ, Askari F, et al. Effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis. Cancer Epidemiol Biomark Prev. 2012;21(5):793–9. https://doi.org/10.1158/1055-9965.EPI-11-1005.

    Article  Google Scholar 

  26. Wang M, Devarajan K, Singal AG, Marrero JA, Dai J, Feng Z, et al. The Doylestown algorithm: a test to improve the performance of AFP in the detection of hepatocellular carcinoma. Cancer Prev Res (Phila). 2016;9(2):172–9. https://doi.org/10.1158/1940-6207.CAPR-15-0186.

    Article  CAS  Google Scholar 

  27. Mehta AS, Lau DT, Wang M, Islam A, Nasir B, Javaid A, et al. Application of the Doylestown algorithm for the early detection of hepatocellular carcinoma. PLoS One. 2018;13(8):e0203149. https://doi.org/10.1371/journal.pone.0203149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385–92. https://doi.org/10.1158/0008-5472.CAN-09-1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marrero JA, Pelletier S. Hepatocellular carcinoma. Clin Liver Dis. 2006;10(2):339–51.

    Article  PubMed  Google Scholar 

  30. Lok A, McMahon B. Chronic hepatitis B. Hepatology (Baltimore, Md.). 2001;34(6):1225–41.

    Article  CAS  Google Scholar 

  31. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–17. https://doi.org/10.1016/S0140-6736(03)14964-1.

    Article  PubMed  Google Scholar 

  32. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–6.

    Article  CAS  PubMed  Google Scholar 

  33. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol. 1998;33(3):151–208. https://doi.org/10.1080/10409239891204198.

    Article  PubMed  Google Scholar 

  34. Opdenakker G, Rudd PM, Ponting CP, Dwek RA. Concepts and principles of glycobiology. FASEB J. 1993;7(14):1330–7.

    Article  CAS  PubMed  Google Scholar 

  35. Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. Cell surface protein glycosylation in cancer. Proteomics. 2014;14(4–5):525–46. https://doi.org/10.1002/pmic.201300387.

    Article  CAS  PubMed  Google Scholar 

  36. Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta. 1999;1473(1):21–34.

    Article  CAS  PubMed  Google Scholar 

  37. Elola MT, Blidner AG, Ferragut F, Bracalente C, Rabinovich GA. Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes. Biochem J. 2015;469(1):1–16. https://doi.org/10.1042/BJ20150461.

    Article  CAS  PubMed  Google Scholar 

  38. Cheung P, Dennis JW. Mgat5 and Pten interact to regulate cell growth and polarity. Glycobiology. 2007;17(7):767–73. https://doi.org/10.1093/glycob/cwm037.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Disease-associated glycans on cell surface proteins. Mol Asp Med. 2016;51:56–70. https://doi.org/10.1016/j.mam.2016.04.008.

    Article  CAS  Google Scholar 

  40. Ressom HW, Di Poto C, Ferrarini A, Yunli H, Nezami Ranjbar MR, Ehwang S, et al. Multi-omic approaches for characterization of hepatocellular carcinoma. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3437–40. https://doi.org/10.1109/EMBC.2016.7591467.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005. https://doi.org/10.1038/onc.2010.236.

    Article  CAS  PubMed  Google Scholar 

  42. Lu LC, Hsu CH, Hsu C, Cheng AL. Tumor heterogeneity in hepatocellular carcinoma: facing the challenges. Liver Cancer. 2016;5(2):128–38. https://doi.org/10.1159/000367754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friemel J, Rechsteiner M, Frick L, Bohm F, Struckmann K, Egger M, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21(8):1951–61. https://doi.org/10.1158/1078-0432.CCR-14-0122.

    Article  CAS  PubMed  Google Scholar 

  44. Kim J, Ki SS, Lee SD, Han CJ, Kim YC, Park SH, et al. Elevated plasma osteopontin levels in patients with hepatocellular carcinoma. Am J Gastroenterol. 2006;101(9):2051–9. https://doi.org/10.1111/j.1572-0241.2006.00679.x.

