Skip to main content

Bacterial Signal Peptidases

  • Chapter
  • First Online:
Bacterial Cell Walls and Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 92))

Abstract

Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allsop AE, Brooks G, Bruton G, Coulton S, Edwards PD, Hatton IK, Kaura AC, McLean SD, Pearson ND, Smale TC, Southgate R (1995) Penem inhibitors of bacterial signal peptidase. Biorg Medic Chem Lett 5:443–448

    Article  CAS  Google Scholar 

  • Allsop A, Brooks G, Edwards PD, Kaura AC, Southgate R (1996) Inhibitors of bacterial signal peptidase: a series of 6-(substituted oxyethyl)penems. J Antibiot (Tokyo) 49:921–928

    Article  CAS  Google Scholar 

  • Armbruster KM, Meredith TC (2018) Enrichment of bacterial lipoproteins and preparation of N-terminal lipopeptides for structural determination by mass spectrometry. J Vis Exp: JoVE

    Google Scholar 

  • Aynapudi J, El-Rami F, Ge X, Stone V, Zhu B, Kitten T, Xu P (2017) Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation. Microbiology 163:1306–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188:2761–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ (2009) Prediction of signal peptides in archaea. Protein Eng Des Sel 22:27–35

    Article  CAS  PubMed  Google Scholar 

  • Bairl A, Muller P (1998) A second gene for type I signal peptidase in Bradyrhizobium japonicum, sipF, is located near genes involved in RNA processing and cell division. Mol Gen Genet 260:346–356

    CAS  PubMed  Google Scholar 

  • Barbrook AC, Packer JC, Howe CJ (1996) Inhibition by penem of processing peptidases from cyanobacteria and chloroplast thylakoids. FEBS Lett 398:198–200

    Article  CAS  PubMed  Google Scholar 

  • Bardy SL, Eichler J, Jarrell KF (2003) Archaeal signal peptides—a comparative survey at the genome level. Protein Sci 12:1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardy SL, Ng SY, Carnegie DS, Jarrell KF (2005) Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae. J Bacteriol 187:1188–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger B, Gierasch LM, Montal M, Zasloff M, Opella SJ (1996) Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy. Solid State Nucl Magn Reson 7:185–191

    Article  CAS  PubMed  Google Scholar 

  • Berger A, Schechter I (1970) Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci 257:249–264

    Article  CAS  PubMed  Google Scholar 

  • Bilgin N, Lee JI, Zhu HY, Dalbey R, von Heijne G (1990) Mapping of catalytically important domains in Escherichia coli leader peptidase. EMBO J 9:2717–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black MT (1993) Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad. J Bacteriol 175:4957–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black MT, Bruton G (1998) Inhibitors of bacterial signal peptidases. Curr Pharm Des 4:133–154

    CAS  PubMed  Google Scholar 

  • Black MT, Munn JG, Allsop AE (1992) On the catalytic mechanism of prokaryotic leader peptidase 1. Biochem J 282:539–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blobel G, Dobberstein B (1975a) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  CAS  PubMed  Google Scholar 

  • Blobel G, Dobberstein B (1975b) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    Article  CAS  PubMed  Google Scholar 

  • Bochtler M, Mizgalska D, Veillard F, Nowak ML, Houston J, Veith P, Reynolds EC, Potempa J (2018) The Bacteroidetes Q-Rule: pyroglutamate in signal peptidase I substrates. Front Microbiol 9:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Bockstael K, Geukens N, Rao CV, Herdewijn P, Anne J, Van Aerschot A (2009) An easy and fast method for the evaluation of Staphylococcus epidermidis type I signal peptidase inhibitors. J Microbiol Methods 78:231–237

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis A, Sorokin A, Azevedo V, Ehrlich SD, Braun PG, de Jong A, Venema G, Bron S, van Dijl JM (1996) Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol Microbiol 22:605–618

    Article  CAS  PubMed  Google Scholar 

  • Bonnemain C, Raynaud C, Reglier-Poupet H, Dubail I, Frehel C, Lety MA, Berche P, Charbit A (2004) Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes. Mol Microbiol 51:1251–1266

    Article  CAS  PubMed  Google Scholar 

  • Buddelmeijer N, Young R (2010) The essential Escherichia coli apolipoprotein N-acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme intermediate. Biochemistry 49:341–346

    Article  CAS  PubMed  Google Scholar 

  • Buzder-Lantos P, Bockstael K, Anne J, Herdewijn P (2009) Substrate based peptide aldehyde inhibits bacterial type I signal peptidase. Bioorg Med Chem Lett 19:2880–2883

    Article  CAS  PubMed  Google Scholar 

  • Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr Sect F, Struct Biol Commun 71:3–18

    Article  CAS  Google Scholar 

  • Cai D, Wei X, Qiu Y, Chen Y, Chen J, Wen Z, Chen S (2016) High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. J Appl Microbiol 121:704–712

    Article  CAS  PubMed  Google Scholar 

  • Carlos JL, Klenotic PA, Paetzel M, Strynadka NC, Dalbey RE (2000) Mutational evidence of transition state stabilization by serine 88 in Escherichia coli type I signal peptidase. Biochemistry 39:7276–7283

    Article  CAS  PubMed  Google Scholar 

  • Chang CN, Blobel G, Model P (1978) Detection of prokaryotic signal peptidase in an Escherichia coli membrane fraction: endoproteolytic cleavage of nascent f1 pre-coat protein. Proc Natl Acad Sci USA 75:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzi KE, Sardis MF, Karamanou S, Economou A (2013) Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 449:25–37

