Skip to main content

Transcriptome Resources Paving the Way for Lupin Crop Improvement

  • Chapter
  • First Online:
The Lupin Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

A range of transcriptomic resources have been generated for lupins from expressed sequenced tag (EST) libraries to the more recent next generation RNA sequencing libraries. This chapter will describe these resources and how they have been utilized to (a) generate gene-based molecular markers, (b) assist with the annotation of the reference genome for narrow-leafed lupin (Lupinus angustifolius), and (c) addressed specific research questions that assess global expression under different conditions and/or tissue types. For white lupins (L. albus) these include transcriptome studies using RNA sequencing libraries to investigate cluster root formation and the plants phosphate uptake status, for narrow-leafed lupins investigations into smallRNAs, seed storage protein and alkaloid content in the grain, and for yellow lupin (L. luteus) investigations into organ abscission. While transcriptomics in lupins is still in its infancies compared to larger pulse crops, lupin transcriptome resources will no doubt grow and lay strong foundations for lupin crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berger J, Buirchell B, Luckett D, Nelson M (2012a) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 124:637–652

    CAS  PubMed  Google Scholar 

  • Berger JD, Buirchell B, Luckett DJ, Palta JA, Ludwig C et al (2012b) How has narrow-leafed lupin changed in its 1st 40 years as an industrial, broadacre crop? A G x E-based characterization of yield-related traits in Australian cultivars. Field Crops Res 126:152–164

    Google Scholar 

  • Bunsupa S, Okada T, Saito K, Yamazaki M (2011) An acyltransferase-like gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and nonproducing cultivars of Lupinus angustifolius. Plant Biotechnol 28:89–94

    Google Scholar 

  • Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K et al (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in Leguminosae. Plant Cell 24:1202–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S et al (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32:193–210

    CAS  PubMed  Google Scholar 

  • Cheng L, Bucciarelli B, Shen J, Allan D, Vance CP (2011) Update on lupin cluster roots: update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiol 156:1025–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowling WA, Tarr A (2004) Effect of genotype and environment on seed quality in sweet narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric Res 55:745–751

    Google Scholar 

  • Croxford AE, Rogers T, Caligari PD, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607

    CAS  PubMed  Google Scholar 

  • DeBoer K, Melser S, Sperschneider J, Kamphuis LG, Garg G et al (2019) Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) microRNAs during seed development. BMC Genomics 20:135

    PubMed  PubMed Central  Google Scholar 

  • Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A (2008) The major proteins of lupin seed: characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci Technol 19:624–633

    CAS  Google Scholar 

  • Edwards O, Ridsdill-Smith T, Berlandier F (2003) Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bull Entomol Res 93:403–411

    CAS  PubMed  Google Scholar 

  • Fischer K, Dieterich R, Nelson MN, Kamphuis LG, Singh KB et al (2015) Characterization and mapping of LanrBo: a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 128:2121–2130

    CAS  PubMed  Google Scholar 

  • Foley RC, Gao L-L, Spriggs A, Soo LY, Goggin DE et al (2011) Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol 11:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foley RC, Jimenez-Lopez JC, Kamphuis LG, Hane JK, Melser S et al (2015) Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biol 15:106

    PubMed  PubMed Central  Google Scholar 

  • Frick KM, Kamphuis LG, Siddique KHM, Singh KB, Foley RC (2017) Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front Plant Sci 8:87

    PubMed  PubMed Central  Google Scholar 

  • Frick KM, Foley RC, Kamphuis LG, Siddique KHM, Garg G et al (2018) Characterisation of the genetic factors affecting quinolizidine alkaloid biosynthesis and its response to abiotic stress in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ 41:2155–2168

    CAS  PubMed  Google Scholar 

  • Frick KM, Foley R, Siddique KHM, Singh KB, Kamphuis LG (2019) The role of jasmonate signalling in quinolizidine alkaloid biosynthesis, wounding and aphid predation response in narrow-leafed lupin. Funct Plant Biol 46:443–454