    Article  CAS  PubMed  Google Scholar 

  45. Deng B, Zhang XF, Zhu XC, Huang H, Jia HL, Ye QH, et al. Correlation and prognostic value of osteopontin and Bcl-2 in hepatocellular carcinoma patients after curative resection. Oncol Rep. 2013;30(6):2795–803. https://doi.org/10.3892/or.2013.2737.

    Article  CAS  PubMed  Google Scholar 

  46. Abu El Makarem MA, Abdel-Aleem A, Ali A, Saber R, Shatat M, Rahem DA, et al. Diagnostic significance of plasma osteopontin in hepatitis C virus-related hepatocellular carcinoma. Ann Hepatol. 2011;10(3):296–305.

    Article  PubMed  Google Scholar 

  47. Qiao B, Wang J, Xie J, Niu Y, Ye S, Wan Q, et al. Detection and identification of peroxiredoxin 3 as a biomarker in hepatocellular carcinoma by a proteomic approach. Int J Mol Med. 2012;29(5):832–40. https://doi.org/10.3892/ijmm.2012.916.

    Article  CAS  PubMed  Google Scholar 

  48. Nishimori I, Perini F, Mountjoy KP, Sanderson SD, Johnson N, Cerny RL, et al. N-acetylgalactosamine glycosylation of MUC1 tandem repeat peptides by pancreatic tumor cell extracts. Cancer Res. 1994;54(14):3738–44.

    CAS  PubMed  Google Scholar 

  49. Hollingsworth MA, Strawhecker JM, Caffrey TC, Mack DR. Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer. 1994;57(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  50. Chambers JA, Hollingsworth MA, Trezise AE, Harris A. Developmental expression of mucin genes MUC1 and MUC2. J Cell Sci. 1994;107(Pt 2):413–24.

    CAS  PubMed  Google Scholar 

  51. Liu Y, He J, Li C, Benitez R, Fu S, Marrero J, et al. Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations. J Proteome Res. 2010;9(2):798–805. https://doi.org/10.1021/pr900715p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4(1):45–60. https://doi.org/10.1038/nrc1251. nrc1251 [pii].

    Article  CAS  PubMed  Google Scholar 

  53. Batra SK, Kern HF, Worlock AJ, Metzgar RS, Hollingsworth MA. Transfection of the human Muc 1 mucin gene into a poorly differentiated human pancreatic tumor cell line, Panc1: integration, expression and ultrastructural changes. J Cell Sci. 1991;100(Pt 4):841–9.

    CAS  PubMed  Google Scholar 

  54. Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H, Hollingsworth MA, et al. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res. 2001;7(12):4033–40.

    CAS  PubMed  Google Scholar 

  55. Shibahara H, Tamada S, Higashi M, Goto M, Batra SK, Hollingsworth MA, et al. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology (Baltimore, Md.). 2004;39(1):220–9. https://doi.org/10.1002/hep.20031.

    Article  CAS  Google Scholar 

  56. Andrianifahanana M, Agrawal A, Singh AP, Moniaux N, van Seuningen I, Aubert JP, et al. Synergistic induction of the MUC4 mucin gene by interferon-gamma and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways. Oncogene. 2005;24(40):6143–54. https://doi.org/10.1038/sj.onc.1208756. 1208756 [pii].

    Article  CAS  PubMed  Google Scholar 

  57. Singh AP, Chauhan SC, Bafna S, Johansson SL, Smith LM, Moniaux N, et al. Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. Prostate. 2006;66(4):421–9. https://doi.org/10.1002/pros.20372.

    Article  CAS  PubMed  Google Scholar 

  58. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845–56. https://doi.org/10.1038/nrc1739. nrc1739 [pii].

    Article  CAS  PubMed  Google Scholar 

  59. Springer SA, Gagneux P. Glycomics: revealing the dynamic ecology and evolution of sugar molecules. J Proteome. 2016;135:90–100. https://doi.org/10.1016/j.jprot.2015.11.022.