    Article  CAS  PubMed  Google Scholar 

  • Chimalapati S, Sankaran K, Brown JS (2013) Chapter 62—signal peptidase II. In: Handbook of proteolytic enzymes. Academic Press, pp 258–261

    Google Scholar 

  • Choo KH, Tan TW, Ranganathan S (2009) A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinform 10(Suppl 15):S2

    Article  CAS  Google Scholar 

  • Chu HH, Hoang V, Kreutzmann P, Hofemeister B, Melzer M, Hofemeister J (2002) Identification and properties of type I-signal peptidases of Bacillus amyloliquefaciens. Eur J Biochem 269:458–469

    Article  CAS  PubMed  Google Scholar 

  • Craney A, Romesberg FE (2017) Stable signal peptides and the response to secretion stress in staphylococcus aureus. mBio 8

    Google Scholar 

  • Cregg KM, Wilding I, Black MT (1996) Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus. J Bacteriol 178:5712–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalbey RE, Wang P (2013) Chapter 798—signal peptide peptidase A (Prokaryotes). In: Handbook of proteolytic enzymes. Academic Press, pp 3611–3613

    Google Scholar 

  • Dalbey RE, Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260:15925–15931

    CAS  PubMed  Google Scholar 

  • Date T (1983) Demonstration by a novel genetic technique that leader peptidase is an essential enzyme of Escherichia coli. J Bacteriol 154:76–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Bona P, Deshmukh L, Gorbatyuk V, Vinogradova O, Kendall DA (2012) Structural studies of a signal peptide in complex with signal peptidase I cytoplasmic domain: the stabilizing effect of membrane-mimetics on the acquired fold. Proteins 80:807–817

    Article  PubMed  CAS  Google Scholar 

  • De Greeff A, Hamilton A, Sutcliffe IC, Buys H, Van Alphen L, Smith HE (2003) Lipoprotein signal peptidase of Streptococcus suis serotype 2. Microbiology 149:1399–1407

    Article  PubMed  CAS  Google Scholar 

  • De Rosa M, Lu L, Zamaratski E, Szalaj N, Cao S, Wadensten H, Lenhammar L, Gising J, Roos AK, Huseby DL et al (2017) Design, synthesis and in vitro biological evaluation of oligopeptides targeting E. coli type I signal peptidase (LepB). Bioorg Med Chem 25:897–911

    Article  PubMed  CAS  Google Scholar 

  • Dev IK, Ray PH (1984) Rapid assay and purification of a unique signal peptidase that processes the prolipoprotein from Escherichia coli B. J Biol Chem 259:11114–11120

    CAS  PubMed  Google Scholar 

  • Dev IK, Harvey RJ, Ray PH (1985) Inhibition of prolipoprotein signal peptidase by globomycin. J Biol Chem 260:5891–5894

    CAS  PubMed  Google Scholar 

  • Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667

    Article  CAS  PubMed  Google Scholar 

  • Dufour J, Neuville L, Zhu J (2010) Intramolecular Suzuki-Miyaura reaction for the total synthesis of signal peptidase inhibitors, arylomycins A(2) and B(2). Chemistry 16:10523–10534

    Article  CAS  PubMed  Google Scholar 

  • Dupuy B, Deghmane A-E, Taha M-K (2013) Chapter 63—type IV prepilin peptidase. In: Handbook of proteolytic enzymes. Academic Press, pp 261–265

    Google Scholar 

  • Eichler J (2002) Archaeal signal peptidases from the genus Thermoplasma: structural and mechanistic hybrids of the bacterial and eukaryal enzymes. J Mol Evol 54:411–415

    Article  CAS  PubMed  Google Scholar 

  • Ekici OD, Karla A, Paetzel M, Lively MO, Pei D, Dalbey RE (2007) Altered-3 substrate specificity of Escherichia coli signal peptidase 1 mutants as revealed by screening a combinatorial peptide library. J Biol Chem 282:417–425

    Article  CAS  PubMed  Google Scholar 

  • Escutia MR, Val G, Palacin A, Geukens N, Anne J, Mellado RP (2006) Compensatory effect of the minor Streptomyces lividans type I signal peptidases on the SipY major signal peptidase deficiency as determined by extracellular proteome analysis. Proteomics 6:4137–4146

    Article  CAS  PubMed  Google Scholar 

  • Fine A, Irihimovitch V, Dahan I, Konrad Z, Eichler J (2006) Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii. J Bacteriol 188:1911–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink-Lavi E, Eichler J (2008) Identification of residues essential for the catalytic activity of Sec11b, one of the two type I signal peptidases of Haloferax volcanii. FEMS Microbiol Lett 278:257–260

    Article  CAS  PubMed  Google Scholar 

  • Freudl R (2018) Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact 17:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geukens N, Lammertyn E, Van Mellaert L, Schacht S, Schaerlaekens K, Parro V, Bron S, Engelborghs Y, Mellado RP, Anne J (2001a) Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 183:4752–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geukens N, Parro V, Rivas LA, Mellado RP, Anne J (2001b) Functional analysis of the Streptomyces lividans type I signal peptidases. Arch Microbiol 176:377–380

    Article  CAS  PubMed  Google Scholar 

  • Geukens N, Lammertyn E, Van Mellaert L, Engelborghs Y, Mellado RP, Anne J (2002) Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. J Biotechnol 96:79–91