    CAS  PubMed  Google Scholar 

  • Gao LL, Hane JK, Kamphuis LG, Foley R, Shi BJ et al (2011) Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 12:521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K et al (2017) De novo transcriptome profiling of flowers, flower pedicels and pods of Lupinus luteus (Yellow Lupine) reveals complex expression changes during organ abscission. Front Plant Sci 8:641

    PubMed  PubMed Central  Google Scholar 

  • Hane J, Ming Y, Kamphuis LG, Nelson MN, Garg G et al (2017) A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol J 15:318–330

    CAS  PubMed  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008) Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80

    PubMed  PubMed Central  Google Scholar 

  • Kamphuis LG, Zulak K, Gao L-L, Anderson JP, Singh KB (2013) Plant—aphid interactions with a focus on legumes. Funct Plant Biol 40:1271–1284

    CAS  Google Scholar 

  • Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA et al (2015) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnol J 13:14–25

    CAS  PubMed  Google Scholar 

  • Kroc M, Koczyk G, Swiecicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127:1237–1249

    PubMed  Google Scholar 

  • Kroc M, Czepiel K, Wilczura P, Koczyk G, ÅšwiÄ™cicki W (2019a) Alkaloid biosynthesis in lupins. In: Third international legume societ conference, Poznan, Poland

    Google Scholar 

  • Kroc M, Koczyk G, Kamel KA, Czepiel K, Fedorowicz-StroÅ„ska O et al (2019b) Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci Rep 19:2231

    Google Scholar 

  • Książkiewicz M, Nazzicari N, Yang H, Nelson MN, Renshaw D et al (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335

    PubMed  PubMed Central  Google Scholar 

  • McGinn S, Gut IG (2013) DNA sequencing - spanning the generations. Nat Biotechnol 30:366–372

    CAS  Google Scholar 

  • Meng ZB, You XD, Suo D, Chen YL, Tang C et al (2013) Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus). Plant Physiol 148:481–489

    CAS  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Nevado B, Hurgobin B, Filatov D et al (2018) Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theoret Appl Genet 131:887–901

    Google Scholar 

  • Nelson MN, Phan HT, Ellwood SR, Moolhuijzen PM, Hane J et al (2006) The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula. Theoret Appl Genet 113:225–238

    CAS  Google Scholar 

  • Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K et al (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevado B, Atchison GW, Hughes CE, Filatov DA (2016) Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nat Commun 7:12384

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J et al (2013) An RNA-seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Google Scholar 

  • Parra-González L, Aravena-Abarzua G, Navarro-Navarro C, Udall J, Maughan J et al (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:425

    Google Scholar 

  • Phan HT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Secco D, Shou H, Whelan J, Berkowitz O (2014) RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics 15:230

    PubMed  PubMed Central  Google Scholar 

  • Tian, L, Peel, GJ, Lei, Z, Aziz, N, Dai, X et al (2009) Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots. BMC Plant Biol 9:1

    Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  Google Scholar 

  • Venuti S, Zanin L, Marroni F, Franco A, Morgante M et al (2019) Physiological and transcriptomic data highlight common features between iron and phosphorus acquisition mechanisms in white lupin roots. Plant Sci 285:110–121

    CAS  PubMed  Google Scholar 

  • Wang Z, Straub D, Yang H, Kania A, Shen J et al (2014) The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing. Physiol Plant 151:323–338

    CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. Insect-Plant Interact 4:131–166

    Google Scholar 

  • Yang H, Tao Y, Zheng Z, Zhang Q, Zhou G et al (2013) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS ONE 8:e64799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Nagy I, Mancinotti D, Otterbach SL, Andersen TB et al (2017) Transcript profiling of a bitter variety of narrow-leafed lupin to discover alkaloid biosynthetic genes. J Exp Bot 68:5527–5537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann J, Voss H, Schwager C, Stegemann J, Ansorge W (1988) Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett 233:432–436

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars G. Kamphuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamphuis, L.G., Foley, R.C., Frick, K.M., Garg, G., Singh, K.B. (2020). Transcriptome Resources Paving the Way for Lupin Crop Improvement. In: Singh, K., Kamphuis, L., Nelson, M. (eds) The Lupin Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-21270-4_5

Download citation

Publish with us

Policies and ethics