    Article  CAS  Google Scholar 

  60. Springer SA, Gagneux P. Glycan evolution in response to collaboration, conflict, and constraint. J Biol Chem. 2013;288(10):6904–11. https://doi.org/10.1074/jbc.R112.424523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell. 2009;139(7):1229–41. https://doi.org/10.1016/j.cell.2009.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goode G, Gunda V, Chaika NV, Purohit V, Yu F, Singh PK. MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PLoS One. 2017;12(5):e0176820. https://doi.org/10.1371/journal.pone.0176820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lai KK, Kolippakkam D, Beretta L. Comprehensive and quantitative proteome profiling of the mouse liver and plasma. Hepatology (Baltimore, Md.). 2008;47(3):1043–51. https://doi.org/10.1002/hep.22123.

    Article  CAS  Google Scholar 

  64. Mato JM, He F, Beretta L. The 2006 human liver proteome project (HLPP) workshops. Proteomics Clin Appl. 2007;1(5):442–5. https://doi.org/10.1002/prca.200700242.

    Article  CAS  PubMed  Google Scholar 

  65. Beretta L. Liver proteomics applied to translational research in liver disease and cancer. Proteomics Clin Appl. 2010;4(4):359–61. https://doi.org/10.1002/prca.201090012.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yi X, Luk JM, Lee NP, Peng J, Leng X, Guan XY, et al. Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics. 2008;7(2):315–25. https://doi.org/10.1074/mcp.M700116-MCP200. M700116-MCP200 [pii].

    Article  CAS  PubMed  Google Scholar 

  67. Goldman R, Ressom HW, Varghese RS, Goldman L, Bascug G, Loffredo CA, et al. Detection of hepatocellular carcinoma using glycomic analysis. Clin Cancer Res. 2009;15(5):1808–13. https://doi.org/10.1158/1078-0432.CCR-07-5261. 1078-0432.CCR-07-5261 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lattova E, McKenzie EJ, Gruwel ML, Spicer V, Goldman R, Perreault H. Mass spectrometric study of N-glycans from serum of woodchucks with liver cancer. Rapid Commun Mass Spectrom. 2009;23(18):2983–95. https://doi.org/10.1002/rcm.4202.

    Article  CAS  PubMed  Google Scholar 

  69. Isailovic D, Kurulugama RT, Plasencia MD, Stokes ST, Kyselova Z, Goldman R, et al. Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J Proteome Res. 2008;7(3):1109–17. https://doi.org/10.1021/pr700702r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Amano M, Nishimura S. Large-scale glycomics for discovering cancer-associated N-glycans by integrating glycoblotting and mass spectrometry. Methods Enzymol. 2010;478:109–25. https://doi.org/10.1016/S0076-6879(10)78004-6. S0076-6879(10)78004-6 [pii].

    Article  CAS  PubMed  Google Scholar 

  71. Fang M, Dewaele S, Zhao YP, Starkel P, Vanhooren V, Chen YM, et al. Serum N-glycome biomarker for monitoring development of DENA-induced hepatocellular carcinoma in rat. Mol Cancer. 2010;9:215. https://doi.org/10.1186/1476-4598-9-215. 1476-4598-9-215 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakagawa T, Miyoshi E, Yakushijin T, Hiramatsu N, Igura T, Hayashi N, et al. Glycomic analysis of alpha-fetoprotein L3 in hepatoma cell lines and hepatocellular carcinoma patients. J Proteome Res. 2008;7(6):2222–33. https://doi.org/10.1021/pr700841q.

    Article  CAS  PubMed  Google Scholar 

  73. Nakagawa T, Takeishi S, Kameyama A, Yagi H, Yoshioka T, Moriwaki K, et al. Glycomic analyses of glycoproteins in bile and serum during rat hepatocarcinogenesis. J Proteome Res. 2010;9(10):4888–96. https://doi.org/10.1021/pr100414r.

    Article  CAS  PubMed  Google Scholar 

  74. An HJ, Lebrilla CB. A glycomics approach to the discovery of potential cancer biomarkers. Methods Mol Biol. 2010;600:199–213. https://doi.org/10.1007/978-1-60761-454-8_14.