    Article  CAS  PubMed  Google Scholar 

  • Geukens N, De Buck E, Meyen E, Maes L, Vranckx L, Van Mellaert L, Anne J, Lammertyn E (2006) The type II signal peptidase of Legionella pneumophila. Res Microbiol 157:836–841

    Article  CAS  PubMed  Google Scholar 

  • Ghahremanifard P, Rezaeinezhad N, Rigi G, Ramezani F, Ahmadian G (2018) Designing a novel signal sequence for efficient secretion of Candida antarctica lipase B in E. coli: the molecular dynamic simulation, codon optimization and statistical analysis approach. Int J Biol Macromol 119:291–305

    Article  CAS  PubMed  Google Scholar 

  • Gullon S, Arranz EI, Mellado RP (2013) Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans. Appl Microbiol Biotechnol 97:10069–10080

    Article  CAS  PubMed  Google Scholar 

  • Harris DA, Powers ME, Romesberg FE (2009) Synthesis and biological evaluation of penem inhibitors of bacterial signal peptidase. Bioorg Med Chem Lett 19:3787–3790

    Article  CAS  PubMed  Google Scholar 

  • Hazenbos WL, Skippington E, Tan MW (2017) Staphylococcus aureus type I signal peptidase: essential or not essential, that’s the question. Microbial cell 4:108–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmann F, Argentini M, Buddelmeijer N (2011) Kinetics and phospholipid specificity of apolipoprotein N-acyltransferase. J Biol Chem 286:27936–27946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang V, Hofemeister J (1995) Bacillus amyloliquefaciens possesses a second type I signal peptidase with extensive sequence similarity to other Bacillus SPases. Biochim Biophys Acta 1269:64–68

    Article  PubMed  Google Scholar 

  • Holtzel A, Schmid DG, Nicholson GJ, Stevanovic S, Schimana J, Gebhardt K, Fiedler HP, Jung G (2002) Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tu 6075. II. Structure elucidation. J Antibiot (Tokyo) 55:571–577

    Article  CAS  Google Scholar 

  • Hussain M, Ichihara S, Mizushima S (1980) Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J Biol Chem 255:3707–3712

    CAS  PubMed  Google Scholar 

  • Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC (2009) Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ’em, knowing when to fold ’em. Trends Microbiol 17:13–21

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson EG, Thornton JM (1996) PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci 5:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inouye S, Franceschini T, Sato M, Itakura K, Inouye M (1983) Prolipoprotein signal peptidase of Escherichia coli requires a cysteine residue at the cleavage site. EMBO J 2:87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai M, Enokita R, Torikata A, Nakahara M, Iwado S, Arai M (1978a) Globomycin, a new peptide antibiotic with spheroplast-forming activity. I. Taxonomy of producing organisms and fermentation. J Antibiot (Tokyo) 31:410–420

    Article  CAS  Google Scholar 

  • Inukai M, Nakajima M, Osawa M, Haneishi T, Arai M (1978b) Globomycin, a new peptide antibiotic with spheroplast-forming activity. II. Isolation and physico-chemical and biological characterization. J Antibiot (Tokyo) 31:421–425

    Article  CAS  Google Scholar 

  • Inukai M, Takeuchi M, Shimizu K, Arai M (1978c) Mechanism of action of globomycin. J Antibiot (Tokyo) 31:1203–1205

    Article  CAS  Google Scholar 

  • Isaki L, Kawakami M, Beers R, Hom R, Wu HC (1990) Cloning and nucleotide sequence of the Enterobacter aerogenes signal peptidase II (lsp) gene. J Bacteriol 172:469–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jock CA, Pulakat L, Lee S, Gavini N (1997) Nucleotide sequence and genetic complementation analysis of lep from Azotobacter vinelandii. Biochem Biophys Res Commun 239:393–400

    Article  CAS  PubMed  Google Scholar 

  • Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaderbhai NN, Harding V, Kaderbhai MA (2008) Signal peptidase I-mediated processing of an engineered mammalian cytochrome b(5) precursor is an exocytoplasmic post-translocational event in Escherichia coli. Mol Membr Biol 25:388–399

    Article  CAS  PubMed  Google Scholar 

  • Karla A, Lively MO, Paetzel M, Dalbey R (2005) The identification of residues that control signal peptidase cleavage fidelity and substrate specificity. J Biol Chem 280:6731–6741

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh JS, Thoendel M, Horswill AR (2007) A role for type I signal peptidase in Staphylococcus aureus quorum sensing. Mol Microbiol 65:780–798

    Article  CAS  PubMed  Google Scholar 

  • Khandavilli S, Homer KA, Yuste J, Basavanna S, Mitchell T, Brown JS (2008) Maturation of Streptococcus pneumoniae lipoproteins by a type II signal peptidase is required for ABC transporter function and full virulence. Mol Microbiol 67:541–557

    Article  CAS  PubMed  Google Scholar 

  • Kim YT, Muramatsu T, Takahashi K (1995a) Identification of Trp300 as an important residue for Escherichia coli leader peptidase activity. Eur J Biochem 234:358–362

    Article  CAS  PubMed  Google Scholar 

  • Kim YT, Muramatsu T, Takahashi K (1995b) Leader peptidase from Escherichia coli: overexpression, characterization, and inactivation by modification of tryptophan residues 300 and 310 with N-bromosuccinimide. J Biochem 117:535–544

