Skip to main content

Geminivirus–Vector Relationship

  • Chapter
  • First Online:
Geminiviruses

Abstract

Geminiviruses are the most abundant plant viruses. This group of ssDNA viruses infects a wide range of hosts including weeds, ornamentals, as well as economically important crops and is widely distributed on the planet Earth. Geminiviruses cause some of the most damaging and economically important diseases of crop plants. This chapter summarizes biological and molecular aspects of the relationships between geminiviruses and their vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahder BW, Zalom FG, Jayanth M, Sudarshana MR (2016) Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus as a vector of Grapevine red blotch-associated virus. Phytopathology 106(10):1223–1230

    Article  CAS  Google Scholar 

  • Briddon RW, Bedford ID, Tsai JH, Markham PG (1996) Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. Virology 219:3387–3394

    Article  Google Scholar 

  • Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. Adv Bot Res 36:65–100

    Article  Google Scholar 

  • Czosnek H, Ghanim M (2012) Back to basics: are begomoviruses whitefly pathogens? J Integr Agric 11:225–234

    Article  Google Scholar 

  • Czosnek H, Ghanim M, Rubinstein G, Morin S, Fridman V, Zeidan M (2001) Whiteflies: vectors, and victims (?), of geminiviruses. Adv Virus Res 57:291–322

    Article  CAS  Google Scholar 

  • Firdaus S, Vosman B, Hidayati N, Jaya Supena ED et al (2013) The Bemisia tabaci species complex: additions from different parts of the world. Insect Sci 20:723–733

    Article  CAS  Google Scholar 

  • Ghanim M (2014) A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res 186:47–54

    Article  CAS  Google Scholar 

  • Gotz M, Popovski S, Kollenberg M, Gorovits R et al (2012) Implication of Bemisia tabaci heat shock protein 70 in begomovirus-whitefly interactions. J Virol 86:13241–13252

    Article  Google Scholar 

  • Gray S, Cilia M, Ghanim M (2014) Circulative, “nonpropagative” virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 89:141–199

    Article  CAS  Google Scholar 

  • Hariton Shalev A, Sobol I, Ghanim M, Liu SS, Czosnek H (2016) The whitefly Bemisia tabaci knottin-1 gene is implicated in regulating the quantity of tomato yellow leaf curl virus ingested and transmitted by the insect. Viruses 8:205

    Article  Google Scholar 

  • Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  Google Scholar 

  • Hull R (2014) Plant to plant movement. In: Hull R (ed) Plant virology. Academic, London, pp 669–751

    Chapter  Google Scholar 

  • Kanakala S, Ghanim M (2016) Implication of the whitefly Bemisia tabaci cyclophilin B protein in the transmission of tomato yellow leaf curl virus. Front Plant Sci 7:1702

    Article  Google Scholar 

  • Kliot A, Cilia M, Czosnek H, Ghanim M (2014) Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. J Virol 88:5652–5660

    Article  CAS  Google Scholar 

  • Kollenberg M, Winter S, Götz M (2014) Quantification and localization of Watermelon chlorotic stunt virus and tomato yellow leaf curl virus (Geminiviridae) in populations of Bemisia tabaci (Hemiptera, Aleyrodidae) with differential virus transmission characteristics. PLoS One 9:e111968

    Article  Google Scholar 

  • Li R, Weldegergis BT, Li J, Jung C et al (2014) Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008

    Article  CAS  Google Scholar 

  • Luan JB, Li JM, Varela N, Wang YL et al (2011) Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals their relationship of coevolved adaptations. J Virol 85:3330–3340

    Article  CAS  Google Scholar 

  • Luan JB, Yao DM, Zhang T, Walling LL et al (2013) Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett 16:390–398

    Article  Google Scholar 

  • Luan JB, Wang XW, Colvin J, Liu SS (2014) Plant-mediated whitefly-begomovirus interactions: research progress and future prospects. Bull Entomol Res 104:267–276

    Article  Google Scholar 

  • Navas-Castillo J, Lopez-Moya JJ, Aranda MA (2014) Whitefly-transmitted RNA viruses that affect intensive vegetable production. Ann Appl Biol 165:155–171

    Article  CAS  Google Scholar 

  • Pan L, Chen Q, Zhao J, Guo T et al (2017) Clathrin-mediated endocytosis is involved in tomato yellow leaf curl virus transport across the midgut barrier of its whitefly vector. Virology 502:152–159

    Article  CAS  Google Scholar 

  • Polston JE, De Barro P, Boykin LM (2014) Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manag Sci 70:1547–1552

    Article  CAS  Google Scholar 

  • Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR (2017) Geminiviruses and plant hosts: a closer examination of the molecular arms race. Viruses 9:256

    Article  Google Scholar 

  • Rana VP, Popli S, Saurav GK, Raina HS et al (2016) Bemisia tabaci midgut protein interacts with begomoviruses and plays a role in virus transmission. Cell Microbiol 18:663–678

    Article  CAS  Google Scholar 

  • Rosen R, Kanakala S, Kliot A et al (2015) Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol 15:1–8

    Article  Google Scholar 

  • Roumagnac P, Granier M, Bernardo P, Deshoux M, Ferdinand R, Galzi S et al (2015) Alfalfa leaf curl virus: an aphid-transmitted geminivirus. J Virol 89:9683–9688

    Article  CAS  Google Scholar 

  • Varsani A, Navas-Castillo J, Moriones E, Hernandez-Zepeda C, Idris A, Brown JK et al (2014) Establishment of three new genera in the family Geminiviridae: becurtovirus, eragrovirus and turncurtovirus. Arch Virol 159:2193–2203

    Article  CAS  Google Scholar 

  • Vyskočilová S, Tek Tay W, van Brunschot S, Seal S, Colvin J (2018) An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci Rep 8:10886

    Article  Google Scholar 

  • Wang YJ, Mao QZ, Liu WW, Mar TT et al (2014) Localization and distribution of wheat dwarf virus in its vector leafhopper, Psammotettix alienus. Phytopathology 104:897–904

    Article  CAS  Google Scholar 

  • Wang Z-Z, Shi M, Huang Y-C, Wang X-W, Stanley D, Chen X-X (2016) A peptidoglycan recognition protein acts in whitefly (Bemisia tabaci) immunity and involves in Begomovirus acquisition. Sci Rep 6:37806

    Article  CAS  Google Scholar 

  • Wei J, He YZ, Guo Q, Guo T et al (2017) Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc Natl Acad Sci U S A 114:201701720

    Article  Google Scholar 

  • Whitfield AE, Falk BW, Rotemberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479–480:278–289

    Article  Google Scholar 

  • Xia W, Liang Y, Chi Y, Pan LL et al (2018) Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathog 14:e1006866

    Article  Google Scholar 

  • Yang Q, Ding B, Zhou X (2017) Geminiviruses and their application in biotechnology. J Integr Agric 16:2761–2771

    Article  Google Scholar 

  • Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J et al (2017) ICTV virus taxonomy profile: geminiviridae. J Gen Virol 98:131–133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bejerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bejerman, N. (2019). Geminivirus–Vector Relationship. In: Kumar, R. (eds) Geminiviruses. Springer, Cham. https://doi.org/10.1007/978-3-030-18248-9_8

Download citation

Publish with us

Policies and ethics