Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 284))

  • 2095 Accesses

Abstract

We present equilibrium and non-equilibrium molecular dynamics approaches to determine thermal transport properties in particular Helfand formulation and its modifications due to finite size encountered in nanoscale systems. Applications on carbon nanotubes, graphene and graphene nanoribbons, the influence of topological defects, and isotopic effect are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, CA, 2000)

    Google Scholar 

  2. R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957)

    Google Scholar 

  3. R. Zwanzig, Time correlation functions and transport coefficients in statistical mechanics. Annu. Rev. Phys. Chem. 16, 67 (1965)

    Google Scholar 

  4. E. Helfand, Transport coefficients from dissipation in a canonical ensemble. Phys. Rev. 119, 1–9 (1960)

    Article  Google Scholar 

  5. A. Kınacı, J.B. Haskins, T. Çağın, On calculation of thermal conductivity from Einstein relation in equilibrium MD. J. Chem. Phys. 137, 014106 (2012)

    Google Scholar 

  6. S. Viscardy, J. Servantie, Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity. J. Chem. Phys. 126, 184513 (2007)

    Google Scholar 

  7. J.B. Haskins, A. Kınacı, C. Sevik, T. Çağın, Equilibrium limit of thermal conduction and boundary scattering in nanostructures. J. Chem. Phys. 137, 014106 (2014)

    Google Scholar 

  8. J.-W. Che, T. Cagin, W.A. Goddard III, Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65–69 (2000)

    Article  CAS  Google Scholar 

  9. J.-W. Che, T. Cagin, W. Deng, W.A. Goddard III, Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113, 6888–6900 (2000)

    Article  CAS  Google Scholar 

  10. F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997)

    Google Scholar 

  11. M. Zhang, E. Lussetti, L.E.S. de Souza, F. Müller-Plathe, Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. J. Phys. Chem. B 109, 15060–15067 (2005)

    Article  CAS  Google Scholar 

  12. D.P. Sellan, E.S. Landry, J.E. Turney, J.H. McGaughey, C.H. Amon, Size effects in molecular dynamics thermal conductivity predictions. Phys. Rev. B 81, 214305 (2010)

    Google Scholar 

  13. P. Schelling, S. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65, 1–12 (2002)

    Article  Google Scholar 

  14. D. Evans, Homogeneous NEMD algorithm for thermal conductivity—application of non-canonical linear response theory. Phys. Lett. A 91, 457–460 (1982)

    Article  Google Scholar 

  15. S. Berber, Y.-K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000)

    Article  CAS  Google Scholar 

  16. C. Sevik, H. Sevinçli, G. Cuniberti, T. Çağın, Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 11, 4971–4977 (2011)

    Article  CAS  Google Scholar 

  17. J. Chen, G. Zhang, B. Li, Molecular dynamics simulations of heat conduction in nanostructures: effect of heat bath. J. Phys. Soc. Jpn. 79, 074604 (2010)

    Google Scholar 

  18. J. Hu, X. Ruan, Y. Chen, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 9, 2730–2735 (2009)

    Article  CAS  Google Scholar 

  19. T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar, Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE. Trans. Compon. Packaging Technol. 30, 92 (2007)

    Google Scholar 

  20. M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, K.E. Goodson, Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. ASME J. Heat Trans. 130, 052401 (2008)

    Google Scholar 

  21. E. Pop, Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147 (2010)

    Google Scholar 

  22. K. Kordas, G. Toth, P. Moilanen, M. Kumpumaki, J. Vahakangas, A. Uusimaki, R. Vajtai, P.M. Ajayan, Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett. 90, 123105 (2007)

    Google Scholar 

  23. O.F. Mohammed, P.C. Samartzis, A.H. Zewail, Heating and cooling dynamics of carbon nanotubes observed by temperature-jump spectroscopy and electron microscopy. J. Am. Chem. Soc. 131, 16010 (2009)

    Google Scholar 

  24. B.A. Cola, X. Xu, T.S. Fisher, Increased real contact in thermal interfaces: a carbon nanotube/foil material. Appl. Phys. Lett. 90, 093513 (2007)

    Google Scholar 

  25. K. Zhang, Y. Chai, M.M.F. Yuen, D.G.W. Xiao, P.C.H. Chan, Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 19, 215706 (2008)

    Google Scholar 

  26. M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Johnson, J. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80, 2767 (2002)

    Google Scholar 

  27. H. Huang, C. Liu, Y. Wu, S. Fan, Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652 (2005)

    Google Scholar 

  28. J. Xu, T.S. Fisher, Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transfer 49, 1658 (2006)

    Google Scholar 

  29. A. Jorio, M. Dresselhaus, G. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, New York, 2008)

    Google Scholar 

  30. J. Haskins, A. Kinaci, C. Sevik, H. Sevinçli, G. Cuniberti, T. Çağın, Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5, 3779 (2011)