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Wolan DW (2018) Probing substrate recognition of bacterial lipoprotein signal peptidase using FRET reporters. FEBS Lett 592:2289–2296

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Owensby A, Wall D, Wolan DW (2018) Lipoprotein signal peptidase inhibitors with antibiotic properties identified through design of a robust in vitro HT platform. Cell Chem Biol 25(301–308):e312

    Google Scholar 

  • Klenotic PA, Carlos JL, Samuelson JC, Schuenemann TA, Tschantz WR, Paetzel M, Strynadka NC, Dalbey RE (2000) The role of the conserved box E residues in the active site of the Escherichia coli type I signal peptidase. J Biol Chem 275:6490–6498

    Article  CAS  PubMed  Google Scholar 

  • Kogen H, Kiho T, Nakayama M, Furukawa Y, Kinoshita T, Inukai M (2000) Crystal structure and total synthesis of globomycin: establishment of relative and absolute configurations. J Am Chem Soc 122:10214–10215

    Article  CAS  Google Scholar 

  • Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: lol is not the end. Philos Trans R Soc Lond B Biol Sci 370

    Article  CAS  Google Scholar 

  • Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79:548–561

    Article  CAS  PubMed  Google Scholar 

  • Kuo D, Weidner J, Griffin P, Shah SK, Knight WB (1994) Determination of the kinetic parameters of Escherichia coli leader peptidase activity using a continuous assay: the pH dependence and time-dependent inhibition by beta-lactams are consistent with a novel serine protease mechanism. Biochemistry 33:8347–8354

    Article  CAS  PubMed  Google Scholar 

  • Lammertyn E, Van Mellaert L, Meyen E, Lebeau I, De Buck E, Anne J, Geukens N (2004) Molecular and functional characterization of type I signal peptidase from Legionella pneumophila. Microbiology 150:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Leversen NA, de Souza GA, Malen H, Prasad S, Jonassen I, Wiker HG (2009) Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods. Microbiology 155:2375–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Luo C, Smith PA, Chin JK, Page MG, Paetzel M, Romesberg FE (2011a) Synthesis and characterization of the arylomycin lipoglycopeptide antibiotics and the crystallographic analysis of their complex with signal peptidase. J Am Chem Soc 133:17869–17877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WT, Kersten RD, Yang YL, Moore BS, Dorrestein PC (2011b) Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J Am Chem Soc 133:18010–18013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoVullo ED, Wright LF, Isabella V, Huntley JF, Pavelka MS Jr (2015) Revisiting the Gram-negative lipoprotein paradigm. J Bacteriol 197:1705–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low KO, Muhammad Mahadi N, Md Illias R (2013) Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 97:3811–3826

    Article  CAS  PubMed  Google Scholar 

  • Luke I, Handford JI, Palmer T, Sargent F (2009) Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Arch Microbiol 191:919–925

    Article  PubMed  CAS  Google Scholar 

  • Luo C, Roussel P, Dreier J, Page MG, Paetzel M (2009) Crystallographic analysis of bacterial signal peptidase in ternary complex with arylomycin A2 and a beta-sultam inhibitor. Biochemistry 48:8976–8984

    Article  CAS  PubMed  Google Scholar 

  • Madan Babu M, Sankaran K (2002) DOLOP–database of bacterial lipoproteins. Bioinformatics 18:641–643

    Article  CAS  PubMed  Google Scholar 

  • Malten M, Nahrstedt H, Meinhardt F, Jahn D (2005) Coexpression of the type I signal peptidase gene sipM increases recombinant protein production and export in Bacillus megaterium MS941. Biotechnol Bioeng 91:616–621

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Zhao Y, Kang X, Li Z, Zhang Y, Wang X, Sun F, Sankaran K, Zhang XC (2016) Crystal structure of E. coli lipoprotein diacylglyceryl transferase. Nat Commun 7:10198

    Google Scholar 

  • McKnight CJ, Rafalski M, Gierasch LM (1991a) Fluorescence analysis of tryptophan-containing variants of the LamB signal sequence upon insertion into a lipid bilayer. Biochemistry 30:6241–6246

    Article  CAS  PubMed  Google Scholar 

  • McKnight CJ, Stradley SJ, Jones JD, Gierasch LM (1991b) Conformational and membrane-binding properties of a signal sequence are largely unaltered by its adjacent mature region. Proc Natl Acad Sci USA 88:5799–5803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer WJ, de Jong A, Bea G, Wisman A, Tjalsma H, Venema G, Bron S, van Dijl JM (1995) The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17:621–631

    Article  CAS  PubMed  Google Scholar 

  • Milstein C, Brownlee GG, Harrison TM, Mathews MB (1972) A possible precursor of immunoglobulin light chains. Nat New Biol 239:117–120

    Article  CAS  PubMed  Google Scholar 

  • Molino JVD, de Carvalho JCM, Mayfield SP (2018) Comparison of secretory signal peptides for heterologous protein expression in microalgae: expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE 13:e0192433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore KE, Miura S (1987) A small hydrophobic domain anchors leader peptidase to the cytoplasmic membrane of Escherichia coli. J Biol Chem 262:8806–8813

    CAS  PubMed  Google Scholar 

  • Morisaki JH, Smith PA, Date SV, Kajihara KK, Truong CL, Modrusan Z, Yan D, Kang J, Xu M, Shah IM et al (2016) A putative bacterial ABC transporter circumvents the essentiality of signal peptidase. mBio 7