    Article  CAS  PubMed  Google Scholar 

  75. An HJ, Kronewitter SR, de Leoz ML, Lebrilla CB. Glycomics and disease markers. Curr Opin Chem Biol. 2009;13(5–6):601–7. https://doi.org/10.1016/j.cbpa.2009.08.015. S1367-5931(09)00114-8 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Packer NH, von der Lieth CW, Aoki-Kinoshita KF, Lebrilla CB, Paulson JC, Raman R, et al. Frontiers in glycomics: bioinformatics and biomarkers in disease. An NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD (September 11–13, 2006). Proteomics. 2008;8(1):8–20. https://doi.org/10.1002/pmic.200700917.

    Article  CAS  PubMed  Google Scholar 

  77. Kirmiz C, Li B, An HJ, Clowers BH, Chew HK, Lam KS, et al. A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics. 2007;6(1):43–55. https://doi.org/10.1074/mcp.M600171-MCP200. M600171-MCP200 [pii].

    Article  CAS  PubMed  Google Scholar 

  78. Zhu J, Lin Z, Wu J, Yin H, Dai J, Feng Z, et al. Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies. J Proteome Res. 2014;13(6):2986–97. https://doi.org/10.1021/pr500128t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen R, Wang F, Tan Y, Sun Z, Song C, Ye M, et al. Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation. J Proteome. 2012;75(5):1666–74. https://doi.org/10.1016/j.jprot.2011.12.015.

    Article  CAS  Google Scholar 

  80. Zhao Y, Jia W, Wang J, Ying W, Zhang Y, Qian X. Fragmentation and site-specific quantification of core fucosylated glycoprotein by multiple reaction monitoring-mass spectrometry. Anal Chem. 2011;83(22):8802–9. https://doi.org/10.1021/ac201676a.

    Article  CAS  PubMed  Google Scholar 

  81. Ahn YH, Shin PM, Ji ES, Kim H, Yoo JS. A lectin-coupled, multiple reaction monitoring based quantitative analysis of human plasma glycoproteins by mass spectrometry. Anal Bioanal Chem. 2012;402(6):2101–12. https://doi.org/10.1007/s00216-011-5646-3.

    Article  CAS  Google Scholar 

  82. Ahn YH, Shin PM, Oh NR, Park GW, Kim H, Yoo JS. A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma. J Proteome. 2012;75:5507–15. https://doi.org/10.1016/j.jprot.2012.06.027.

    Article  CAS  Google Scholar 

  83. Kamiyama T, Yokoo H, Furukawa J, Kurogochi M, Togashi T, Miura N, et al. Identification of novel serum biomarkers of hepatocellular carcinoma using glycomic analysis. Hepatology (Baltimore, Md.). 2013;57(6):2314–25. https://doi.org/10.1002/hep.26262.

    Article  CAS  Google Scholar 

  84. Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology. 2007;46(5):1426–35. https://doi.org/10.1002/hep.21855.

    Article  CAS  PubMed  Google Scholar 

  85. Ajdukiewicz AB, Kelleher PC, Krawitt EL, Walters CJ, Mason PB, Koff RS, et al. Alpha-fetoprotein glycosylation is abnormal in some hepatocellular carcinoma, including white patients with a normal alpha-fetoprotein concentration. Cancer Lett. 1993;74(1–2):43–50.

    Article  CAS  PubMed  Google Scholar 

  86. Aoyagi Y, Suzuki Y, Igarashi K, Yokota T, Mori S, Suda T, et al. Highly enhanced fucosylation of alpha-fetoprotein in patients with germ cell tumor. Cancer. 1993;72(2):615–8.

    Article  CAS  PubMed  Google Scholar 

  87. Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, et al. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A. 2005;102(3):779–84. https://doi.org/10.1073/pnas.0408928102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, et al. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res. 2006;5(2):308–15. https://doi.org/10.1021/pr050328x.

    Article  CAS  PubMed  Google Scholar 

  89. Comunale MA, Rodemich-Betesh L, Hafner J, Wang M, Norton P, Di Bisceglie AM, et al. Linkage specific fucosylation of alpha-1-antitrypsin in liver cirrhosis and cancer patients: implications for a biomarker of hepatocellular carcinoma. PLoS One. 2010;5(8):e12419. https://doi.org/10.1371/journal.pone.0012419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dai Z, Liu YK, Cui JF, Shen HL, Chen J, Sun RX, et al. Identification and analysis of altered alpha1,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics. 2006;6(21):5857–67. https://doi.org/10.1002/pmic.200500707.