    Google Scholar 

  31. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514 (1999)

    Google Scholar 

  32. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842 (2005)

    Google Scholar 

  33. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai, Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005)

    Google Scholar 

  34. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96 (2006)

    Google Scholar 

  35. M.T. Pettes, L. Shi, Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 19, 3918 (2009)

    Google Scholar 

  36. Q. Li, C. Liu, X. Wang, S. Fan, Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology 20, 145702 (2009)

    Google Scholar 

  37. T.Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Nano Lett. 6, 1589 (2006)

    Google Scholar 

  38. T. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method. Appl. Phys. Lett. 87, 013108 (2005)

    Google Scholar 

  39. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005)

    Google Scholar 

  40. P. Kim, L. Shi, A. Majumdar, P. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Google Scholar 

  41. C.W. Chang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 97, 085901 (2006)

    Google Scholar 

  42. I.K. Hsu, R. Kumar, A. Bushmaker, S.B. Cronin, M.T. Pettes, L. Shi, T. Brintlinger, M.S. Fuhrer, J. Cumings, Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 92, 063119 (2008)

    Google Scholar 

  43. R. Prasher, Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. 77, 075424 (2008)

    Google Scholar 

  44. S. Berber, Y. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613 (2000)

    Google Scholar 

  45. Y. Gu, Y. Chen, Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations. Phys. Rev. B 76, 134110 (2007)

    Google Scholar 

  46. F. Nishimura, T. Takahashi, K. Watanabe, T. Yamamoto, Bending robustness of thermal conductance of carbon nanotubes: nonequilibrium molecular dynamics simulation. Appl. Phys. Exp. 2, 035003 (2009)

    Google Scholar 

  47. G. Zhang, B. Li, Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 123, 114714 (2005)

    Google Scholar 

  48. M.A. Osman, D. Srivastava, Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12, 21 (2001)

    Google Scholar 

  49. D. Donadio, G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99, 255502 (2007)

    Google Scholar 

  50. N. Mingo, D. Broido, Length dependence of carbon nanotube thermal conductivity and the problem of long waves. Nano Lett. 5, 1221 (2005)

    Google Scholar 

  51. M. Alaghemandi, E. Algaer, M.C. Boehm, F. Mueller-Plathe, The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology 20, 115704 (2009)

    Google Scholar 

  52. N. Mingo, D.A. Stewart, D.A. Broido, D. Srivastava, Phonon transmission through defects in carbon nanotubes from first principles. Phys. Rev. B 77, 033418 (2008)

    Google Scholar 

  53. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    Google Scholar 

  54. A.V. Savin, B. Hu, Y.S. Kivshar, Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 80, 195423 (2009)

    Google Scholar 

  55. L. Lindsay, D.A. Broido, N. Mingo, Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys. Rev. B 82, 161402 (2010)

    Google Scholar 

  56. L. Lindsay, D.A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Google Scholar 

  57. C. Sevik, A. Kinaci, B.J. Haskins, T. Çağin, Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)

    Google Scholar 

  58. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido et al., Two-dimensional phonon transport in supported graphene. Science 328, 213 (2010)

    Google Scholar 

  59. W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645 (2010)

    Google Scholar 

  60. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008)

    Google Scholar 

  61. S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010)

    Article  CAS  Google Scholar 

  62. B.D. Kong, S. Paul, M.B. Nardelli, K.W. Kim, First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Phys. Rev. B 80, 033406 (2009)

    Google Scholar 

  63. D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)

    Google Scholar 

  64. K. Saito, J. Nakamura, A. Natori, Ballistic thermal conductance of a graphene sheet. Phys. Rev. B 76, 115409 (2007)

    Google Scholar 

  65. W.J. Evans, L. Hu, P. Keblinski, Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96, 203112–3 (2010)

    Article  Google Scholar 

  66. J. Lan, J.S. Wang, C.K. Gan, S.K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys. Rev. B 79, 115401 (2009)

    Google Scholar 

  67. T. Ouyang, Y.P. Chen, K.K. Yang, J.X. Zhong, Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge. EPL 88, 28002 (2009)

    Google Scholar 

  68. Z. Guo, D. Zhang, X.G. Gong, Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009)

    Google Scholar 

  69. E. Muñoz, J. Lu, B.I. Yakobson, Ballistic thermal conductance of graphene ribbons. Nano Lett. 10, 1652 (2010)

    Google Scholar 

  70. T. Yamamoto, K. Watanabe, K. Mii, Empirical-potential study of phonon transport in graphitic ribbons. Phys. Rev. B 70, 245402 (2004)