    Google Scholar 

  • Muhammad MA, Falak S, Rashid N, Gardner QA, Ahmad N, Imanaka T, Akhtar M (2017) Escherichia coli signal peptidase recognizes and cleaves archaeal signal sequence. Biochemistry (Mosc) 82:821–825

    Article  CAS  Google Scholar 

  • Munnoch JT, Widdick DA, Chandra G, Sutcliffe IC, Palmer T, Hutchings MI (2016) Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene. Sci Rep 6:29495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoa FJ, Miller KW, Beers R, Graham M, Wu HC (1991) Membrane topology of Escherichia coli prolipoprotein signal peptidase (signal peptidase II). J Biol Chem 266:17667–17672

    CAS  PubMed  Google Scholar 

  • Musial-Siwek M, Kendall DA, Yeagle PL (2008a) Solution NMR of signal peptidase, a membrane protein. Biochim Biophys Acta 1778:937–944

    Article  CAS  PubMed  Google Scholar 

  • Musial-Siwek M, Yeagle PL, Kendall DA (2008b) A small subset of signal peptidase residues are perturbed by signal peptide binding. Chem Biol Drug Des 72:140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahrstedt H, Wittchen K, Rachman MA, Meinhardt F (2004) Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 64:243–249

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Inukai M, Haneishi T, Terahara A, Arai M, Kinoshita T, Tamura C (1978) Globomycin, a new peptide antibiotic with spheroplast-forming activity. III. Structural determination of globomycin. J Antibiot (Tokyo) 31:426–432

    Article  CAS  Google Scholar 

  • Nakayama H, Kurokawa K, Lee BL (2012) Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279:4247–4268

    Article  CAS  PubMed  Google Scholar 

  • Narita SI, Tokuda H (2017) Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta 1862:1414–1423

    Article  CAS  Google Scholar 

  • Ng SY, Jarrell KF (2003) Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J Bacteriol 185:5936–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng SY, Chaban B, VanDyke DJ, Jarrell KF (2007) Archaeal signal peptidases. Microbiology 153:305–314

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MT, Gotz F (2016) Lipoproteins of Gram-positive bacteria: Key players in the immune response and virulence. Microbiol Mol Biol Rev 80:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997a) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997b) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599

    Article  CAS  PubMed  Google Scholar 

  • Noland CL, Kattke MD, Diao J, Gloor SL, Pantua H, Reichelt M, Katakam AK, Yan D, Kang J, Zilberleyb I et al (2017) Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase. Proc Natl Acad Sci USA 114:E6044–E6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyathi Y, Wilkinson BM, Pool MR (2013) Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 1833:2392–2402

    Article  CAS  PubMed  Google Scholar 

  • Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y (2018) A comprehensive review of signal peptides: structure, roles, and applications. Eur J Cell Biol 97:422–441

    Article  CAS  PubMed  Google Scholar 

  • Packer JC, Andre D, Howe CJ (1995) Cloning and sequence analysis of a signal peptidase I from the thermophilic cyanobacterium Phormidium laminosum. Plant Mol Biol 27:199–204

    Article  CAS  PubMed  Google Scholar 

  • Paetzel M, Strynadka NC (1999) Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism. Protein Sci 8:2533–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paetzel M, Chernaia M, Strynadka N, Tschantz W, Cao G, Dalbey RE, James MN (1995) Crystallization of a soluble, catalytically active form of Escherichia coli leader peptidase. Proteins 23:122–125

    Article  CAS  PubMed  Google Scholar 

  • Paetzel M, Strynadka NC, Tschantz WR, Casareno R, Bullinger PR, Dalbey RE (1997) Use of site-directed chemical modification to study an essential lysine in Escherichia coli leader peptidase. J Biol Chem 272:9994–10003

    Article  CAS  PubMed  Google Scholar 

  • Paetzel M, Dalbey RE, Strynadka NC (1998) Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396:186–190

    Article  CAS  PubMed  Google Scholar 

  • Paetzel M, Dalbey RE, Strynadka NC (2002) Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. J Biol Chem 277:9512–9519

    Article  CAS  PubMed  Google Scholar 

  • Paetzel M, Goodall JJ, Kania M, Dalbey RE, Page MG (2004) Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor. J Biol Chem 279:30781–30790

    Article  CAS  PubMed  Google Scholar 

  • Paitan Y, Orr E, Ron EZ, Rosenberg E (1999) A nonessential signal peptidase II (Lsp) of Myxococcus xanthus might be involved in biosynthesis of the polyketide antibiotic TA. J Bacteriol 181:5644–5651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palacin A, Parro V, Geukens N, Anne J, Mellado RP (2002) SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 184:4875–4880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parro V, Mellado RP (1998) A new signal peptidase gene from Streptomyces lividans TK21. DNA Seq 9:71–77

    Article  CAS  PubMed  Google Scholar 

  • Parro V, Schacht S, Anne J, Mellado RP (1999) Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology 145(Pt 9):2255–2263

    Article  CAS  PubMed  Google Scholar 

  • Peng SB, Wang L, Moomaw J, Peery RB, Sun PM, Johnson RB, Lu J, Treadway P, Skatrud PL, Wang QM (2001) Biochemical characterization of signal peptidase I from gram-positive Streptococcus pneumoniae. J Bacteriol 183:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlman D, Halvorson HO (1983) A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167:391–409

    Article  CAS  PubMed  Google Scholar 

  • Perry CR, Ashby MJ, Elsmere SA (1995) Penems as research tools to investigate the activity of E.coli leader peptidase. Biochem Soc Trans 23:548S