    Article  CAS  PubMed  Google Scholar 

  91. Dai Z, Zhou J, Qiu SJ, Liu YK, Fan J. Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers. Electrophoresis. 2009;30(17):2957–66. https://doi.org/10.1002/elps.200900064.

    Article  CAS  PubMed  Google Scholar 

  92. Debruyne EN, Vanderschaeghe D, Van Vlierberghe H, Vanhecke A, Callewaert N, Delanghe JR. Diagnostic value of the hemopexin N-glycan profile in hepatocellular carcinoma patients. Clin Chem. 2010;56(5):823–31. https://doi.org/10.1373/clinchem.2009.139295.

    Article  CAS  PubMed  Google Scholar 

  93. Kelleher PC, Walters CJ, Myhre BD, Tennant BC, Gerin JL, Cote PJ. Altered glycosylation of alpha-fetoprotein in hepadnavirus-induced hepatocellular carcinoma of the woodchuck. Cancer Lett. 1992;63(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Fukuda T, Isaji T, Lu J, Im S, Hang Q, et al. Loss of alpha1,6-fucosyltransferase inhibits chemical-induced hepatocellular carcinoma and tumorigenesis by down-regulating several cell signaling pathways. FASEB J. 2015;29(8):3217–27. https://doi.org/10.1096/fj.15-270710.

    Article  CAS  PubMed  Google Scholar 

  95. Yin H, Lin Z, Nie S, Wu J, Tan Z, Zhu J, et al. Mass-selected site-specific core-fucosylation of ceruloplasmin in alcohol-related hepatocellular carcinoma. J Proteome Res. 2014;13(6):2887–96. https://doi.org/10.1021/pr500043k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang Y, Zhu J, Yin H, Marrero J, Zhang XX, Lubman DM. ESI-LC-MS method for haptoglobin fucosylation analysis in hepatocellular carcinoma and liver cirrhosis. J Proteome Res. 2015;14(12):5388–95. https://doi.org/10.1021/acs.jproteome.5b00792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhu J, Wang Y, Yu Y, Wang Z, Zhu T, Xu X, et al. Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver Int. 2014;34(1):147–60. https://doi.org/10.1111/liv.12265.

    Article  CAS  PubMed  Google Scholar 

  98. Zhu J, Wu J, Yin H, Marrero J, Lubman DM. Mass spectrometric N-glycan analysis of haptoglobin from patient serum samples using a 96-well plate format. J Proteome Res. 2015;14(11):4932–9. https://doi.org/10.1021/acs.jproteome.5b00662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Comunale MA, Wang M, Anbarasan N, Betesh L, Karabudak A, Moritz E, et al. Total serum glycan analysis is superior to lectin-FLISA for the early detection of hepatocellular carcinoma. Proteomics Clin Appl. 2013;7:690–700. https://doi.org/10.1002/prca.201200125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang M, Sanda M, Comunale MA, Herrera H, Swindell C, Kono Y, et al. Changes in the glycosylation of kininogen and the development of a kininogen-based algorithm for the early detection of HCC. Cancer Epidemiol Biomark Prev. 2017;26(5):795–803. https://doi.org/10.1158/1055-9965.EPI-16-0974.

    Article  CAS  Google Scholar 

  101. Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, et al. A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology. 2007;17(12):1311–20. https://doi.org/10.1093/glycob/cwm094.

    Article  CAS  PubMed  Google Scholar 

  102. Mehta A, Comunale MA, Rawat S, Casciano JC, Lamontagne J, Herrera H, et al. Intrinsic hepatocyte dedifferentiation is accompanied by upregulation of mesenchymal markers, protein sialylation and core alpha 1,6 linked fucosylation. Sci Rep. 2016;6:27965. https://doi.org/10.1038/srep27965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen CY, Jan YH, Juan YH, Yang CJ, Huang MS, Yu CJ, et al. Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. Proc Natl Acad Sci U S A. 2013;110(2):630–5. https://doi.org/10.1073/pnas.1220425110.