    Google Scholar 

  71. N. Yang, G. Zhang, B. Li, Thermal rectification in asymmetric graphene ribbons. Appl. Phys. Lett. 95, 033107 (2009)

    Google Scholar 

  72. W. Li, H. Sevinçli, G. Cuniberti, S. Roche, Phonon transport in large scale carbon-based disordered materials: implementation of an efficient order-\(n\) and real-space Kubo methodology. Phys. Rev. B 82, 041410 (2010)

    Google Scholar 

  73. Z.W. Tan, J.S. Wang, C.K. Gan, First-principles study of heat transport properties of graphene nanoribbons. Nano Lett. 11, 214 (2011)

    Google Scholar 

  74. X. Yong, C. Xiaobin, G. Bing-Lin, D. Wenhui, Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 95, 233116 (2009)

    Google Scholar 

  75. L. Lindsay, D.A. Broido, N. Mingo, Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010)

    Google Scholar 

  76. Z.W. Tan, J.-S. Wang, C.K. Gan, First-principles study of heat transport properties of graphene nanoribbons. Nano Lett. 11, 214–219 (2011)

    Article  CAS  Google Scholar 

  77. M.-H. Bae, Z. Li, Z. Aksamija, P.N. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, E. Pop, Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4, 1734 (2013)

    Google Scholar 

  78. M. Vandescuren, P. Hermet, V. Meuier, L. Henrard, Ph. Lambin, Theoretical study of the vibrational edge modes in graphene nanoribbons. Phys. Rev. B 78, 195401 (2008)

    Google Scholar 

  79. R. Gillen, M. Mohr, J. Maultzsch, Symmetry properties of vibrational modes in graphene nanoribbons. Phys. Rev. B 81, 205426 (2010)

    Google Scholar 

  80. M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000)

    Article  CAS  Google Scholar 

  81. X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–72 (2009b)

    Article  CAS  Google Scholar 

  82. R. McLellan, The solubility of carbon in solid gold, copper, and silver. Scripta Metall. Mater. 3, 389–392 (1969)

    Article  CAS  Google Scholar 

  83. K. Natesan, T. Kassner, Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys. Metall. Mater. Trans. 4, 2557–2566 (1973)

    Article  CAS  Google Scholar 

  84. M. Eizenberg, J. Blakely, Carbon monolayer phase condensation on Ni(111). Surf. Sci. 82(1), 228–236 (1979)

    Article  CAS  Google Scholar 

  85. J. Shelton, H. Patil, J. Blakely, Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf. Sci. 43(2), 493–520 (1974)

    Article  CAS  Google Scholar 

  86. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009a)

    Article  CAS  Google Scholar 

  87. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, Balandin Aa, R.S. Ruoff, Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–7 (2012)

    Article  CAS  Google Scholar 

  88. P.G. Klemens, The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. Lond. Sect. A 68(12), 1113–1128 (1955)

    Article  Google Scholar 

  89. C. Sevik, A. Kınacı, J.B. Haskins, T. Çağın, Influence of disorder on thermal transport properties of boron nitride nanostructures. Phys. Rev. B 86(075), 403 (2012)

    Google Scholar 

  90. P. Kim, L. Shi, A. Majumdar, P. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 215–502 (2001)

    Google Scholar 

  91. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5(9), 1842–6 (2005)

    Article  CAS  Google Scholar 

  92. A. Kınacı, J.B. Haskins, C. Sevik, T. Çağın, Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86(115), 410 (2012)

    Google Scholar 

  93. N. Mingo, K. Esfarjani, D.A. Broido, D.A. Stewart, Cluster scattering effects on phonon conduction in graphene. Phys. Rev. B 81(045), 408 (2010)

    Google Scholar 

Download references

Acknowledgements

Dedication: This work is a representation of how Professor Goddard influences on people over such a long research and education career. I (TC) have had the blessing to work with him at Materials and Process Simulation Center of Caltech over a 15 year period and continued getting inspired by him though from afar but always close. His wisdom, vision, and contribution to science and engineering is transferred through people he has mentored, we (TC, JBH, AK, and CS) wish him many many more years of being him.

The work is mainly conducted at Texas A&M University, with ample support from TAMU High Performance Computing Center. Parts of the research are supported by grants from DARPA—PROM project, NSF (IMI), DoE (LLNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Çağın .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Çağın, T., Haskins, J.B., Kınacı, A., Sevik, C. (2021). Thermal Transport for Nanostructured Materials. In: Shankar, S., Muller, R., Dunning, T., Chen, G.H. (eds) Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Springer Series in Materials Science, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-18778-1_20

Download citation

Publish with us

Policies and ethics