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Pohlschroder M, Pfeiffer F, Schulze S, Halim MFA (2018) Archaeal cell surface biogenesis. FEMS Microbiol Rev 42:694–717

    Article  PubMed  PubMed Central  Google Scholar 

  • Pragai Z, Tjalsma H, Bolhuis A, van Dijl JM, Venema G, Bron S (1997) The signal peptidase II (Isp) gene of Bacillus subtilis. Microbiology 143(Pt 4):1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Rahman MS, Simser JA, Macaluso KR, Azad AF (2003) Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase from Rickettsia rickettsii and Rickettsia typhi. J Bacteriol 185:4578–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MS, Ceraul SM, Dreher-Lesnick SM, Beier MS, Azad AF (2007) The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis. J Bacteriol 189:336–341

    Article  CAS  PubMed  Google Scholar 

  • Rahman O, Cummings SP, Harrington DJ, Sutcliffe IC (2008) Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J Microbiol Biotechnol 24:2377

    Article  CAS  Google Scholar 

  • Randall LL (1983) Translocation of domains of nascent periplasmic proteins across the cytoplasmic membrane is independent of elongation. Cell 33:231–240

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ (2013) Chapter 1—introduction: aspartic and glutamic peptidases and their clans. In: Handbook of proteolytic enzymes. Academic Press, pp 3–19

    Google Scholar 

  • Raynaud C, Charbit A (2005) Regulation of expression of type I signal peptidases in Listeria monocytogenes. Microbiology 151:3769–3776

    Article  CAS  PubMed  Google Scholar 

  • Regue M, Remenick J, Tokunaga M, Mackie GA, Wu HC (1984) Mapping of the lipoprotein signal peptidase gene (lsp). J Bacteriol 158:632–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizo J, Blanco FJ, Kobe B, Bruch MD, Gierasch LM (1993) Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry 32:4881–4894

    Article  CAS  PubMed  Google Scholar 

  • Roberts TC, Smith PA, Cirz RT, Romesberg FE (2007) Structural and initial biological analysis of synthetic arylomycin A2. J Am Chem Soc 129:15830–15838

    Article  CAS  PubMed  Google Scholar 

  • Roberts TC, Schallenberger MA, Liu J, Smith PA, Romesberg FE (2011a) Initial efforts toward the optimization of arylomycins for antibiotic activity. J Med Chem 54:4954–4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts TC, Smith PA, Romesberg FE (2011b) Synthesis and biological characterization of arylomycin B antibiotics. J Nat Prod 74:956–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini DD, Blobel G, Nonomura Y, Adelman MR (1971) Ribosome-membrane interaction: structural aspects and functional implications. Adv Cytopharmacol 1:119–129

    CAS  PubMed  Google Scholar 

  • San Millan JL, Boyd D, Dalbey R, Wickner W, Beckwith J (1989) Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. J Bacteriol 171:5536–5541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaram MB, Marsh D, Gierasch LM, Thompson TE (1994) Reorganization of lipid domain structure in membranes by a transmembrane peptide: an ESR spin label study on the effect of the Escherichia coli outer membrane protein a signal peptide on the fluid lipid domain connectivity in binary mixtures of dimyristoyl phosphatidylcholine and distearoyl phosphatidylcholine. Biophys J 66:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaran K, Gan K, Rash B, Qi HY, Wu HC, Rick PD (1997) Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli. J Bacteriol 179:2944–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarabia F, Chammaa S, Garcia-Ruiz C (2011) Solid phase synthesis of globomycin and SF-1902 A5. J Org Chem 76:2132–2144

    Article  CAS  PubMed  Google Scholar 

  • Savojardo C, Martelli PL, Fariselli P, Casadio R (2018) DeepSig: deep learning improves signal peptide detection in proteins. Bioinformatics 34:1690–1696

    Article  CAS  PubMed  Google Scholar 

  • Schimana J, Gebhardt K, Holtzel A, Schmid DG, Sussmuth R, Muller J, Pukall R, Fiedler HP (2002) Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tu 6075. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 55:565–570

    Article  CAS  Google Scholar 

  • Selas Castineiras T, Williams SG, Hitchcock A, Cole JA, Smith DC, Overton TW (2018) Development of a generic beta-lactamase screening system for improved signal peptides for periplasmic targeting of recombinant proteins in Escherichia coli. Sci Rep 8:6986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seydel A, Gounon P, Pugsley AP (1999) Testing the ‘ + 2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34:810–821

    Article  CAS  PubMed  Google Scholar 

  • Siegel SD, Wu C, Ton-That H (2016) A type I signal peptidase is required for pilus assembly in the Gram-positive, biofilm-forming bacterium Actinomyces oris. J Bacteriol 198:2064–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PA, Romesberg FE (2012) Mechanism of action of the arylomycin antibiotics and effects of signal peptidase I inhibition. Antimicrob Agents Chemother 56:5054–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Yan H, Groves N, Dalla Pozza T, Walker MJ (2000) Co-expression of the Bordetella pertussis leader peptidase I results in enhanced processing and expression of the pertussis toxin S1 subunit in Escherichia coli. FEMS Microbiol Lett 191:177–182