    Article  PubMed  Google Scholar 

  104. Wang Y, Fukuda T, Isaji T, Lu J, Gu W, Lee HH, et al. Loss of alpha1,6-fucosyltransferase suppressed liver regeneration: implication of core fucose in the regulation of growth factor receptor-mediated cellular signaling. Sci Rep. 2015;5:8264. https://doi.org/10.1038/srep08264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mehta A, Norton P, Liang H, Comunale MA, Wang M, Rodemich-Betesh L, et al. Increased levels of tetra-antennary N-linked glycan but not core fucosylation are associated with hepatocellular carcinoma tissue. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology. 2012;21(6):925–33. https://doi.org/10.1158/1055-9965.EPI-11-1183.

    Article  CAS  Google Scholar 

  106. Chaurand P, Stoeckli M, Caprioli RM. Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem. 1999;71(23):5263–70.

    Article  CAS  PubMed  Google Scholar 

  107. Caldwell RL, Caprioli RM. Tissue profiling by mass spectrometry: a review of methodology and applications. Mol Cell Proteomics: MCP. 2005;4(4):394–401. https://doi.org/10.1074/mcp.R500006-MCP200.

    Article  CAS  PubMed  Google Scholar 

  108. Schwamborn K, Caprioli RM. MALDI imaging mass spectrometry--painting molecular pictures. Mol Oncol. 2010;4(6):529–38. https://doi.org/10.1016/j.molonc.2010.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schwamborn K, Caprioli RM. Molecular imaging by mass spectrometry--looking beyond classical histology. Nat Rev Cancer. 2010;10(9):639–46. https://doi.org/10.1038/nrc2917.

    Article  CAS  PubMed  Google Scholar 

  110. Dai C, Cazares LH, Wang L, Chu Y, Wang SL, Troyer DA, et al. Using boronolectin in MALDI-MS imaging for the histological analysis of cancer tissue expressing the sialyl Lewis X antigen. Chem Commun. 2011;47(37):10338–40. https://doi.org/10.1039/c1cc11814e.

    Article  CAS  Google Scholar 

  111. West CA, Wang M, Herrera H, Liang H, Black A, Angel PM, et al. N-linked glycan branching and fucosylation are increased directly in Hcc tissue as determined through in situ glycan imaging. J Proteome Res. 2018;17(10):3454–62. https://doi.org/10.1021/acs.jproteome.8b00323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Romano PR, Mackay A, Vong M, DeSa J, Lamontagne A, Comunale MA, et al. Development of recombinant Aleuria aurantia lectins with altered binding specificities to fucosylated glycans. Biochem Biophys Res Commun. 2011;414(1):84–9. https://doi.org/10.1016/j.bbrc.2011.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu Y, Liu H, Liu W, Zhang W, An H, Xu J. beta1,6-N-acetylglucosaminyltransferase V predicts recurrence and survival of patients with clear-cell renal cell carcinoma after surgical resection. World J Urol. 2015;33(11):1791–9. https://doi.org/10.1007/s00345-014-1451-x.

    Article  CAS  PubMed  Google Scholar 

  114. Powers TW, Holst S, Wuhrer M, Mehta AS, Drake RR. Two-dimensional N-glycan distribution mapping of hepatocellular carcinoma tissues by MALDI-imaging mass spectrometry. Biomol Ther. 2015;5(4):2554–72. https://doi.org/10.3390/biom5042554.

    Article  CAS  Google Scholar 

  115. Mehta A, Norton P, Liang H, Comunale MA, Wang M, Rodemich-Betesh L, et al. Increased levels of tetra-antennary N-linked glycan but not core fucosylation are associated with hepatocellular carcinoma tissue. Cancer Epidemiol Biomark Prev. 2012;21(6):925–33. https://doi.org/10.1158/1055-9965.EPI-11-1183.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand S. Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

West, C.A., Black, A.P., Mehta, A.S. (2019). Analysis of Hepatocellular Carcinoma Tissue for Biomarker Discovery. In: Hoshida, Y. (eds) Hepatocellular Carcinoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-21540-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21540-8_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-21539-2

  • Online ISBN: 978-3-030-21540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics