Skip to main content

Occurrence of Cytostatics in Different Water Compartments

  • Chapter
  • First Online:
Fate and Effects of Anticancer Drugs in the Environment

Abstract

The chapter deals with the occurrence of a selection of anticancer drugs in different water environments: hospital wastewater, wastewater treatment plant influents and effluents, surface water, sea water, and drinking water. Unfortunately, no data are available for groundwater up to now. The chapter presents and discusses measured environmental concentrations of anticancer drugs collected in 56 peer-reviewed papers referring to investigations carried out in 18 countries all over the world. It focuses on the variability of observed concentrations in the different environments, and it highlights the importance of planning efficient sampling strategies in order to obtain representative water samples.

The highest concentrations in hospital effluents were found for platinum-based compounds and 5-fluorouracil (> 105 ng L−1), in the influent for ciprofloxacin (> 103 ng L−1), in the effluent for platinum-based compounds, ifosfamide and bicalutamide (> 103 ng L−1), and in surface water for cyclophosphamide, tamoxifen, ciprofloxacin, and bicalutamide (> 102 ng L−1). In addition, a comparison is provided between measured and predicted concentrations of some anticancer drugs and a brief discussion of the strengths and weaknesses of the two approaches is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aherne GW, Hardcastle A, Nield AH (1990) Cytotoxic drugs and the aquatic environment: estimation of bleomycin in river and water samples. J Pharm Pharmacol 42(10):741–742

    Article  CAS  Google Scholar 

  • Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelò D (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving rivers in the Po Valley, Italy. Sci Total Environ 438:15–25

    Article  CAS  Google Scholar 

  • Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184

    Article  CAS  Google Scholar 

  • Azuma T, Ishiuchi H, Inoyama T, Teranishi Y, Yamaoka M, Sato T, Mino Y (2015) Occurrence and fate of selected anticancer, antimicrobial, and psychotropic pharmaceuticals in an urban river in a subcatchment of the Yodo river basin, Japan. Environ Sci Pollut Res 22(23):18676–18686

    Article  CAS  Google Scholar 

  • Azuma T, Arima N, Tsukada A, Hirami S, Matsuoka R, Moriwake R, Ishiuchi H, Inoyama T, Teranishi Y, Yamaoka M, Mino Y, Hayashi T, Fujita Y, Masada M (2016) Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. Sci Total Environ 548–549:189–197

    Article  CAS  Google Scholar 

  • Besse JP, Latour JF, Garric J (2012) Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39:73–86

    Article  CAS  Google Scholar 

  • Booker V, Halsall C, Llewellyn N, Johnson A, Williams R (2014) Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci Total Environ 473–474:159–170

    Article  CAS  Google Scholar 

  • Buerge IJ, Buser H, Poiger T, Müller MD (2006) Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environ Sci Technol 40(23):7242–7250

    Article  CAS  Google Scholar 

  • Busetti F, Linge KL, Heitz A (2009) Analysis of pharmaceuticals in indirect potable reuse systems using solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A1216(31):5807–5818. 

    Google Scholar 

  • Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. J Chromatogr A 1092:206–215

    Article  CAS  Google Scholar 

  • Catastini C, Mullot J, Boukari S, Mazellier P, Levi Y, Cervantes P, Ormsby J (2008) Assessment of antineoplastic drugs in effluents of two hospitals. J Eur Hydrol 39(2):171–180

    CAS  Google Scholar 

  • Coetsier CM, Spinelli S, Lin L, Roig B, Touraud E (2009) Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant: MECs vs PECs? Environ Int 35(5):787–792

    Article  CAS  Google Scholar 

  • Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495

    Google Scholar 

  • Espinosa E, Zamora P, Feliu J, González Barón M (2003) Classification of anticancer drugs – a new system based on therapeutic targets. Cancer Treat Rev 29(6):515–523

    Article  CAS  Google Scholar 

  • Fabbri E, Franzellitti S (2016) Human pharmaceuticals in the marine environment: focus on exposure and biological effects in animal species. Environ Toxicol Chem 35(4):799–812

    Article  CAS  Google Scholar 

  • Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D (2013) Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal Bioanal Chem 405(18):5937–5952

    Article  CAS  Google Scholar 

  • Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D (2014) Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. Environ Pollut 193:216–223

    Article  CAS  Google Scholar 

  • Franquet-Griell H, Gómez-Canela C, Ventura F, Lacorte S (2015) Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain). Environ Res 138:161–172

    Article  CAS  Google Scholar 

  • Franquet-Griell H, Cornadó D, Caixach J, Ventura F, Lacorte S (2017) Determination of cytostatic drugs in Besòs river (NE Spain) and comparison with predicted environmental concentrations. Environ Sci Pollut Res 24(7):6492–6503

    Article  CAS  Google Scholar 

  • Furlong ET, Batt AL, Glassmeyer ST, Noriega MC, Kolpin DW, Mash H, Schenck KM (2017) Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the united states: pharmaceuticals. Sci Total Environ 579:1629–1642

    Article  CAS  Google Scholar 

  • Gómez-Canela C, Ventura F, Caixach J, Lacorte S (2014) Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 406(16):3801–3814

    Article  CAS  Google Scholar 

  • Houtman CJ, ten Broek R, de Jong K, Pieterse B, Kroesbergen J (2013) A multicomponent snapshot of pharmaceuticals and pesticides in the river Meuse basin. Environ Toxicol Chem 32(11):2449–2459

    CAS  Google Scholar 

  • Isidori M, Lavorgna M, Russo C, Kundi M, Žegura B, Novak M, Filipič M, Mišík M, Knasmueller S, de Alda ML, Barceló D, Žonja B, Česen M, Ščančar J, Kosjek T, Heath E (2016) Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environ Pollut 219:275–287

    Article  CAS  Google Scholar 

  • Kosjek T, Perko S, Žigon D, Heath E (2013) Fluorouracil in the environment: analysis, occurrence, degradation and transformation. J Chromatogr A 1290:62–72

    Article  CAS  Google Scholar 

  • Kovalova L (2009) Cytostatics in the aquatic environment: analysis, occurrence, and possibilities for removal. PhD Thesis University of Aachen

    Google Scholar 

  • Kümmerer K, Steger-Hartmann T, Meyer M (1997) Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and communal sewage. Water Res 31(11):2705–2710

    Article  Google Scholar 

  • Kümmerer K, Haiß A, Schuster A, Hein A, Ebert I (2016) Antineoplastic compounds in the environment- substances of special concern. Environ Sci Pollut Res 223:14791–14804

    Article  CAS  Google Scholar 

  • Lenz K, Mahnik SN, Weissenbacher N, Mader RM, Krenn P, Hann S, Koellensperger G, Uhl M, Knasmüller S, Ferk F, Bursch W, Fuerhacker M (2007) Monitoring, removal and risk assessment of cytostatic drugs in hospital wastewater. Water Sci Technol 56(12):141–149

    Article  CAS  Google Scholar 

  • Lienert J, Bürki T, Escher BI (2007) Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Sci Technol 56(5):87–96

    Article  CAS  Google Scholar 

  • Liu X, Zhang J, Yin J, Duan H, Wu Y, Shao B (2010) Analysis of hormone antagonists in clinical and municipal wastewater by isotopic dilution liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 396(8):2977–2985

    Article  CAS  Google Scholar 

  • Llewellyn N, Lloyd P, Jürgens MD, Johnson AC (2011) Determination of cyclophosphamide and ifosfamide in sewage effluent by stable isotope-dilution liquid chromatography-tandem mass spectrometry. J Chromatogr A 1218(47):8519–8528

    Article  CAS  Google Scholar 

  • López-Serna R, Pérez S, Ginebreda A, Petrović M, Barceló D (2010) Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography- electrospray-tandem mass spectrometry. Talanta 83(2):410–424

    Article  CAS  Google Scholar 

  • López-Serna R, Petrović M, Barceló D (2011) Development of a fast instrumental method for the analysis of pharmaceuticals in environmental and wastewaters based on ultra high performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS). Chemosphere 85(8):1390–1399

    Article  CAS  Google Scholar 

  • López-Serna R, Petrović M, Barceló D (2012a) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro river basin (NE spain). Sci Total Environ 440:280–289

