Skip to main content

Molecular Mechanism and Signaling Response of Heavy Metal Stress Tolerance in Plants

  • Chapter
  • First Online:
Plant-Metal Interactions

Abstract

Heavy metal toxicity is one of the major agricultural concerns that can adversely affect crop growth and yield. Being sessile, plants must evolve a wide array of physio-chemical defense mechanisms to accumulate and tolerate excessive concentrations of heavy metals. These mechanisms, in turn, help in maintaining ionic balance in plant cells, which is physiologically essential for cellular functioning and metabolism. In this chapter, we comprehensively discuss these molecular mechanisms, the signaling responses involved and coordinated cross talk of different processes taking place during heavy metal uptake, translocation, sequestration, and detoxification in plants. Among the key players, recent work has revealed the vital roles played by miRNAs in supplementing metal detoxification by means of transcription factors (TF) or gene regulation. We believe that a complete understanding of the underlying mechanisms may help scientists to adopt novel molecular and genetic approaches that may pave the way for developing transgenic crops with improved heavy metal stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbaoui S, Slimane RB, Rezgui S, Bettaieb T (2014) Metal transporters for uptake, sequestration and translocation. In: Gupta DK, Chatterjee S (eds) Heavy metal remediation: transport and accumulation in plants. Nova Science Publishers, New York, pp 29–44

    Google Scholar 

  • Barbosa JTP, Santos CM, Peralva VN, Flores EM, Korn M, Nóbrega JA, Korn MGA (2015) Microwave-assisted diluted acid digestion for trace elements analysis of edible soybean products. Food Chem 175:212–217

    Article  CAS  PubMed  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Ali B, Iqbal N, Abbas F, Ahmad MSA (2014) Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environ Sci Pollut Res 21:717–731

    Article  CAS  Google Scholar 

  • Bouazizi H, Jouili H, Geitmann A, El Ferjani E (2010) Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73:1304–1308

    Article  CAS  PubMed  Google Scholar 

  • Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66:3815–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casacuberta JM, Devos Y, Du Jardin P, Ramon M, Vaucheret H, Nogue F (2015) Biotechnological uses of RNAi in plants: risk assessment considerations. Trends Biotechnol 33:145–147

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235:375–386

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Saf 104:349–356

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Chmielowska-Bąk J, Arasimowicz-Jelonek M, Izbiańska K, Frontasyeva M, Zinicovscaia I, Guiance-Varela C, Deckert J (2017) NADPH oxidase is involved in regulation of gene expression and ROS overproduction in soybean (Glycine max L.) seedlings exposed to cadmium. Acta Soc Bot Pol 86(2):3551

    Article  CAS  Google Scholar 

  • Choppala G, Saifullah BN, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391

    Article  CAS  Google Scholar 

  • Cohen MD, Prophete C, Sisco M, Chen LC, Zelikoff JT, Smee JJ, Holder AA, Crans DC (2006) Pulmonary immunotoxic potentials of metals are governed by select physicochemical properties: chromium agents. J Immunotoxicol 3:69–81

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2008) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. AoB Plants 103:1–11

    Google Scholar 

  • Çelik Ö, Akdaş EY (2019) Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. Ecotoxicol Environ Saf 170:682–690

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Diatloff E, Forde BG, Roberts SK (2006) Expression and transport characterisation of the wheat low-affinity cation transporter (LCT1) in the methylotrophic yeast Pichia pastoris. Biochem Biophys Res Commun 344:807–813

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177(4):1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Article  CAS  Google Scholar 

  • Fan SK, Fang XZ, Guan MY, Ye YQ, Lin XY, Du ST, Jin CW (2014) Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci 5:721

    Article  PubMed  PubMed Central  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    Article  CAS  PubMed  Google Scholar 

  • Gautam M, Pandey D, Agrawal SB, Agrawal M (2016) Metals from mining and metallurgical industries and their toxicological impacts on plants. In: Singh A, Prasad SM, Singh RP (eds) Plant responses to xenobiotics. Springer, Singapore, pp 231–272

    Chapter  Google Scholar 

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, New York, pp 1–27

    Google Scholar 

  • Gu CS, Liu LQ, Deng YM, Zhu XD, Huang SZ, Lu XQ (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IlMT2b gene enhances copper tolerance in Arabidopsis thaliana. Bull Environ Contam Toxicol 94:247–253

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013) Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 73–94

    Chapter  Google Scholar 

  • He JY, Ren YF, Cheng ZHU, Jiang DA (2008) Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice (Oryza sativa). Rice Sci 15:319–325

    Article  Google Scholar 

  • Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    Article  CAS  PubMed  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    Article  CAS  PubMed  Google Scholar 

  • Huang TL, Nguyen QTT, Fu SF, Lin CY, Chen YC, Huang HJ (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen Q, Deng M, Japenga J, Li T, Yang X, He Z (2018a) Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J Environ Manag 207:159–168

    Article  CAS  Google Scholar 

  • Huang Y, Fang Y, Long X, Liu L, Wang J, Zhu J, Ma Y, Qin Y, Qi J, Hu X, Tang C (2018b) Characterization of the rubber tree metallothionein family reveals a role in mitigating the effects of reactive oxygen species associated with physiological stress. Tree Physiol. 38: 911–924

    Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Li YF, Sunkar R (2014) Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J 77:85–96

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Muneer S, Guerriero G, Liu S, Vishwakarma K, Chauhan DK, Dubey NK, Tripathi DK, Sharma S (2019) Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review. Plant Signal Behav 13(9):e1507401

    Article  CAS  Google Scholar 

  • Joshi R, Pareek A, Singla-Pareek SL (2015) Plant Metallothioneins: Classification, Distribution, Function, and Regulation. In: Ahmad P (ed), Plant Metal Interaction, Elsevier, Amsterdam, Netherlands, pp 239–261

    Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Gupta P, Singla-Pareek SL, Pareek A (2017) Biomass production and salinity response in plants: role of MicroRNAs. Indian J Plant Physiol 22:448–457

    Article  CAS  Google Scholar 

  • Khan DA, Ali Z, Iftikhar S, Amraiz D, Gul A, Babar MM (2018) Role of phytohormones in enhancing antioxidant defense in plants exposed to metal/metalloid toxicity. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore, pp 367–400

    Chapter  Google Scholar 

  • Kısa D, Elmastaş M, Öztürk L, Kayır Ö (2016a) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem 59:813–820

    Article  CAS  Google Scholar 

  • Kısa D, Öztürk L, Tekin Ş (2016b) Gene expression analysis of metallothionein and mineral elements uptake in tomato (Solanum lycopersicum) exposed to cadmium. J Plant Res 129:989–995

    Article  CAS  PubMed  Google Scholar 

  • Kohli SK, Handa N, Gautam V, Bali S, Sharma A, Khanna K, Arora S, Thukral AK, Ohri P, Karpets YV, Kolupaev YE (2017) ROS signaling in plants under heavy metal stress. In: Khan MIR, Khan NA (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 185–214

    Chapter  Google Scholar 

  • Kovács V, Gondor OK, Szalai G, Darkó É, Majláth I, Janda T, Pál M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19

    Article  CAS  PubMed  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Erlikh NT, Shevyreva TA, Andreev IM, Verweij R, Schat H (2014) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Aery NC (2016) Impact, metabolism, and toxicity of heavy metals in plants. In: Plant responses to xenobiotics. Springer, Singapore, pp 141–176

    Chapter  Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SLS, Pareek A (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Singh DP, Barman SC, Kumar N (2016) Heavy metal and their regulation in plant system: an overview. In: Singh A, Prasad SM, Singh RP (eds) Plant responses to xenobiotics. Springer, Singapore, pp 19–38

    Chapter  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24:39–51

    Article  CAS  Google Scholar 

  • Lai X, Stigliani A, Vachon G, Carles C, Smaczniak C, Zubieta C, Kaufmann K, Parcy F (2018) Building transcription factor binding site models to understand gene regulation in plants. Mol Plant. https://doi.org/10.1016/j.molp.2018.10.010

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Korpelainen H, Li C (2007) Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68:686–694

    Article  CAS  PubMed  Google Scholar 

  • Li T, Li H, Zhang YX, Liu JY (2010) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima J, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99–108

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Ding Y, Wang F, Ye Y, Zhu C (2016) Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep 35(4):719–731

    Article  CAS  PubMed  Google Scholar 

  • Lomaglio T, Rocco M, Trupiano D, De Zio E, Grosso A, Marra M, Delfine S, Chiatante D, Morabito D, Scippa GS (2015) Effect of short-term cadmium stress on Populus nigra L. detached leaves. J Plant Physiol 182:40–48

    Article  CAS  PubMed  Google Scholar 

  • Luo ZB, Wu C, Zhang C, Li H, Lipka U, Polle A (2014) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot 108:47–62

    Article  CAS  Google Scholar 

  • Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148

    Article  CAS  PubMed  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer briefs in molecular science. Springer, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Mekawy AMM, Assaha DV, Munehiro R, Kohnishi E, Nagaoka T, Ueda A, Saneoka H (2018) Characterization of type 3 metallothionein-like gene (OsMT-3a) from rice, revealed its ability to confer tolerance to salinity and heavy metal stresses. Environ Exp Bot 147:157–166

    Article  CAS  Google Scholar 

  • Michel-Lopez C, Zapata-Pérez O, González-Mendoza D, Grimaldo-Juarez O, Ceceña-Duran C, Tzintzun-Camacho O (2017) Expression of metallothionein type 2 and 3 genes in Prosopis glandulosa leaves treated with copper. Genet Mol Res 16:gmr16019490

    Article  CAS  Google Scholar 

  • Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67:3763–3784

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monferrán MV, Wunderlin DA (2013) Biochemistry of metals/metalloids toward remediation process. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 43–71

    Chapter  Google Scholar 

  • Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. BBA – Proteins and Proteomics 1864:932–944