    Article  CAS  PubMed  Google Scholar 

  • Smith PA, Roberts TC, Romesberg FE (2010) Broad-spectrum antibiotic activity of the arylomycin natural products is masked by natural target mutations. Chem Biol 17:1223–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PA, Powers ME, Roberts TC, Romesberg FE (2011) In vitro activities of arylomycin natural-product antibiotics against Staphylococcus epidermidis and other coagulase-negative staphylococci. Antimicrob Agents Chemother 55:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Smith PA, Koehler MFT, Girgis HS, Yan D, Chen Y, Chen Y, Crawford JJ, Durk MR, Higuchi RI, Kang J et al (2018) Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561:189–194

    Article  CAS  PubMed  Google Scholar 

  • Sung M, Dalbey RE (1992) Identification of potential active-site residues in the Escherichia coli leader peptidase. J Biol Chem 267:13154–13159

    CAS  PubMed  Google Scholar 

  • Szalaj N, Lu L, Benediktsdottir A, Zamaratski E, Cao S, Olanders G, Hedgecock C, Karlen A, Erdelyi M, Hughes D et al (2018) Boronic ester-linked macrocyclic lipopeptides as serine protease inhibitors targeting Escherichia coli type I signal peptidase. Eur J Med Chem 157:1346–1360

    Article  CAS  PubMed  Google Scholar 

  • Talarico TL, Dev IK, Bassford PJ Jr, Ray PH (1991) Inter-molecular degradation of signal peptidase I in vitro. Biochem Biophys Res Commun 181:650–656

    Article  CAS  PubMed  Google Scholar 

  • Terada M, Kuroda T, Matsuyama SI, Tokuda H (2001) Lipoprotein sorting signals evaluated as the LolA-dependent release of lipoproteins from the cytoplasmic membrane of Escherichia coli. J Biol Chem 276:47690–47694

    Article  CAS  PubMed  Google Scholar 

  • Ting YT, Harris PW, Batot G, Brimble MA, Baker EN, Young PG (2016) Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ 3:10–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalsma H, Noback MA, Bron S, Venema G, Yamane K, van Dijl JM (1997) Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J Biol Chem 272:25983–25992

    Article  CAS  PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, van Roosmalen ML, Wiegert T, Schumann W, Broekhuizen CP, Quax WJ, Venema G, Bron S, van Dijl JM (1998) Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalsma H, Kontinen VP, Pragai Z, Wu H, Meima R, Venema G, Bron S, Sarvas M, van Dijl JM (1999a) The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium bacillus subtilis. Signal peptidase II is required for the efficient secretion of alpha-amylase, a non-lipoprotein. J Biol Chem 274:1698–1707

    Article  CAS  PubMed  Google Scholar 

  • Tjalsma H, van den Dolder J, Meijer WJ, Venema G, Bron S, van Dijl JM (1999b) The plasmid-encoded signal peptidase SipP can functionally replace the major signal peptidases SipS and SipT of Bacillus subtilis. J Bacteriol 181:2448–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalsma H, Zanen G, Venema G, Bron S, van Dijl JM (1999c) The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis. J Biol Chem 274:28191–28197

    Article  CAS  PubMed  Google Scholar 

  • Tjalsma H, Stover AG, Driks A, Venema G, Bron S, van Dijl JM (2000) Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J Biol Chem 275:25102–25108

    Article  CAS  PubMed  Google Scholar 

  • Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1693:5–13

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga M, Loranger JM, Wolfe PB, Wu HC (1982) Prolipoprotein signal peptidase in Escherichia coli is distinct from the M13 procoat protein signal peptidase. J Biol Chem 257:9922–9925

    CAS  PubMed  Google Scholar 

  • Tokunaga M, Loranger JM, Wu HC (1984) A distinct signal peptidase for prolipoprotein in Escherichia coli. J Cell Biochem 24:113–120

    Article  CAS  PubMed  Google Scholar 

  • Tschantz WR, Sung M, Delgado-Partin VM, Dalbey RE (1993) A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. J Biol Chem 268:27349–27354

    CAS  PubMed  Google Scholar 

  • Tschantz WR, Paetzel M, Cao G, Suciu D, Inouye M, Dalbey RE (1995) Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34:3935–3941

    Article  CAS  PubMed  Google Scholar 

  • Tsirigotaki A, De Geyter J, Sostaric N, Economou A, Karamanou S (2017) Protein export through the bacterial Sec pathway. Nat Rev Microbiol 15:21–36

    Article  CAS  PubMed  Google Scholar 

  • Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G (2007) Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 282:8309–8316

    Article  CAS  PubMed  Google Scholar 

  • Tyndall JD, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–999

    Article  CAS  PubMed  Google Scholar 

  • Ujiie A, Nakano H, Iwasaki Y (2016) Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli. J Biosci Bioeng 121:303–309

    Article  CAS  PubMed  Google Scholar 

  • UniProt C (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41:D43–D47

    Article  CAS  Google Scholar 

  • van Dijl JM, van den Bergh R, Reversma T, Smith H, Bron S, Venema G (1990) Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli. Mol Gen Genet 223:233–240

    Article  PubMed  Google Scholar 

  • van Dijl JM, de Jong A, Vehmaanpera J, Venema G, Bron S (1992) Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11:2819–2828

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dijl JM, de Jong A, Venema G, Bron S (1995) Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases. J Biol Chem 270:3611–3618

    Article  PubMed  Google Scholar 

  • van Klompenburg W, Whitley P, Diemel R, von Heijne G, de Kruijff B (1995) A quantitative assay to determine the amount of signal peptidase I in E. coli and the orientation of membrane vesicles. Mol Membr Biol 12:349–353