    Article  CAS  Google Scholar 

  • López-Serna R, Postigo C, Blanco J, Pérez S, Ginebreda A, de Alda ML, Petrović M, Munné A, Barceló D (2012b) Assessing the effects of tertiary treated wastewater reuse on the presence emerging contaminants in a mediterranean river (llobregat, NE spain). Environ Sci Pollut Res 19(4):1000–1012

    Article  CAS  Google Scholar 

  • Mahnik SN, Rizovski B, Fuerhacker M, Mader RM (2004) Determination of 5-fluorouracil in hospital effluents. Anal Bioanal Chem 380(1):31–35

    Article  CAS  Google Scholar 

  • Mahnik SN, Rizovski B, Fuerhacker M, Mader RM (2006) Development of an analytical method for the determination of anthracyclines in hospital effluents. Chemosphere 65(8):1419–1425

    Article  CAS  Google Scholar 

  • Mahnik S, Lenz K, Weissenbacher N, Mader R, Fuerhacker M (2007) Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bioreactor system. Chemosphere 6:30–37

    Article  CAS  Google Scholar 

  • Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2011) Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography-triple-quadrupole mass spectrometry. J Sep Sci 34(22):3166–3177

    Article  CAS  Google Scholar 

  • Martín J, Camacho-Munõz D, Santos JL, Aparicio I, Alonso E (2014) Occurrence and ecotoxicological risk assessment of 14 cytostatic drugs in wastewater. Water Air Soil Pollut 225(3):1–10

    Article  CAS  Google Scholar 

  • Matsuo H, Sakamoto H, Arizono K, Shinohara R (2011) Behavior of pharmaceuticals in wastewater treatment plant in Japan. Bull Environ Contam Toxicol 87(1):31–35

    Article  CAS  Google Scholar 

  • Mendoza A, Zonja B, Mastroianni N, Negreira N, López de Alda M, Pérez S, Barceló D, Gil A, Valcárcel Y (2016) Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain): a case study to analyse their occurrence and human health risk characterization. Environ Int 86:107–118

    Article  CAS  Google Scholar 

  • Moldovan Z (2006) Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere 64(11):1808–1817

    Article  CAS  Google Scholar 

  • Mompelat S, Thomas O, Le Bot B (2011) Contamination levels of human pharmaceutical compounds in French surface and drinking water. J Environ Monit 13(10):2929–2939

    Article  CAS  Google Scholar 

  • Negreira N, López de Alda M, Barceló D (2013) On-line solid phase extraction-liquid chromatography-tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples. J Chromatogr A 1280:64–74

    Article  CAS  Google Scholar 

  • Negreira N, de Alda ML, Barcelo´ D (2014) Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: filtration, occurrence, and environmental risk. Sci Total Environ 497–498:68–77

    Article  CAS  Google Scholar 

  • Ort C, Lawrence MG, Rieckermann J, Joss A (2010a) Sampling for pharmaceuticals and personal care products (PPCPs) and Illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 44:6024–6035

    Article  CAS  Google Scholar 

  • Ort C, Lawrence MG, Reungoat J, Mueller JF (2010b) Sampling for PPCPs in wastewater systems: comparison of different sampling modes and optimization strategies. Environ Sci Technol 44(16):6289–6296

    Article  CAS  Google Scholar 

  • Ortiz de García S, Pinto Pinto G, GarcíaEncina P, Irusta Mata R (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465

    Article  CAS  Google Scholar 

  • Pal A, Gin K, Lin A, Reinhard M (2010) Impacts of emerging organic contaminants on freshwaterresources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  CAS  Google Scholar 

  • Petrović M, Škrbić B, Živančev J, Ferrando-Climent L, Barcelo D (2014) Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole-linear ion trap in different types of water in Serbia. Sci Total Environ 468–469:415–428

    Article  CAS  Google Scholar 

  • Rabii FW, Segura PA, Fayad PB, Sauvé S (2014) Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Sci Total Environ 487(1):792–800

    Article  CAS  Google Scholar 

  • Roberts PH, Thomas KV (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 356(1–3):143–153

    Article  CAS  Google Scholar 

  • Rowney NC, Johnson AC, Williams RJ (2009) Cytotoxic drugs in drinking water: a prediction and risk assessment exercise for the Thames catchment in the United Kingdom. Environ Toxicol Chem 28:2733–2743