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res 24:10068–10082

    Article  CAS  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Gupta DK, Corpas FJ (2013) Metalloenzymes involved in the metabolism of reactive oxygen species and heavy metal stress. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 1–17

    Google Scholar 

  • Paul S, Datta SK, Datta K (2015) miRNA regulation of nutrient homeostasis in plants. Front Plant Sci 6:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37:1672–1687

    Article  CAS  PubMed  Google Scholar 

  • Pilon M (2017) The copper microRNAs. New Phytol 213:1030–1035

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 121–147

    Chapter  Google Scholar 

  • Prakash V, Saxena S (2017) Molecular overview of heavy metal phytoremediation. In: Bhakta JK (ed) Handbook of research on inventive bioremediation techniques. IGI Global, India, pp 247–263

    Chapter  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2016) Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. In: Singh A, Prasad SM, Singh RP (eds) Plant responses to xenobiotics. Springer, Singapore, pp 127–140

    Chapter  Google Scholar 

  • Rout GR, Panigrahi J (2015) Analysis of signaling pathways during heavy metal toxicity: a functional genomics perspective. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, pp 295–322

    Chapter  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    Article  CAS  PubMed  Google Scholar 

  • Saraswat S, Rai JPN (2011) Complexation and detoxification of Zn and Cd in metal accumulating plants. Rev Environ Sci Bio-Technol 10:327–339

    Article  CAS  Google Scholar 

  • Saxena P, Misra N (2010) Remediation of heavy metal contaminated tropical land. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Berlin, Heidelberg, pp 431–477

    Chapter  Google Scholar 

  • Seneviratne M, Weerasundara L, Ok YS, Rinklebe J, Vithanage M (2017) Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. J Environ Manag 186:293–300

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39(5):1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 84–126

    Chapter  Google Scholar 

  • Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ 38:207–223

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z (2013) Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366:647–658

    Article  CAS  Google Scholar 

  • Srivastava S, Suprasanna P, D’souza SF (2012) Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int J Phytoremediation 14:506–517

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Singh L, Ab-Wahid Z, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:206

    Article  PubMed  Google Scholar 

  • Thornalley PJ, Vašák M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. BBA-Protein Struct Molecular Enzymol 827:36–44

    Article  CAS  Google Scholar 

  • Tripathi P, Singh PK, Mishra S, Gautam N, Dwivedi S, Chakrabarty D, Tripathi RD (2015) Recent advances in the expression and regulation of plant metallothioneins for metal homeostasis and tolerance. In: Chandra R (ed) Environmental waste management. CRC Press, Boca Raton, pp 551–564

    Chapter  Google Scholar 

  • Tsednee M, Yang SC, Lee DC, Yeh KC (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166:839–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10(3):268–292

    Article  Google Scholar 

  • Wagatsuma T (2017) The membrane lipid bilayer as a regulated barrier to cope with detrimental ionic conditions: making new tolerant plant lines with altered membrane lipid bilayer. Soil Sci Plant Nutr 63(5):507–516

    Article  CAS  Google Scholar 

  • Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Fang Y, Tian B, Zhang X, Zeng D, Guo L, Hu J, Xue D (2018) New QTLs identified for leaf correlative traits in rice seedlings under cadmium stress. Plant Growth Regul 85(2):329–335

    Article  CAS  Google Scholar 

  • Weerakoon SR (2019) Genetic engineering for metal and metalloid detoxification. In: Prasad MNV (ed) Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, London, pp 23–41

    Chapter  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics 5:60

    CAS  Google Scholar 

  • Wianowska D, Maksymiec W, Dawidowicz AL, Tukiendorf A (2004) The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta Physiol Plant 26:247–254

    Article  Google Scholar 

  • Wu L, Yu J, Shen Q, Huang L, Wu D, Zhang G (2018) Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genomics 19(1):560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Sun J, Du L, Liu X (2012) Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol 196:110–124

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Mori S, Baba K, Kaburagi-Yada S, Arao T, Kitajima N, Hokura A, Terada Y (2011) Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environ Exp Bot 71:198–206

    Article  CAS  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  CAS  PubMed  Google Scholar 

  • Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XD, Sun JY, You YY, Song JB, Yang ZM (2018) Identification of Cd-responsive RNA helicase genes and expression of a putative BnRH 24 mediated by miR158 in canola (Brassica napus). Ecotoxicol Environ Saf 157:159–168

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012a) Genome wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L (2012b) Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RJ would like to acknowledge Dr D S Kothari Postdoctoral Fellowship from UGC. AP and SLS-P are supported by funding from the Indo-US Science and Technology Forum (IUSSTF) for Indo-US Advanced Bioenergy Consortium (IUABC). Research in the lab of AP is also supported from funds received from International Atomic Energy Agency (Vienna), UGC-RNW, and UPE-II, JNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Pareek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, R., Dkhar, J., Singla-Pareek, S.L., Pareek, A. (2019). Molecular Mechanism and Signaling Response of Heavy Metal Stress Tolerance in Plants. In: Srivastava, S., Srivastava, A., Suprasanna, P. (eds) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_2

Download citation

Publish with us

Policies and ethics