    Article  PubMed  Google Scholar 

  • van Klompenburg W, Ridder AN, van Raalte AL, Killian AJ, von Heijne G, de Kruijff B (1997) In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Lett 413:109–114

    Article  PubMed  Google Scholar 

  • van Klompenburg W, Paetzel M, de Jong JM, Dalbey RE, Demel RA, von Heijne G, de Kruijff B (1998) Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS Lett 431:75–79

    Article  PubMed  Google Scholar 

  • van Roosmalen ML, Jongbloed JD, de Jonf A, van Eerden J, Venema G, Bron S, van Dijl JM (2001) Detergent-independent in vitro activity of a truncated Bacillus signal peptidase. Microbiology 147:909–917

    Article  PubMed  Google Scholar 

  • Vogeley L, El Arnaout T, Bailey J, Stansfeld PJ, Boland C, Caffrey M (2016) Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science 351:876–880

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21

    Article  Google Scholar 

  • von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105

    Article  Google Scholar 

  • Voorhees RM, Hegde RS (2016) Toward a structural understanding of co-translational protein translocation. Curr Opin Cell Biol 41:91–99

    Article  CAS  PubMed  Google Scholar 

  • Waite RD, Rose RS, Rangarajan M, Aduse-Opoku J, Hashim A, Curtis MA (2012) Pseudomonas aeruginosa possesses two putative type I signal peptidases, LepB and PA1303, each with distinct roles in physiology and virulence. J Bacteriol 194:4521–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Jones JD, Rizo J, Gierasch LM (1993) Membrane-bound conformation of a signal peptide: a transferred nuclear Overhauser effect analysis. Biochemistry 32:13991–13999

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang D, Li J, Huang T, Cai YD (2018) Identification and analysis of the cleavage site in a signal peptide using SMOTE, dagging, and feature selection methods. Mol Omics 14:64–73

    Article  CAS  PubMed  Google Scholar 

  • Watts C, Silver P, Wickner W (1981) Membrane assembly from purified components. II. Assembly of M13 procoat into liposomes reconstituted with purified leader peptidase. Cell 25:347–353

    Article  CAS  PubMed  Google Scholar 

  • Whitley P, Nilsson L, von Heijne G (1993) Three-dimensional model for the membrane domain of Escherichia coli leader peptidase based on disulfide mapping. Biochemistry 32:8534–8539

    Article  CAS  PubMed  Google Scholar 

  • Wieseler B, Schiltz E, Muller M (1992) Identification and solubilization of a signal peptidase from the phototrophic bacterium Rhodobacter capsulatus. FEBS Lett 298:273–276

    Article  CAS  PubMed  Google Scholar 

  • Witke C, Gotz F (1995) Cloning and nucleotide sequence of the signal peptidase II (lsp)-gene from Staphylococcus carnosus. FEMS Microbiol Lett 126:233–239

    Article  CAS  PubMed  Google Scholar 

  • Wlodawer A, Gustchina A, James MNG (2013) Chapter 2—catalytic pathways of aspartic peptidases. In: Handbook of proteolytic enzymes. Academic Press, pp 19–26

    Google Scholar 

  • Wolfe PB, Wickner W, Goodman JM (1983) Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J Biol Chem 258:12073–12080

    CAS  PubMed  Google Scholar 

  • Xiao Y, Gerth K, Muller R, Wall D (2012) Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother 56:2014–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata H (1983) Temperature-sensitive prolipoprotein signal peptidase in an Escherichia coli mutant: use of the mutant for an efficient and convenient assay system. J Biochem 93:1509–1515

    Article  CAS  PubMed  Google Scholar 

  • Yeh CH, Walsh SI, Craney A, Tabor MG, Voica AF, Adhikary R, Morris SE, Romesberg FE (2018) Optimization of a beta-lactam scaffold for antibacterial activity via the inhibition of bacterial type I signal peptidase. ACS Med Chem Lett 9:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YB, Greenberg B, Lacks SA (1997) Analysis of a Streptococcus pneumoniae gene encoding signal peptidase I and overproduction of the enzyme. Gene 194:249–255

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Lu J, Zhang S, Liu L, Pang X, Lv J (2018) Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microb Cell Fact 17:50

    Google Scholar 

  • Zhbanko M, Zinchenko V, Gutensohn M, Schierhorn A, Klosgen RB (2005) Inactivation of a predicted leader peptidase prevents photoautotrophic growth of Synechocystis sp. strain PCC 6803. J Bacteriol 187:3071–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng F, Angleton EL, Lu J, Peng SB (2002) In vitro and in vivo self-cleavage of Streptococcus pneumoniae signal peptidase I. Eur J Biochem 269:3969–3977

    Article  CAS  PubMed  Google Scholar 

  • Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwizinski C, Wickner W (1980) Purification and characterization of leader (signal) peptidase from Escherichia coli. J Biol Chem 255:7973–7977

    CAS  PubMed  Google Scholar 

  • Zwizinski C, Date T, Wickner W (1981) Leader peptidase is found in both the inner and outer membranes of Escherichia coli. J Biol Chem 256:3593–3597

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Andreas Kuhn for the opportunity to contribute to this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Paetzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paetzel, M. (2019). Bacterial Signal Peptidases. In: Kuhn, A. (eds) Bacterial Cell Walls and Membranes . Subcellular Biochemistry, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-18768-2_7

Download citation

Publish with us

Policies and ethics