    Article  CAS  Google Scholar 

  • Steger-Hartmann T, Kümmerer K, Schecker J (1996) Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by two-step solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 726(1–2):179–184

    Article  CAS  Google Scholar 

  • Steger-Hartmann T, Kümmerer K, Hartmann A (1997) Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotoxicol Environ Saf 36(2):174–179

    Article  CAS  Google Scholar 

  • Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39:1761–1772

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Ternes TA, Joss A (2006) Human Pharmaceuticals, hormones and fragrances, The challenge of micropollutants in urban water management. IWA Publishing, London

    Google Scholar 

  • Thomas KV, Hilton MJ (2004) The occurrence of selected human pharmaceutical compounds in UK estuaries. Mar Pollut Bull 49:436–444

    Article  CAS  Google Scholar 

  • Thomas KV, Dye C, Schlabach M, Langford KH (2007) Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. J Environ Monit 9(12):1410–1418

    Article  CAS  Google Scholar 

  • Usawanuwat J, Boontanon N, Kitpati Boontanon S (2014) Analysis of three anticancer drugs (5-Fluorouracil, cyclophosphamide and hydroxyurea) in water samples by HPLC-MS/MS. Int J Adv Agric Environ Eng 1:72–76

    Google Scholar 

  • Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Gil A, Catalá M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid region (Spain) and potential ecotoxicological risk. Chemosphere 84(10):1336–1348

    Article  CAS  Google Scholar 

  • Valcárcel Y, Alonso SG, Rodríguez-Gil JL, Castaño A, Montero JC, Criado-Alvarez JJ, Mirón IJ, Catalá M (2013) Seasonal variation of pharmaceutically active compounds in surface (Tagus river) and tap water (central Spain). Environ Sci Pollut Res 20(3):1396–1412

    Article  CAS  Google Scholar 

  • Verlicchi P, Zambello E (2016) Predicted and measured concentrations of pharmaceuticals in hospital effluents. Examination of the strengths and weaknesses of the two approaches through the analysis of a case study. Sci Total Environ 565:82–94. https://doi.org/10.1016/j.SciTotEnviron2016.04.165

  • Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D (2012) Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ 430:109–118

    Article  CAS  Google Scholar 

  • Verlicchi P, Al Aukidy M, Jelic A, Petrovic M, Barceló D (2014) Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: a case study of a catchment area in the Po Valley (Italy). Sci Total Environ 470–471:844–854

    Article  CAS  Google Scholar 

  • Vyas N, Turner A, Sewell G (2014) Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters. Sci Total Environ 493:324–329

    Article  CAS  Google Scholar 

  • Weissbrodt D, Kovalova L, Ort C, Pazhepurackel V, Moser R, Hollender J, Siegrist H, Mcardell CS (2009) Mass flows of x-ray contrast media and cytostatics in hospital wastewater. Environ Sci Technol 43(13):4810–4817

    Article  CAS  Google Scholar 

  • Yang Y, Fu J, Peng H, Hou L, Liu M, Zhou J (2011) Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. J Hazard Mater 190:588–596

    Article  CAS  Google Scholar 

  • Yin J, Shao B, Zhang J, Li K (2010) A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, china. Bull Environ Contam Toxicol 84(1):39–45

    Article  CAS  Google Scholar 

  • Yu JT, Bisceglia KJ, Bouwer EJ, Roberts AL, Coelhan M (2012) Determination of pharmaceuticals and antiseptics in water by solid-phase extraction and gas chromatography/mass spectrometry: analysis via pentafluorobenzylation and stable isotope dilution. Anal Bioanal Chem 403(2):583–591

    Article  CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355(9217):1789–1790

    Article  CAS  Google Scholar 

  • Zuccato E, Castiglioni S, Fanelli R (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122:205–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Verlicchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verlicchi, P., Campos Garrigós, A., Al Aukidy, M. (2020). Occurrence of Cytostatics in Different Water Compartments. In: Heath, E., Isidori, M., Kosjek, T., Filipič, M. (eds) Fate and Effects of Anticancer Drugs in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-21048-9_10

Download citation

Publish with us

Policies and ethics